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Abstract

The objective of the present paper is to extend our recent works and see what happen on
numerical approximations to a more complicated model of two-phase flows, which has ap-
plications in the modeling of deflagration-to-detonation transition in granular materials.
First, we transform the system into an equivalent one which can be regarded as a compo-
sition of three subsystems. Then, depending on the characterization of each subsystem,
we propose a convenient numerical treatment of the subsystem separately. Precisely, in
the first subsystem of the governing equations in the gas phase, stationary waves are used
to absorb the nonconservative terms into an underlying numerical scheme. In the second
subsystem of conservation laws of the mixture we can take a suitable scheme for conser-
vation laws. For the third subsystem of the compaction dynamics equation, the fact that
the velocities remain constant across solid contacts suggests us to employ the technique
of Engquist-Osher’s scheme. Then, we prove that our method possesses some interesting
properties: it preserves the positivity of the volume fractions in both phases, and in the
gas phase, our scheme is capable of capturing equilibrium states, preserves the positivity
of the density, and satisfies the numerical minimum entropy principle. Numerical tests
show that our scheme can provide reasonable approximations for data the supersonic re-
gions, but the results are not satisfactory in the subsonic region. However, the scheme is
numerically stable and robust.

Keywords: Two-phase flow, conservation law, source term, numerical approximation,
well-balanced scheme, positivity of density, minimum entropy principle.

1. Introduction

We consider numerical approximations of a model of two-phase flows which is used
for the modeling of deflagration-to-detonation transition in porous energetic materials.
Precisely, the model consists of six governing equations representing the balance of mass,
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momentum and energy in each phase, namely,

∂t(αgρg) + ∂x(αgρgug) = 0,
∂t(αgρgug) + ∂x(αg(ρgu

2
g + pg)) = pg∂xαg,

∂t(αgρgeg) + ∂x(αgug(ρgeg + pg)) = pgus∂xαg,
∂t(αsρs) + ∂x(αsρsus) = 0,
∂t(αsρsus) + ∂x(αs(ρsu

2
s + ps)) = pg∂xαs,

∂t(αsρses) + ∂x(αsus(ρses + ps)) = pgus∂xαs, x ∈ RI , t > 0,

(1.1)

together with the compaction dynamics equation

∂tαg + us∂xαg = 0, x ∈ RI , t > 0, (1.2)

see [6, 11]. Throughout, we use the subscripts g and s to indicate the quantities in the
gas phase and in the solid phase, respectively. The notations αk, ρk, uk, pk, εk, Sk, Tk, ek =
εk + u2k/2, k = g, s, respectively, stand for the volume fraction, density, velocity, pressure,
internal energy, specific entropy, temperature, and the total energy in the k-phase, k =
g, s, respectively. The volume fractions satisfy

αs + αg = 1. (1.3)

We assume that the two fluids are stiffened such that each phase is characterized by an
equation of state of the form, see [31]

εk =
pk + γkp∞,k
ρk(γk − 1)

, k = g, s. (1.4)

The system (1.1)-(1.2) has the form of a system of balance laws in nonconservative
form. A mathematical formulation of this kind of systems of balance laws was introduced
in [13]. As well-known, the system (1.1)-(1.2) is not strictly hyperbolic as characteristic
speeds coincide on certain sets, see [4, 35] for example. In particular, two characteristic
speeds coincide everywhere: λ5 ≡ λ7 ≡ us. This corresponds to a linearly degenerate
field and the associated contacts are called solid contacts. The system (1.1)-(1.2) shows
its most complex structure around solid contacts, where the resonant phenomenon occurs
and multiple solutions are available.

Often, the source terms in a system of nonconservative form may cause lots of in-
conveniences in approximating physical solutions of the system. Furthermore, standard
numerical schemes for hyperbolic conservation laws may not work properly for approx-
imating exact solutions of (1.1)-(1.2) when approximate states fall into a neighborhood
of a region where characteristic speeds coincide and multiple exact solutions are avail-
able. This makes the topic of looking for a reliable numerical method for approximating
solutions of (1.1)-(1.2) one of the most interesting computing problems.

Motivated by our earlier work [25, 38, 40] for simpler systems of balance laws in
nonconservative form, we extend the argument and method in these works to build in
this paper a well-balanced numerical scheme for (1.1)-(1.2), and then see what happen.
The idea that is extended from these works to the present work is to use stationary
contacts to ”absorb” the source terms. First, we will transform the system to an equivalent
form which consists of three ”subsystems”. The first subsystem consists of the governing
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equations in the gas phase, the second subsystem consists of the conservation laws for the
mixture, and the third subsystem is the compaction dynamics equation. Each subsystem
will be dealt with separately due to its performance. For the first subsystem we absorb
the source terms using stationary contacts in the gas phase. For the second subsystem of
conservation laws of the mixture, we will apply a suitable scheme for conservation laws.
This is different from the one in [40], where we keep the conservation of mass in the solid
phase for this second subsystem. Observing that the solid velocity is constant across the
solid contact, we employ the technique of Enquist-Osher scheme to discretize the third
subsystem. Our numerical method is then proven to possess interesting properties: it
can capture equilibrium states in the gas phase, it preserves the positivity of the volume
fractions in both phases, it also preserves the positivity of the density in the gas phase.
Moreover, we will show that our scheme also satisfies the numerical minimum entropy
principle in the gas phase. We also provide various tests for data in both subsonic and
supersonic regions, and comparisons with existing schemes. The scheme gives reasonably
good results in supersonic regions that are not always treated in existing schemes, but
does not give satisfactory results in the subsonic region. However, the scheme is robust.

Many authors have considered numerical approximations of systems of balance laws
in nonconservative form. The reader is referred to [10, 26, 34, 32, 1, 23, 15, 3, 35, 2] and
the references therein for works that aim at discretizing source terms in multi-phase flow
models. In [39, 36] numerical methods for one-pressure models of two-phase flows were
presented. In [18, 19, 8, 9, 5], numerical well-balanced schemes for a single conservation
law with a source term are presented. In [25, 24] a well-balanced scheme for the model
of fluid flows in a nozzle with variable cross-section was built and studied. Well-balanced
schemes for one-dimensional shallow water equations were constructed in [5, 38, 12, 22, 33].
Related issues can be seen in [27, 28, 16, 37] for the study of the Riemann problem for
the model of a fluid in a nozzle with discontinuous cross-sections, and in [29, 38, 7] for the
study of Riemann problem for shallow water equations with discontinuous topography.

The organization of the paper is as follows. Section 2 provides us with backgrounds of
the model. In Section 3 we investigate the jump relations for stationary waves and provide
a computing strategy for these waves. In Section 4 we build the numerical scheme. Then,
we prove that our scheme fully preserves the positivity of the volume fractions and the
densities, and is partly well-balanced and satisfies the numerical entropy principle in the
gas phase. Section 5 is devoted to numerical tests, where we show that our scheme can give
a good approximation to the exact solution. Finally, in Section 6 we will draw remarks
and conclusions.

2. Backgrounds

2.1. Stiffened gas equation of state

The stiffened gas dynamics equation of the form

p = (γ − 1)ρ(ε− ε∗)− γp∞, (2.1)

was presented in [31]. Recently, a very nice presentation of the thermodynamical variables
and quantities for the stiffened gas equation of state was given by [14] in which they are
obtained as functions of the two variables (ρ, T ), (ρ, e), or (p, T ) . For our purposes in

3



the next sections, however, it is useful to express the thermodynamical variables and the
specific enthalpy for the stiffened gas equation of state as a functions of (ρ, S).

