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Relaxation schemes offer new possibilities in terms of accuracy and ro-

bustness compared to classical Riemann solvers. Thus, we propose a re-

laxation scheme adapted to the treatment of hypersonic weakly ionized gas

under thermal nonequilibrium, the paper laying emphasis on the assess-

ment of such a scheme. The approach is based on a multi-temperature

model leading to the definition of a specific temperature for the electron

gas and to an additional conservation equation related to the electron gas

energy. Whereas the usual system of governing equations is written under

a non-conservative form, we consider an equivalent system, written under

a conservative form, since the solution of shock-capturing requires an ac-

curate treatment. Shock-tube applications and a two-dimensional testcase

corresponding to the RAM-C II flight experiment have been performed and

provide fair results, compared to existing numerical data.

∗Research Engineer, Aerodynamics and Energetics Modeling Department.
†Assistant Professor, Paris 7 University and J.L. Lions Laboratory
‡Research Engineer, Numerical Simulation and Aeroacoustics Department.
§PhD Student, Fundamental and Applied Energetics Department.

1 of 23

Relaxation Scheme, Rouzaud, Chalons, Marmignon and Soubrié



I. Nomenclature

a Relaxation parameter

c Sound speed

Cv,t Specific heat at constant volume

for the translation mode

Ci
v,t Specific heat at constant volume

for the translation mode of the i-th species

ev Vibrational energy

E Total energy of the mixture

Ee Total energy of the electron gas

E Electric field

h0 Heat of formation

Me Molar mass of the electrons

Mi Molar mass of the i-th species

p Pressure of the heavy species

pe Pressure of the electron gas

qe Electron charge

R Universal gas constant

Se Entropy of the electron gas

T Temperature

Te Electron temperature

u Velocity

Ye Mass fraction of the electrons

Yi Mass fraction of the i-th species

γ Polytropic coefficient

ρe Electron density (ρe = ρYe)

ρi Density of the i-th species (ρi = ρYi)

ρ Density (ρ = ρe +
∑

ρi)

τ Inverse of the density

A. Subscripts

e Electron

i Heavy species

j Molecular species
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II. Introduction

This work treats the numerical approximation of the convective diffusive

system governing ionized mixtures of reacting gases in thermal nonequilib-

rium. Such plasmas are studied here in the context of large Mach num-

ber flows corresponding to hypersonic flows around reentry bodies. At

high speeds, the flow reaches extremely high temperatures near the vehi-

cle. These temperatures are high enough to induce vibrational excitation,

dissociation of diatomic molecules and ionization. For a better description

of the flow, it is necessary to introduce several temperatures, that are an-

other way to express the value of energy. Whereas it is a good assumption

to take translational and rotational modes of heavy species in thermal equi-

librium, vibrational modes of polyatomic molecules and translational mode

of electron gas have to be characterized by their own temperatures.

Many different workers have performed simulations1–5 of such weakly ion-

ized flows, using the governing equations proposed by Appleton-Bray6 and

Lee.7 These approaches have been derived for gas mixtures containing

electrons, neutral and ionized species, the ions being singly-ionized and

positively charged. Note that the corresponding system is naturally writ-

ten in a non-conservative form due to the work of the electric field E.

Basically, we can write the associated system in short form as

∂tu + A(u)∂xu − ∂x(D(u)∂xu) = ω(u), (1)

with t > 0, x ∈ R.

where the last two terms of the left-hand side represent respectively the

convective and the diffusive effects while ω(u) is a source term. In the paper,

we will focus on the numerical approximation of the underlying first order

system

∂tu + A(u)∂xu = 0, with t > 0, x ∈ R, (2)

which constitutes an essential step in the treatment of the full system (1).

As the nonlinear system (2) is seen to be hyperbolic over a phase space

to be precised, discontinuous solutions may occur in finite time. Thus, a

major difficulty arises in that case since there does not exist a flux func-

tion f, such that A(u) = ∇uf(u). In other words, system (2) is actually

under a non-conservative form and the standard theory of weak solutions

no longer applies. Generally speaking, such a feature is known to make the

numerical approximation of the corresponding solutions very challenging.8
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To overcome the problem, Coquel and Marmignon 9, 10 have proposed to

build a system of conservation laws equivalent to system (1) but under a

conservative form, using specific modelling assumptions. The numerical ap-

proximation of the first-order extracted system no longer raises questions

and the use of classical numerical methods becomes straightforward. To as-

sess the relevancy of their work, they have also derived an exact Roe-type

linearization.10–12 Such an extension is not evident since the weakly ionized

flow equations contain two pressures relative to the heavy species and the

electron gas.

In the paper, we aim at developing a relaxation procedure for the equivalent

governing equations derived by Coquel-Marmignon. In fact, this strategy

presents several advantages. Let us quote, for instance, that our relaxation

scheme is entropic conversely to the Roe scheme which uses numerical en-

tropy corrections. Besides, the two inherent pressures attached to the sys-

tem turn out to be very easy to manage in this context. Assessment of

the relaxation scheme is firstly performed with shocktube computations,

comparing the present results with those obtained from an exact Godunov

solver and the Roe-linearization proposed by Coquel-Marmignon. In a sec-

ond step, we have considered a two-dimensional testcase corresponding to

the RAM-C II flight experiment. Comparisons bear on the pressure and

temperature distributions along the stagnation line considering the Roe-

linearization, and on the electron number density using the flight data.