As shown by [30], the Helmholtz free energy

Q(v, T ) = ε− TS (2.2)

is used to specify a complete equation of state. It follows from the thermodynamic identity

dε = TdS − pdv (2.3)

and (2.2) that
p(v, T ) = −∂vQ, S(v, T ) = −∂TQ. (2.4)

The Helmholtz free energy that is used to define the stiffened gas equation of state is
given by

Q(v, T ) = cvT (1− ln(T/T∗)− (γ − 1) ln(v/v∗))− S∗T + p∞v + ε∗, (2.5)

where the parameters cv, γ, p∞, S∗, T∗, v∗ and ε∗ are constants specific to the fluid.
From (2.4) and (2.5), one obtains

p = (γ − 1)cv
T

v
− p∞, (2.6)

and
S = cv(ln(T/T∗) + (γ − 1) ln(v/v∗)) + S∗. (2.7)

Now, it follows from (2.7) that

T = T∗

(
v

v∗

)1−γ

exp

(
S − S∗
cv

)
,

which yields the temperature T as a function of (ρ, S):

T (ρ, S) = T∗

(
ρ

ρ∗

)γ−1
exp

(
S − S∗
cv

)
. (2.8)

Substituting T = T (ρ, S) from (2.8) to the expression of the pressure in (2.6) gives us

p(ρ, S) =
cv(γ − 1)T∗

ργ−1∗
ργ exp

(
S−S∗
cv

)
− p∞

= κ(S)ργ − p∞,
(2.9)

where

κ(S) :=
cv(γ − 1)T∗

ργ−1∗
exp

(
S−S∗
cv

)
. (2.10)

From (2.2) and (2.5), a straightforward calculation yields

ε = Q(v, T ) + TS

= cvT + p∞v + ε∗.
(2.11)
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Substituting the temperature from (2.8) into (2.11), we obtain the internal energy as a
function of (ρ, S):

ε = ε(ρ, S) = cvT∗

(
ρ

ρ∗

)γ−1
exp

(
S − S∗
cv

)
+
p∞
ρ

+ ε∗. (2.12)

The specific enthalpy is defined by

h = ε+ pv. (2.13)

Substituting the internal energy ε = ε(ρ, S) from (2.12) and the pressure p = p(ρ, s) from
(2.9) into (2.13), we obtain the specific enthalpy as a function of (ρ, S):

h(ρ, S) =
κ(S)γ

γ − 1
ργ−1 + ε∗, (2.14)

where κ(S) is defined by (2.10).
Taking the differentials both sides of (2.9) gives

dp = γκ(S)ργ−1 exp
(
S−S∗
cv

)
dρ+ 1

cv
κ(S)ργ exp

(
S−S∗
cv

)
dS

= γ
ρ
(p+ p∞)dρ+ 1

cv
(p+ p∞)dS,

where κ(S) is defined by (2.10). From the last equation it holds that the square of the
sound speed is given by

c2 = ∂Sp(ρ, S) =
γ(p+ p∞)

ρ
. (2.15)

2.2. Characteristics

Let us denote the sound speeds by

ck =
√
γk(pk + p∞,k)/ρk, k = g, s. (2.16)

Then, the eigenvalues of the system (1.1)-(1.2) are given by

λ1(U) = ug − cg, λ2(U) = ug, λ3(U) = ug + cg,
λ4(U) = us − cs, λ5(U) = us, λ6(U) = us + cs,
λ7(U) = us.

(2.17)

As well-known, the 1-, 3-, 4- and 6-characteristic fields are genuinely nonlinear, while the
2-, 5-, and 7-characteristic fields are linearly degenerate. The volume fractions change
only across the 7-contacts, called the solid contacts. The Riemann invariants associated
with the 7-characteristic field are us, κ(Sg), αgρg(us − ug), αgpg + αsps + αgρg(us − ug)2,
and (us−ug)2

2
+ hg, where κ(S) is given by (2.10). Since

λ5 = λ7 = us

a solid contact may follows each 5-field or 7-field, or both. Moreover, λ1 and λ3 may
coincide with λ5. This makes the structure of Riemann solutions in any neighborhood of
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a solid contact complicated. In particular, multiple solutions can be constructed. It is
convenient to define the subsonic region as

λ1(U) < λ5(U) < λ3(U)

and the supersonic regions as

λ1(U) > λ5(U) or λ5(U) > λ3(U).

3. Stationary contacts

The idea using stationary solutions to absorb source terms in the model of fluid flows
in a nozzle was presented in [25]. Stationary discontinuities can be obtained as the limit of
smooth stationary solutions, and they turn out to be the (stationary) contact discontinu-
ities associated with the linearly characteristic field. Consequently, the associated contact
waves are stationary and absorb the source terms. This helps to determine directly the
interfacial states in any two consecutive cells. The interfacial states between two consec-
utive cells are also known as equilibrium states, which are resulted by stationary contacts
associated with the characteristic field with zero characteristic speed.

We will develop in this work this approach for the model (1.1)-(1.2). However, interfa-
cial states for the system (1.1)-(1.2) are the states of contact waves associated with the 7th
characteristic field. These contacts propagate with speed us which do not create equilib-
rium states on the two sides of a node if us 6= 0. We therefore require that the stationary
contacts are the ones associated with the 7th characteristic field and that us ≡ 0. Using
the fact that Riemann invariants are constant across contact discontinuities, and then by
letting us = 0, we can determine the algebraic equations for interfacial states. Neverthe-
less, we could start from the original requirement that source terms can be absorbed in
stationary solutions. Then, we will show in the subsection 3.2 below that a stationary
jump can be found as the limit of stationary smooth solutions. These stationary jumps
turn out to be the stationary contacts associated with the 7th characteristic field when
the solid velocity is zero. The algebraic equations for these stationary contacts are then
used to evaluate interfacial states.

3.1. Equivalent system under separate forms

It is convenient to rewrite the system (1.1)-(1.2) as a combination of the following
three subsystems. The first subsystem consists of equations of balance laws in the gas
phase:

∂t(αgρg) + ∂x(αgρgug) = 0,
∂t(αgρgug) + ∂x(αg(ρgu

2
g + pg)) = pg∂xαg,

∂t(αgρgeg) + ∂x(αgug(ρgeg + pg)) = −pgus∂xαs.
(3.1)

It has the form of a conservation law with source terms

∂tv + ∂xf(v) = s(v, ∂xv),

where

v =

 αgρg
αgρgug
αgρgeg

 , f(v) =

 αgρgug
(αg(ρgu

2
g + pg))

(αgug(ρgeg + pg))

 , s(v, ∂xv) =

 0
pg∂xαg
−pgus∂xαs

 .
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The second subsystem consists of conservation laws of the mixture:

∂t(αgρg + αsρs) + ∂x(αgρgug + αsρsus) = 0,
∂t(αsρsus + αgρgug) + ∂x

(
αs(ρsu

2
s + ps) + αg(ρgu

2
g + pg)

)
= 0,

∂t(αsρses + αgρgeg) + ∂x
(
αsus(ρses + ps) + αgug(ρgeg + pg)

)
= 0,

(3.2)

The third subsystem consists of only the compaction dynamics equation:

∂tαg + us∂xαg = 0. (3.3)

3.2. The jump relations

First, let us consider the stationary smooth solutions of (1.1)-(1.2) in the gas phase
which satisfy the following ordinary differential equations

(αgρgug)
′ = 0,(

αg(ρgu
2
g + pg)

)′
= pgα

′
g,(

αgug(ρgeg + pg)
)′

= −pgusα′s,
usα

′
g = 0, x ∈ RI ,

(3.4)

subject to the initial data

U(x0) = (ρg, ug, pg, αg)(x0) = U0.

The following lemma gives us a way to calculate stationary waves. The last equation in
(3.4) implies that if the volume fractions change, i.e., α′g 6= 0, we have

us = 0.

Therefore, it holds at a stationary contact that

λ5 = λ7 = us = 0. (3.5)

From (3.4) and (3.5) we obtain

(αgρgug)
′ = 0,(

αg(ρgu
2
g + pg)

)′
= pgα

′
g,(

αgug(ρgeg + pg)
)′

= 0.

(3.6)

In the rest of this section, we deal with only the quantities in the gas phase. So we
omit the subscript in the gas phase for simplicity.

Argued similarly as in [25], we can check that a solution of the following system is also
a solution of (3.6) and therefore of (3.4):

(αρu)′ = 0,(
u2

2
+ h
)′

= 0,

S ′ = 0,

(3.7)

where h is the enthalpy in the gas phase given by (2.14).
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Lemma 3.1. Across any stationary contact, the entropy in the gas phase is constant.
The left-hand and right-hand states of a stationary contact in the gas phase satisfy

[αρu] = 0,

[u
2

2
+ h] = 0,

[S] = 0,

(3.8)

where [S] := S+ − S−, and so on, denotes the difference between the right-hand and
left-hand values of the variable.

3.3. Characterization of roots of the nonlinear equations

It follows from Lemma 3.1 that a stationary contact in the gas phase of (1.1)-(1.2)
connecting two states U0 = (α0, ρ0, u0) and U = (α, ρ, u) fulfils

αρu = α0ρ0u0,
u2

2
+ h(ρ, S0) =

u20
2

+ h(ρ0, S0).
(3.9)

Now, let us fix one state U0 = (α0, ρ0, u0), and we will find all such states U = (α, ρ, u) that
can be connected to by a stationary contact in the gas phase. Substituting u = α0ρ0u0/αρ
from the first equation into the second equation of (3.9), we obtain the nonlinear algebraic
equation

(α0ρ0u0)
2

2(αρ)2
+ h(ρ, S0) =

u20
2

+ h(ρ0, S0), (3.10)

where

h(ρ, S) =
κ(S)γ

γ − 1
ργ−1 + ε∗, κ(S) =

cv(γ − 1)T∗

ργ−1∗
exp

(
S − S∗
cv

)
.

As in [28], re-arranging terms of (3.10), we obtain the following equation

F (U0, ρ, α) := sgn(u0)
(
u20−

2κγ

γ − 1
(ργ−1− ργ−10 )

)1/2
ρ− α0u0ρ0

α
= 0, κ := κ(S0). (3.11)

The strategy of finding the stationary contacts between the given fixed state U0 =
(α0, ρ0, u0) and U = (α, ρ, u) now is that we resolve the density ρ and then the veloc-
ity u in terms of the volume fraction α. More precisely, the volume fraction α will play
the role of a parameter, the density ρ will be found by solving the algebraic equation
(3.11), and then the velocity will be given by the first equation in (3.9). Thus, the values
of ρ will be the zeros of the function F (U0, ρ, α). We have

F (U0, ρ = 0, a) = F (U0, ρ = ρ̄, a) = −α0u0ρ0
α

,

which has the same sign as −u0, and

∂F (U0, ρ;α)

∂ρ
=
u20 −

2κγ
γ−1(ργ−1 − ργ−10 )− κγργ−1(

u20 −
2κγ
γ−1(ργ−1 − ργ−10 )

)1/2 .
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Set

ρ̄(U0) =
(
γ−1
2κγ

u20 + ργ−10

) 1
γ−1

,

ρmax(ρ0, u0) =
(

γ−1
κγ(γ+1)

u20 + 2
γ+1

ργ−10

) 1
γ−1

.
(3.12)

By a similar argument as in [40], we can see that the function ρ 7→ F (U0, ρ, α) is defined
on the interval

0 ≤ ρ ≤ ρ̄(U0).

Furthermore, if u0 > 0 (u0 < 0), then the function ρ 7→ F (U0, ρ, α) is strictly increasing
(strictly decreasing, respectively) for 0 ≤ ρ ≤ ρmax(ρ0, u0), and strictly decreasing (strictly
increasing, respectively) for ρmax(ρ0, u0) ≤ ρ ≤ ρ̄(U0), where ρmax(ρ0, u0) is defined by
(3.12).

Set
G1 := {(α, ρ, u) : u < −

√
p′(ρ)},

G2 := {(α, ρ, u) : |u| <
√
p′(ρ)},

G+
2 := {(α, ρ, u) : 0 < u <

√
p′(ρ)},

G−2 := {(α, ρ, u) : 0 > u > −
√
p′(ρ)},

G3 := {(α, ρ, u) : u >
√
p′(ρ)},

C := {(α, ρ, u) : u = ±
√
p′(ρ)}.

(3.13)

Arguing similarly as in [28, 37], we can characterize the roots of the nonlinear equation
(3.11) as follows.

Proposition 3.2. The nonlinear equation for the gas density (3.11), and therefore the
equation (3.10), admits exactly two roots, denoted by ϕ1(U0, α) < ϕ2(U0, α) whenever

α > αmin(U0) :=
α0ρ0|u0|

√
κγρ

γ+1
2

max(ρ0, u0)
. (3.14)

Moreover, if α = αmin(U0), then ϕ1(U0, α) = ϕ2(U0, α). The location of these roots can be
described as follows. If α > α0, then

ϕ1(U0, α) < ρ0 < ϕ2(U0, α).

If α < α0, then
ρ0 < ϕ1(U0, α) for U0 ∈ G1 ∪G3,
ρ0 > ϕ2(U0, α) for U0 ∈ G2.

Moreover, given U = (α, ρ, u) and let αmin(U) be defined as in (3.14). By a similar
argument as in [28], one obtains the following conclusions

αmin(U) < α, U ∈ Gi, i = 1, 2, 3,
αmin(U) = α, U ∈ C,
αmin(U) = 0, ρ = 0 or u = 0.

(3.15)
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3.4. Monotonicity Criterion

It is derived from Proposition 3.2 that there are possibly multiple stationary contacts
issuing from a given state U0 and reaching a state with a new volume fraction α. To
select a unique stationary wave, we need the following so-called Monotonicity criterion.
The first equation in (3.8) also defines a curve ρ 7→ α = α(U0, ρ). So we require that

Monotonicity Criterion. Along any stationary wave, the volume fraction α =
α(U0, ρ) must be monotone as a function of ρ.

A similar criterion was used in [28, 25, 40, 20, 21]. The Monotonicity Criterion enables
us to selectly geometrically the admissible stationary contacts as follows.

Lemma 3.3. The Monotonicity Criterion is equivalent to saying that any stationary shock
does not cross the boundary C. In other words:

(i) If U0 ∈ G1 ∪G3, then only the zero ρ = ϕ1(U0, α) is selected.

(ii) If U0 ∈ G2, then only the zero ρ = ϕ2(U0, α) is selected.

3.5. Computing strategy

The advantages of selecting the function F as in (3.11) are that its zeros can be
characterized, as indicated in the above argument. However, for the computing purposes,
it may be more convenient to look for another candidate. This is because the function
F might not be convex, making it hard to apply the Newton-Raphson method to find
the roots. To deal with computing purposes, we re-write the equation (3.10) as follows.
Multiplying both sides of (3.10) by ρ and re-arranging terms, we obtain the following
equation

µ(S)(ργ − ργ−10 ρ) +
u20
2

(
α2
0ρ

2
0

α2ρ
− ρ
)

= 0, (3.16)

where

µ(S) :=
γcvT∗

ργ−1∗
exp

(
S − S∗
cv

)
.

It is easy to see that

µ(S) =
γ

γ − 1
κ(S),

where κ(S) is defined by (2.10). Since the entropy is constant across a stationary contact,
i.e., S = S0, the equation (3.16) becomes

Φ(ρ) := µ(ργ − ργ−10 ρ) +
u20
2

(
α2
0ρ

2
0

α2ρ
− ρ
)

= 0, (3.17)

where

µ := µ(S0) =
γcvT∗

ργ−1∗
exp

(
S0 − S∗
cv

)
> 0.
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We will see that the function ρ 7→ Φ(ρ) has advantages for computing purposes. Indeed,
a straightforward calculation gives

Φ′(ρ) = µ(γργ−1 − ργ−10 )− u20
2

(
α2
0ρ

2
0

α2ρ2
+ 1
)
,

Φ”(ρ) = µγ(γ − 1)ργ−2 +
u20α

2
0ρ

2
0

α2ρ3
> 0.

(3.18)

The second line of (3.18) shows that the function ρ 7→ Φ(ρ) is strictly convex. The use
of Newton-Raphson method is thus convenient for finding roots of the nonlinear equation
(3.17) and therefore finding stationary contacts. In this case it is convenient to take the
initial guess ρ0 for the Newton-Raphson method such that Φ(ρ0) > 0.

We still need to determine a computing strategy to find the roots of (3.17), in view of
the Monotonicity Criterion. Now it holds that

Φ(ρ)→ +∞, ρ→ 0, ρ→∞
Φ(ρ0) =

u20
2
ρ0(

α2
0

α2 − 1) > 0 iff α < α0.
(3.19)

It is derived from (3.19), Proposition 3.2 and Lemma 3.3 and that the admissible sta-
tionary contact can be chosen using the Newton-Raphson method. Precisely, we get the
following result.

Lemma 3.4. The Newton-Raphson method for the nonlinear equation (3.17) generates a
sequence of approximate solutions which converges to the admissible root in the sense that
this root is the ρ-component of a stationary contact satisfying the Monotonicity Criterion
if the initial guess ρ0 for the method is taken in the following way:

(i) Case 1: U0 ∈ G1 ∪G3: if α < α0, then we can take ρ0 = ρ0; if α > α0, we can take
ρ0 < ρ0 such that Φ(ρ0) > 0; in this case the sequence then converges to the root
ρ = ϕ1(U0, α).

(ii) Case 2: U0 ∈ G2: if α < α0, then we can take ρ0 = ρ0; if α > α0, we can take
ρ0 > ρ0 such that Φ(ρ0) > 0; in this case the sequence then converges to the root
ρ = ϕ2(U0, α).

4. A well-balanced scheme based on stationary waves

Given a uniform time step ∆t, and a spacial mesh size ∆x, setting xj = j∆x, j ∈ Z,
and tn = n∆t, n ∈ N, we denote Un

j to be an approximation of the exact value U(xj, tn).
A C.F.L condition is also required on the mesh sizes:

θmax
U
{|λi(U)|, i = 1, 2, 3, 4, 5, 6, 7} < 1, θ :=

∆t

∆x
. (4.1)

4.1. Numerical treatment of the first subsystem (3.1)

To discretize the first subsystem (3.1), we use the following strategy which consists of
two steps:

Step 1. First, the volume fraction change creates a stationary contact, which absorbs the
nonconservative term pg∂xαg;
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Step 2. Second, the stationary contact moves and obeys the governing equation where the
volume fraction is constant. This enables us to eliminate the volume fraction on
both sides of the equations so that the subsystem becomes the usual gas dynamics.

Assume that the volume fraction is constant, then, the subsystem (3.1) becomes the
usual gas dynamics equations

∂tv + ∂xf1(v) = 0,

where

v :=

 ρg
ρgug
ρgeg

 , f1(v) :=

 ρgug
ρgu

2
g + pg

ug(ρgeg + pg)

 .

Let g(v, w) be a suitable standard numerical flux g1(v, w) for the usual gas dynamic
equations. For j ∈ Z, n = 0, 1, 2, 3, ..., we set

vnj =

 ρng,j
ρng,ju

n
g,j

ρng,je
n
g,j

 , vnj,+ =

 ρng,j,+
ρng,j,+u

n
g,j,+

ρng,j,+e
n
g,j,+

 , vnj,− =

 ρng,j,−
ρng,j,−u

n
g,j,−

ρng,j,−e
n
g,j,−

 ,

where

eng,j,+ = ε
(
ρng,j,+, S

n
g,j

)
+

(ung,j,+)2

2
,

eng,j,− = ε
(
ρng,j,−, S

n
g,j

)
+

(ung,j,−)2

2
,

and the quantities ρng,j,±, u
n
g,j,± will be given below. The first component of the well-

balanced scheme is defined by

vn+1
j = vnj − θ(g1(vnj , vnj+1,−)− g1(vnj−1,+, vnj )), j ∈ Z, n = 0, 1, 2, ..., (4.2)

where the state vnj+1,− is known if the values ρng,j+1,−, u
n
g,j+1,− are known, and the state

vnj−1,+ is known if the values ρng,j−1,+, u
n
g,j−1,+ are known, j ∈ Z, n ∈ N. Let us now

describe the way to compute vnj+1,−. To find the values ρng,j+1,−, u
n
g,j+1,−, j ∈ Z, n ∈ N,

we use an ”absorbing volume fraction change” process using stationary contacts as said
earlier in Step 1 above. Moreover, to ensure that the volume fraction change will always
give a stationary contact, we propose to define a ”relaxation” value, which can be seen as
an approximate value in general, for the volume fraction

αn,Relax

g,j = max{αng,j, αmin(αng,j+1, ρ
n
g,j+1, u

n
g,j+1)}, (4.3)

where the quantity αmin is defined by (3.14). This argument and (3.8) mean that these
values satisfy the relations

αn,Relax

g,j ρng,j+1,−u
n
g,j+1,− = αng,j+1ρ

n
g,j+1, u

n
g,j+1,

(ung,j+1,−)2

2
+ h(ρng,j+1,−, S

n
g,j+1) =

(ung,j+1)
2

2
+ h(ρng,j+1, S

n
g,j+1),

Sng,j+1,− = Sng,j+1.

(4.4)

Hence, in accordance with the observations in the previous section, the value ρng,j+1,− is
calculated by taking

ρng,j+1,− = ϕi(U
n
g,j+1, α

n,Relax

g,j ), Un
g,j+1 := (αng,j+1, ρ

n
g,j+1, u

n
g,j+1), i = 1, 2, (4.5)
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where the index i is selected in accordance with Lemma 3.3.
Furthermore, it is derived from Lemma 3.4 that if the Newton-Raphson method for

solving the nonlinear equation (3.17) is chosen with the initial guess ρ0, the procedure
finding ρng,j+1,− can be described as follows.

(i) Assume that the point (ρng,j+1, u
n
g,j+1) belongs to either the lower region G1 or the

upper region G3 in the (ρ, u)-plane defined by (3.13). If α = αng,j+1 < α0 = αn,Relax

g,j ,
then we can take ρ0 = ρng,j+1. If α = αng,j+1 > α0 = αn,Relax

g,j , we can take ρ0 < ρng,j+1

such that Φ(ρ0) > 0. (This means that the value ϕ1(α
n
g,j+1, ρ

n
g,j+1, u

n
g,j+1, α

n,Relax

g,j )
will be found).

(ii) Assume that the point (ρng,j+1, u
n
g,j+1) belongs to the middle region G2 in the (ρ, u)-

plane defined by (3.13). If α = αng,j+1 < α0 = αn,Relax

g,j , then we can take ρ0 = ρng,j+1.
If α = αng,j+1 > α0 = αn,Relax

g,j , we can take ρ0 > ρng,j+1 such that Φ(ρ0) > 0. (This
means that the value ϕ2(α

n
g,j+1, ρ

n
g,j+1, u

n
g,j+1, α

n,Relax

g,j ) will be found).

Then, the value ung,j+1,− is calculated using the second equation of (4.4) as:

ung,j+1,− =
αng,j+1ρ

n
g,j+1u

n
g,j+1

αn,Relax

g,j ρng,j+1,−
.

Similarly, we compute the state vnj−1,+ by first defining a ”relaxation” value for the
volume fraction

αn,Relax

g,j = max{αng,j, αmin(αng,j−1, ρ
n
g,j−1, u

n
g,j−1)}. (4.6)

We also require that the corresponding values of the stationary contact satisfy the relations

αn,Relax

g,j ρng,j−1,+u
n
g,j−1,+ = αng,j−1ρ

n
g,j−1, u

n
g,j−1,

(ung,j−1,+)2

2
+ h(ρng,j−1,+, S

n
g,j−1) =

(ung,j−1)
2

2
+ h(ρng,j−1, S

n
g,j−1),

Sng,j−1,+ = Sng,j−1.

(4.7)

The value ρng,j−1,+ is therefore calculated by taking

ρng,j−1,+ = ϕi(U
n
g,j−1, α

n,Relax

g,j ), Un
g,j−1 := (αng,j−1, ρ

n
g,j−1, u

n
g,j−1), i = 1, 2, (4.8)

where the index i is selected in accordance with Lemma 3.3.
Again, it is derived from Lemma 3.4 that if the Newton-Raphson method for solving

the nonlinear equation (3.17) is chosen with the initial guess ρ0, the procedure finding
ρng,j−1,+ can be described as follows.

(iii) Assume that the point (ρng,j−1, u
n
g,j−1) belongs to either the lower region G1 or the

upper region G3 in the (ρ, u)-plane defined by (3.13). If α = αng,j−1 < α0 = αn,Relax

g,j ,
then we can take ρ0 = ρng,j−1. If α = αng,j−1 > α0 = αn,Relax

g,j , we can take ρ0 < ρng,j−1
such that Φ(ρ0) > 0. (This means that the value ϕ1(α

n
g,j−1, ρ

n
g,j−1, u

n
g,j−1, α

n,Relax

g,j ) is
found).
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(iv) Assume that the point (ρng,j−1, u
n
g,j−1) belongs to the middle region G2 in the (ρ, u)-

plane defined by (3.13). If α = αng,j−1 < α0 = αn,Relax

g,j , then we can take ρ0 = ρng,j−1.
If α = αng,j−1 > α0 = αn,Relax

g,j , we can take ρ0 > ρng,j−1 such that Φ(ρ0) > 0. (This
means that the value ϕ2(α

n
g,j−1, ρ

n
g,j−1, u

n
g,j−1, α

n,Relax

g,j ) is found).

Finally, the value u = ung,j−1,+ is computed using the second equation of (4.7) as:

ung,j−1,+ =
αng,j−1ρ

n
g,j−1u

n
g,j−1

αn,Relax

g,j ρng,j−1,+
.

4.2. Numerical treatment of the second subsystem (3.2)

We now turn to deal with the second subsystem (3.2) which has the conservative form:

∂tw + ∂xf2(w) = 0,

where

w :=

 αgρg + αsρs
αgρgug + αsρsus
αgρgeg + αsρses

 , f2(w) :=

 αgρgug + αsρsus
αg(ρgu

2
g + pg) + αs(ρsu

2
s + ps)

αgug(ρgeg + pg) + αsus(ρses + ps).

 .

Naturally, a conservative scheme can be applied to (3.2):

wn+1
j = wnj − θ(g2(wnj , wnj+1)− g2(wnj−1, wnj )), j ∈ Z, n = 0, 1, 2, .... (4.9)

For example, we may take a scheme involving the unknown function and the flux function
only such as the Lax-Friedrichs scheme, the Lax-Wendroff scheme, or Richtmyer’s scheme,
etc.

4.3. Numerical treatment of the third subsystem (3.3)

Finally, we consider the numerical treatment for the third subsystem, which contains
only the compaction dynamics equation (1.2). The discretization of the compaction dy-
namics equation is motivated by the very interesting fact that among elementary waves,
the volume fractions change only across the solid contacts associated with the charac-
teristic speed λ7 = us, see [4, 35] for example. Moreover, the solid velocity is constant
across a solid contact. This suggests that the nonconservative term us∂xαg may have
more regularity property than it seems and furthermore it can be discretized using the
upwind scheme. Thus, we apply the Engquist-Osher scheme for the compaction dynamics
equation (1.2):

αn+1
g,j = αng,j − θ

(
un,+s,j (αng,j − αng,j−1) + un,−s,j (αng,j+1 − αng,j)

)
, (4.10)

where θ = ∆t/∆x, and

un,+s,j := max{uns,j, 0}, un,−s,j := min{uns,j, 0}, j ∈ Z, n = 0, 1, 2, 3, ....

14



In studying our above numerical method, for definitiveness, we may take both numer-
ical fluxes in (4.2) and (4.9) to be the Lax-Friedrichs. In this case, it reads

vn+1
j = 1

2
(vnj+1,− + vnj−1,+)− θ

2
(f1(v

n
j+1,−)− f1(vnj−1,+)),

wn+1
j = 1

2
(wnj+1 + wnj−1)− θ

2
(f2(w

n
j+1)− f2(wnj−1)),

(4.11)

for j ∈ Z, n = 0, 1, 2, ...

The following theorem provides first remarkable properties of our scheme.

Theorem 4.1. (i) (Fully preserving positivity of volume fractions) Our scheme (4.1)-
(4.10) preserves the positivity of the volume fractions. This means that if α0

k,j > 0
for all j ∈ Z, then αnk,j > 0 for all j ∈ Z, n = 1, 2, 3, ..., k = s, g.

(ii) (Partly well-balanced scheme) Our scheme (4.1)-(4.10) captures exactly equilibrium
states in the gas phase.

Proof. (i) Since αs + αg = 1, it is sufficient to show that 0 < αn+1
g,j < 1 whenever 0 <

αng,j < 1, j ∈ Z. Let 0 < αng,j < 1, j ∈ Z. For simplicity we drop the index g in the gas
volume fraction, and the index s in the solid velocity. First, consider the case unj ≥ 0. It
holds that

αn+1
j = αnj − θunj (αnj − αnj−1)

= αnj (1− θunj ) + θunjα
n
j−1.

It follows from the C.F.L. condition that both 0 ≤ (1 − θunj ) ≤ 1 and 0 ≤ θunj ≤ 1. So,
from the last equality we deduce that

0 < αn+1
j = αnj (1− θunj ) + θunjα

n
j−1 ≤ max{αnj , αnj−1} < 1. (4.12)

Similarly, consider now the case unj < 0. Then,

αn+1
j = αnj − θunj (αnj+1 − αnj )

= αnj (1 + θunj )− θunjαnj+1.

The C.F.L. condition also gives 0 ≤ (1 + θunj ) ≤ 1 and 0 ≤ −θunj ≤ 1. Thus, the last
equality yields

0 < αn+1
j = αnj (1 + θunj )− θunjαnj−1 ≤ max{αnj , αnj+1} < 1. (4.13)

From (4.12) and (4.13) we obtain (i).
(ii) Let us be given a stationary contact. Then, the entropy in the gas phase is

constant, and so
αng,j+1ρ

n
g,j+1u

n
g,j+1 = αng,jρ

n
g,ju

n
g,j,

(ung,j+1)
2

2
+ hg(ρ

n
g,j+1) =

(ung,j)
2

2
+ hg(ρ

n
g,j).

(4.14)

The equations (4.14) imply that

ρng,j+1,− = ρng,j, ung,j+1,− = ung,j,
ρng,j−1,+ = ρng,j, ung,j−1,+ = ung,j,
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so that
vnj+1,− = vnj , vnj−1,+ = vnj .

This yields
vn+1
j = vnj . (4.15)

The identity (4.15) establishes (ii). The proof of Theorem 4.1 is complete.

The following theorem provides us with other important properties of our scheme
(4.1)-(4.10) with the specific choice of the Lax-Friedrichs flux (4.11).

Theorem 4.2. (i) (Preserving positivity of gas density) Our scheme (4.1)-(4.11) pre-
serves the positivity of the density in the gas phase under the assumptions that

1 < γg < 2, (4.16)

and

θmax
U
{|λi(U)|, i = 1, 2, 3, 4, 5, 6, 7} < 1√

2
, θ =

∆t

∆x
. (4.17)

This means that if ρ0k,j > 0 for all j ∈ Z, then ρnk,j > 0 for all j ∈ Z, n =
1, 2, 3, ..., k = s, g.

(ii) (Partly numerical minimum entropy principle) Assume that the conditions (4.16)
and (4.17) are fulfilled. Then, our scheme (4.1)-(4.11) satisfies the following mini-
mum entropy principle in the gas phase:

Sn+1
g,j ≥ min{Sng,j−1, Sng,j+1}, j ∈ Z, n = 0, 1, 2, 3, .... (4.18)

Proof. For simplicity we drop the subscript index of the phase.
(i) It is sufficient to show that for any given integer n, if ρnj > 0 for j, then ρn+1

j > 0
for all j. Let us take an arbitrary and fixed, non-negative integer n. Assume now that
ρnj > 0,∀j ∈ Z. It holds that

ρn+1
j =

ρnj−1,++ρnj+1,−
2

+ θ
2
(ρnj−1,+u

n
j−1,+ − ρnj+1,−u

n
j+1,−)

≥ ρnj−1,++ρnj+1,−
2

− θ
2

max{|unj−1,+|, |unj+1,−|}(ρnj−1,+ + ρnj+1,−)

≥ ρnj−1,++ρnj+1,−
2

(
1− θmax

(
|unj−1,+|, |unj+1,−|

))
.

(4.19)

It follows from Lemma 3.3 that

ρnj,± > 0, j ∈ Z.

Thus, it is derived from (4.19) that to demonstrate the positivity of the density, we remain
to point out that

θmax{|unj−1,+|, |unj+1,−|} < 1. (4.20)

It follows from (2.14) and the condition (4.16) that

hρ(ρ, S) = (γ−1)γcvT∗
ργ−1
∗

ργ−2 exp
(
S−S∗
cv

)
> 0,

hρρ(ρ, S) = (γ−2)(γ−1)γcvT∗
ργ−1
∗

ργ−3 exp
(
S−S∗
cv

)
< 0,
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which imply that the function ρ 7→ h(ρ, S) is strictly increasing and strictly concave for
each fixed entropy S. Hence,

1
2
(unj+1)

2 − 1
2
(unj+1,−)2 = h(ρnj+1,−, S

n
j+1)− h(ρnj+1, S

n
j+1)

≥ hρ(ρ
n
j+1, S

n
j+1)(ρ

n
j+1,− − ρnj+1)

=
pρ(ρnj+1,S

n
j+1)

ρnj+1
(ρnj+1,− − ρnj+1)

= pρ(ρ
n
j+1, S

n
j+1)

(
ρnj+1,−
ρnj+1

− 1
)
≥ −pρ(ρnj+1, S

n
j+1).

Using the last inequality, Lemma 3.1 and the condition (4.17), we obtain

|unj+1,−| ≤
√

(unj+1)
2 + 2pρ(ρnj+1, S

n
j+1)

<
√

2(|unj+1|+
√
pρ(ρnj+1, S

n
j+1))

=
√

2λ3(U
n
j+1)

≤
√

2 maxU{λi(U), i = 1, 2, 3, 4, 5, 6, 7} ≤ 1
θ
.

(4.21)

Similarly,

|unj−1,+| <
1

θ
. (4.22)

From (4.21) and (4.22), we obtain (4.20). This establishes (i).
(ii) Let v = 1/ρ be the specific volume. We will first show that the gas is in a local

thermodynamic equilibrium in the sense that the function (v, S) 7→ ε(v, S) is strictly
convex. It follows from (2.12) that

εv(v, S) = −cv(γ − 1)T∗

ργ−1∗
v−γ exp

(
S − S∗
cv

)
+ p∞,

εS(v, S) = T∗v
γ−1
0 v1−γ exp

(
S − S∗
cv

)
.

so that
εvv(v, S) = γ cv(γ−1)T∗

ργ−1
∗

v−γ−1 exp
(
S−S∗
cv

)
> 0,

εvS(v, S) = (γ−1)T∗
ργ−1
∗

v−γ exp
(
S−S∗
cv

)
,

εSS(v, S) =
T∗v

γ−1
0

cv
v1−γ exp

(
S−S∗
cv

)
.

(4.23)

A straightforward calculation shows that the determinant of the Hessian matrix of the
function (v, S) 7→ ε(v, S) is given by

εvvεSS − ε2vS =

cv(γ−1)T∗
ργ−1
∗

cv
T∗v

γ−1
0 v−2γ exp

(
2(S − S∗)

cv

)
> 0. (4.24)

From (4.23) and (4.24) we deduce that the function (v, S) 7→ ε(v, S) is strictly convex.
This is equivalent to that the function (v, ε) 7→ S(v, ε) is strictly concave, see Lem. 1.1,
Chapter II, [17].
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Our next argument is based on the following classical result. Assume that U is a
strictly convex function in RI N , and that there exists a function F and a vector-valued
map f such that DF = DU Df . If U is a vector defined by

U =
V +W

2
+
θ

2
(f(V )− f(W )),

then

U(U) ≤ U(V ) + U(W )

2
+
θ

2
(F(V )−F(W )).

Let us choose
U(U) = ρg(S), F(U) = ρug(S), (4.25)

where g(S) is a strictly decreasing and convex function of S. First, we will show that
g(S) is a strictly convex function of X = (v, ε). Indeed, the above result that S is strictly
concave as a function of X = (v, ε) means that for 0 < s < 1 it holds

S(sX + (1− s)Y ) > sS(X) + (1− s)S(Y )

for any X, Y . Now, the last inequality and that g is strictly decreasing and convex in S
yield

g(S(sX + (1− s)Y )) < g(sS(X) + (1− s)S(Y ))
≤ sg(S(X)) + (1− s)g(S(Y )),

for all X, Y , which demonstrate that g(S) is a strictly convex function of X = (v, ε).
Therefore, the pair (4.25) is a convex entropy pair of the usual gas dynamics equations.
The definition of the scheme (4.2) with the Lax-Friedrichs numerical flux yields

U(Un+1
j ) ≤

U(Un
j−1,+) + U(Un

j+1,−)

2
+
θ

2
(F(Un

j−1,+)−F(Un
j+1,−)),

for any entropy pair of the form (4.25). Thus, we have

ρn+1
j g(Sn+1

j ) ≤ 1
2

(
ρnj−1,+g(Snj−1) + ρnj+1,−g(Snj+1)

)
+ θ

2
(ρnj−1,+u

n
j−1,+g(Snj−1)− ρnj+1,−u

n
j+1,−g(Snj+1)).

Re-arranging terms, we obtain from the last inequality

ρn+1
j g(Sn+1

j ) ≤ 1

2
ρnj−1,+(1 + θunj−1,+)g(Snj−1) +

1

2
ρnj+1,−(1− θunj+1,−)g(Snj+1).

It is easy to verify that the function g(S) = (S∗ − S)p, p > 1, where S∗ is some constant
such that S∗ − S > 0, is strictly decreasing and convex for S < S∗. Applying the last
inequality for g(S) = (S∗ − S)p, p > 1, we get

ρn+1
j (S∗ − Sn+1

j )p ≤ 1

2
ρnj−1,+(1 + θunj−1,+)(S∗ − Snj−1)p

+
1

2
ρnj+1,−(1− θunj+1,−)(S∗ − Snj+1)

p

≤ 1

2
(ρnj−1,+(1 + θunj−1,+)

+
1

2
ρnj+1,−(1− θunj+1,−))

[
max{S∗ − Snj−1, S∗ − Snj+1}

]p
= ρn+1

j

[
max{S∗ − Snj−1, S∗ − Snj+1}

]p
,

(4.26)
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where the last equality follows from the definition of the scheme (4.2) with the Lax-
Friedrichs numerical flux. Using the result of the part (i) that ρn+1

j is positive, canceling

ρn+1
j > 0 on both sides of (4.26) we obtain

(S∗ − Sn+1
j )p ≤

[
max{S∗ − Snj−1, S∗ − Snj+1}

]p
.

This gives

S∗ − Sn+1
j ≤ max{S∗ − Snj−1, S∗ − Snj+1} = S∗ −min{Snj−1, Snj+1},

or
Sn+1
j ≥ min{Snj−1, Snj+1},

which establishes (4.18). The proof of Theorem 4.2 is complete.

5. Numerical Tests

In this section we will present several numerical tests in which we compare the approx-
imate solution and the exact Riemann solution. For simplicity, we assume that the fluid
in each phase has the equation of state of a polytropic ideal gas. We take the parameters
in the equations of state to be as follows:

γg = 1.4, γs = 1.6, cp,g := γgcv,g = 1.0087, Sg,∗ = Ss,∗ = 0, cp,s := γscv,s = 4.1860.
(5.1)

The Lax-Friedrichs scheme is taken as the underlying scheme for (4.2) and (4.9). We also
take

C.F.L = 0.5.

Exact solutions and approximate solutions of the Riemann problem for (1.1)-(1.2) with
Riemann data

U(x, 0) =

{
UL, x < 0,
UR, x > 0,

(5.2)

where UL, UR are constant states, will be computed and displayed on the interval [−1, 1]
of the x-space.

5.1. Test 1: A stationary wave

The approximate solution will be computed at the time t = 0.01 on the interval [−1, 1]
of the x-space with 500 mesh points. In this test, we consider the Riemann problem for
(1.1)-(1.2) with the Riemann data (5.2) where UL and UR are given in Table 1.

Table 1
Components� States UL UR

ρg 0.8 0.81355299
ug 0.5 0.43704044
pg 1 1.0237978
ρs 1 1.2850045
us 0 0
ps 2 2.9872902
αg 0.8 0.9
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It is not difficult to check that in this case the Riemann solution results in the gas phase
a stationary contact. Figure 1 shows that the stationary contact in the gas phase is well
captured. It is easy to see that the contact wave belong to the subsonic region. However,
the result still holds for data in the supersonic regions.

Figure 1: Test 1: The scheme (4.1)-(4.10) can capture equilibrium states in the gas phase

Recently, a numerical scheme designed for subsonic regions for more general model
of two-phase flows has been constructed in [2]. This scheme also captures the above
stationary contact wave in the gas phase, see Figure 2.

Thus, this test shows that our scheme as well the the scheme in [2]-designed for
subsonic regions- are well-balanced in the gas phase in the sense that they can capture
stationary contacts in the gas phase.

5.2. Test 2: Supersonic regions

In this test, the approximate solution will be computed at the time t = 0.1 on the
interval [−1, 1] of the x-space. We consider the Riemann problem for (1.1)-(1.2) with the
Riemann data (5.2) where UL and UR are given in Table 2.
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Figure 2: Test 1: The scheme in [2] can also capture equilibrium states in the gas phase

Table 2
Components� States UL UR

ρg 0.08545023 0.17601423
ug -4.7689572 -5.1681691
pg 0.3 0.83622836
ρs 0.93630573 1.1009669
us 0.21664237 0.20870557
ps 1.8 2.3327532
αg 0.5 0.55

One can easily verify that the Riemann data belong to the supersonic regions. The
intermediate states that define the Riemann solution are given in Table 3.
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Table 3
� U1 U2 U3 U4

ρg 0.13885662 0.2 0.2 0.17601423
ug -5.9309871 -5 -5 -5.1681691
pg 0.6 1 1 0.83622836
ρs 0.93630573 0.93630573 1 1.0372987
us 0.21664237 0.21664237 0.1 0.1
ps 1.8 1.8 2 2.1206848
αg 0.5 0.5 0.5 0.55

The structure of the Riemann solution is described as follows. The Riemann solution
first begins with a 1-shock wave from UL to U1, followed by a 3-rarefaction wave from U1

to U2, followed by a 4-shock wave from U2 to U3. The solution is then continued by a
solid 5-contact from U3 to U4, and finally followed by a 3-rarefaction wave from U4 to UR.
The exact Riemann solutions are drawn in Figures 3 and 4.

Figure 3: Test 2: Exact Riemann solution at the time t = 0.1

The errors for Test 2 are reported by the Table 4. Precisely, let us denote by Uh =
Uh(x, t) the approximate solution corresponding to the mesh-size h and by U = U(x, t)
the exact solution. In Table 4, we compute the values ||Uh(., t = 0.1)−U(., t = 0.1)||L1(RI )

and ||Uh(., t = 0.1) − U(., t = 0.1)||L1/||U(., t = 0.1)||L1 , which represent the absolute
error and the absolute relative error in the space L1(RI ), respectively, for different mesh-
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Figure 4: Test 2: Exact Riemann solution in the (x, t)-plane

sizes h = ∆x = 1/N , where N takes the values 250, 500, 1000, 2000 and 4000. Figures
5 and 6 show the exact and the approximate solutions with 500, 1000, and 4000 mesh
points. One could see there is an additional wave in the solid velocity, which makes the
configuration of the approximate solution different from the exact solution. It seems that
the scheme converges to a limit that slightly different from the exact solution in this case.
The scheme is numerically stable in the supersonic regions for this test.

Table 4
N ||Uh − U ||L1 ||Uh − U ||L1/||U ||L1 order

250 0.18519124 0.0092742091 –
500 0.12190857 0.0061050705 0.6
1000 0.078904635 0.0039514724 0.63
2000 0.052600668 0.0026341936 0.59
4000 0.036200786 0.0018129025 0.54

5.3. Test 3: Supersonic regions

In this test, the approximate solution will be computed at the time t = 0.1 on the
interval [−1, 1] of the x-space. We consider the Riemann problem for (1.1)-(1.2) with the
Riemann data (5.2) where UL and UR are given in Table 5.

Table 5
Components� States UL UR

ρg 0.3 0.49045078
ug 5 4.9606427
pg 0.2 0.39810826
ρs 1.1969795 1.2954081
us -0.70474276 0.51451306
ps 4 4.5391218
αg 0.5 0.4

It is easy to check that the Riemann data belong to the supersonic regions, where many
existing schemes may not work well. The intermediate states that define the Riemann
solution are given in Table 6.
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Figure 5: Test 2: The exact solution and approximate solution in the gas phase with different mesh-sizes

Table 6
� U1 U2 U3 U4

ρg 0.3 0.37805592 0.37805592 0.43056368
ug 5 4.9571588 4.9571588 4.8236071
pg 0.2 0.27646407 0.27646407 0.33175688
ρs 1 0.9010034 1.2954081 1.2954081
us -0.3 -0.3 0.51451306 0.51451306
ps 3 2.5391218 4.5391218 4.5391218
αg 0.5 0.4 0.4 0.4

The Riemann solution is a 4-rarefaction wave from UL to U1, followed by a 5-solid contact
from U1 to U2, followed by a 6-rarefaction wave from U2 to U3, followed by a 1-shock wave
from U3 to U4, and followed by a 3-rarefaction wave from U4 to UR. The exact solution
are shown in Figures 7 and 8.

The errors for Test 3 are reported in the Table 7. We still denote by Uh = Uh(x, t)
the approximate solution corresponding to the mesh-size h and by U = U(x, t) the exact
solution. The values ||Uh(., t = 0.1) − U(., t = 0.1)||L1(RI ) and ||Uh(., t = 0.1) − U(., t =
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Figure 6: Test 2: The exact solution and approximate solution in the solid phase with different mesh-sizes

0.1)||L1/||U(., t = 0.1)||L1 are evaluated for different mesh-sizes h = ∆x = 1/N , where
N takes the values 250, 500, 1000, 2000 and 4000. Figures 9 and 10 show the exact and
the approximate solutions with 500, 1000, and 4000 mesh points. There is an additional
wave in the quantities of the solid phase in Figure 10; the approximate solutions seem
to converge to a limit that slightly differ from the exact solution. Again, the scheme is
numerically stable in the supersonic regions for this test.

Table 7
N ||Uh − U ||L1 ||Uh − U ||L1/||U ||L1 order

250 0.27511093 0.011831599 –
500 0.19736281 0.0084879127 0.48
1000 0.14351663 0.0061721694 0.46
2000 0.10695992 0.0045999878 0.42
4000 0.082316009 0.0035401356 0.38
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Figure 7: Test 3: Exact Riemann solution at the time t = 0.1

5.4. Test 4: Comparisons with other schemes in the subsonic region

In this test, we compare our method with various numerical methods in the literature
with the well-tested case in [35]. The data are taken in the subsonic region, making the
existing schemes, in particular schemes designed for subsonic regions, work well. Our
scheme, however, seems to give a convergence to a function that visibly differs from the
exact solution. Precisely, in this test γg = γs = .4, the approximate solutions are computed
at the time t = 0.2 on the interval [−1/2, 1/2], or [0, 1]. We consider the Riemann problem
for (1.1)-(1.2) with the Riemann data (5.2) where UL and UR are given in Table 8.

Table 8
Components� States UL UR

ρg 0.2 1
ug 0 0
pg 0.3 1
ρs 1 1
us 0 0
ps 1 1
αg 0.2 0.7

The exact Riemann solution were computed in [35]. Its intermediate states are given in
Table 9.
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Figure 8: Test 3: Exact Riemann solution in the (x, t)-plane

Table 9
� U3 U1 U0 U2 U4

ρg 0.3266 0.3266 0.698 0.9058 1
ug -0.7683 -0.7683 -0.7683 -0.1159 0
pg 0.6045 0.6045 0.6045 0.8707 1
ρs 1 0.9436 0.9436 1.0591 1.0591
us 0 0.0684 0.0684 0.0684 0.0684
ps 1 0.9219 0.9219 1.0837 1.0837
αg 0.2 0.2 0.2 0.7 0.7

The Riemann solution is a 1-shock wave from UL to U1, followed by a 4-rarefaction wave
from UL to U3, followed by a 2-gas contact from U1 to U0, followed from a 5-solid contact
from U0 to U2, followed by a 3-rarefaction wave from U2 to U4, followed by a 6-shock wave
from U4 to UR. The configuration of the solution and the approximate solution by the
scheme (4.1)-(4.10) with various mesh-sizes are shown in Figure 11.

The approximate solution by the scheme in [2] and is displayed in Figure 12 by courtesy
of the authors. Comparisons between various schemes are given in [35] and are given in
Figure 13, which was taken in [2].

In this test, we can see that the schemes in [2] and in [35] provide us with good
approximations to the exact solution when the solution remain in the subsonic region.
Our scheme gives approximate solutions that converge to a limit different from this exact
solution. The difference between the exact solution and the approximate solution is quite
large in the solid density and solid velocity. The result is better for the quantities in the
gas phase.

6. Conclusions

The system (1.1)-(1.2) possesses complicated structures and cause standard numerical
scheme to give unsatisfactory results. In this paper we build up a numerical method that
consists of several procedures for the two-phase flow model (1.1)-(1.2). First we decom-
pose the system into three subsystems of different performances. For each subsystem we
apply a different numerical treatment. In the first subsystem consisting of the governing
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Figure 9: Test 3: The exact solution and approximate solution in the gas phase with different mesh-sizes

equations in the gas phase, we use stationary waves to absorb the nonconservative terms.
In the second subsystem consisting of conservation laws of the mixture we can use a suit-
able scheme for conservation laws. In the third subsystem consisting of the compaction
dynamics equation, we apply the technique of the Engquist-Osher scheme by observing
that the solid velocity is constant across the solid contacts.

The scheme gives reasonably good results in the supersonic regions that are not always
treated in existing schemes, but does not give satisfactory results in the subsonic region.
However, it is robust, which is interesting. The results are better for the gas phase that
absorbs the source term in the numerical scheme, which is not completely satisfactory.
This suggests that the scheme could certainly be improved in that direction in order to
get ”similar” results for both phases.

The scheme is shown to possess some other nice properties: it can capture equilibrium
states in the gas phase, it preserves the positivity of the volume fractions in both phases,
it preserves the positivity of the density of the gas phase, and it satisfies the numerical
minimum entropy principle in the gas phase.
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Figure 10: Test 3: The exact solution and approximate solution in the solid phase with different mesh-sizes
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[15] T. Gallouët, J.-M. Hérard, and N. Seguin, Numerical modeling of two-phase flows using
the two-fluid two-pressure approach, Math. Models Methods Appl. Sci., 14 (2004), 663–700.

[16] P. Goatin and P.G. LeFloch, The Riemann problem for a class of resonant nonlinear systems
of balance laws, Ann. Inst. H. Poincar Anal. NonLinéaire, 21 (2004), 881–902.
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Figure 11: Test 4: The exact solution (upper-left corner) and approximate solution with different mesh-
sizes by the scheme (4.1)-(4.10)
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Figure 12: Test 4: The approximate solution by the scheme in [2] by courtesy of the authors.
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Figure 13: Test 4: The approximate solution by various schemes given in [35]. These pictures were
taken from [2]. The approximate solution by blue curve is given by the method in [34]; the approximate
solution by green curve is given by the method in [3], the approximate solution by red curve is given by
the method in [35], all with 200 grid cells. The exact solution appears in black.
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