III. Governing equations and physical modelling

A. Non conservative system

We consider a mixture of gases made of electrons and n heavy species,

ni, 1 ≤ ni ≤ n of them being ionized. All the heavy species are described us-

ing the same velocity u. We associate a temperature T for the translational-

rotational modes. Moreover, nν, 1 ≤ nν ≤ n, molecular species have their

own vibrational temperature Tv,j , j ∈ {1, ..., nν}. Concerning the electron

gas, one defines a temperature Te distinct from the temperature T of the

heavy species mixture in order to account for the smallness of the mass ra-

tios Me/Mi << 1, i ∈ {1, ..., n}. Besides, local charge neutrality is assumed.

The governing equations of the first order convective system are :

∂t(ρYi) + ∂x(ρYiu) = 0, i = 1, ..., n,

∂t(ρu) + ∂x(ρu2 + p + pe) = 0,

∂t(ρE) + ∂x(ρE + p + pe)u = 0, (3)
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∂t(ρYeEe) + ∂x(ρYeEe + pe)u = NeqeEu,

∂t(ρYjev,j) + ∂x(ρYjev,ju) = 0, j = 1, ..., nν.

The first n equations represent the mass conservation of each heavy species.

The next two govern respectively the conservation of the momentum ρu

and the total energy ρE of the mixture. The last nν equations refer to the

conservation of the vibrational energies ρYjev,j of the nν molecular species

that are in thermal nonequilibrium. These (n + nv + 2) conservation laws are

supplemented with a balance equation : the expected conservation law for the

electron gas energy ρYeEe balanced by the work of the electric field E. The

assumption of local charge neutrality yields the electric field E from the

electron gas momentum equation

NeqeE = ∂xpe + {∂t(ρYeu) + ∂x(ρYeu
2)}. (4)

The second term in the right hand side of (4) is traditionally neglected,

considering the smallness of Ye (Me/Mi << 1). But in the present work,

this term is kept and leads, for smooth solutions, to the following equivalent

system :

∂t(ρYi) + ∂x(ρYiu) = 0, i = 1, ..., n,

∂t(ρu) + ∂x(ρu2 + p + pe) = 0,

∂t(ρE) + ∂x(ρE + p + pe)u = 0, (5)

∂t(ρYeEe) + ∂x(ρYeEe + pe)u

−u∂xpe + Yeu∂x(p + pe) = 0,

∂t(ρYjev,j) + ∂x(ρYjev,ju) = 0, j = 1, ..., nν.

Note that this system will be seen to be hyperbolic and that it is naturally

written under a non conservative form as

∂tu + A(u)∂xu = 0, (6)

where u and A find natural definitions. At the end of this section, we

will derive an equivalent system of conservation laws that will be more

convenient to deal with from a numerical point of view.

B. Closure relations

In this part, we present the required additional closure relations for the

system under study.
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We first specify the heavy species and the electron pressures. The latter

one obeys the following relation

pe = κe(ρeEe −
1

2
ρeu

2), κe = (γe − 1) =
2

3
, (7)

while the pressure law p for the mixture of heavy species is defined by

p = κ
(

ρE −
1

2
ρu2 −

pe

κe
−

nν
∑

j=1

ρjev,j

−

n
∑

i=1

ρi(ei(T ) + h0
i )

)

. (8)

The terms ei(T ) and h0
i refer respectively to the energy of the internal

modes at thermal equilibrium with the translational mode and to the heat

of formation of the i-th species.

As each partial pressure is assumed to obey the perfect gas assumption,

one defines the temperatures T and Te by :

p = ρ
R

M
T, pe = ρe

R

Me
Te,

where the molar mass M of the mixture is given by Dalton’s law :

1

M
=

n
∑

i=1

Yi

Mi
.

The last term to be defined in equation (8) is the coefficient κ :

κ = (γ − 1) =
R

∑n
i=1

Yi
Mi

Cv,t
=

R/M

Cv,t
,

with

Cv,t =
n

∑

i=1

YiC
i
v,t.

Finally, we have assumed that the flow is locally electrically neutral. The

corresponding relation is :

ρe = ρYe =

ni
∑

j=1

Me

Mj
ρj . (9)

C. Associated Conservative system

In this paper, we are interested in the numerical approximation of system

(6). Since this nonlinear system is hyperbolic, its solutions are known to
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develop, generally speaking, discontinuities in a finite time. Thus, these

solutions have to be understood as weak solutions. In this context, a major

difficulty arises since the system is under a non-conservative form. Indeed,

it is known that the non-conservative products involved in A(u)∂xu have

no classical sense at the location of a shock since they cannot be given a

unique definition within the standard framework of distributions. For this

reason, additional informations are required in order to specify the value

of the non conservative product A(u)∂xu at shocks. A closure equation

for defining the shock solutions is therefore needed and its mathematical

definition must match the underlying physics. Let us recall that system (6)

comes from a more complex system :

∂tu + A(u)∂xu − ∂x(D(u)∂xu) = 0. (10)

where the term D represents the diffusive tensor including viscous, conduc-

tive and diffusive effects. The key point is that the definition of shock solu-

tions heavily depends on the shape of the diffusive tensor D(u). This feature

is very classical when dealing with system in non-conservative form13–15 .

Once the discontinuous solutions of the non-conservative hyperbolic system

(6) are defined, the system becomes well-posed and its numerical approx-

imation could be tackled. However, using classical methods straightfor-

wardly may lead to significant errors between the numerical and the exact

solutions9, 15–17 due to the non-conservative form.

To overcome these difficulties, the study of the existence of a conservative

formulation for system (6) that is compatible with the diffusive tensor D has

been made by Coquel-Marmignon9 . Assuming that the viscosity and the

conductivity of the electrons are neglectible, they have found an equiva-

lent convective-diffusive system under a conservative form, of which the

associated first order system is

∂tρi + ∂x(ρiu) = 0, i = 1, ..., n,

∂t(ρu) + ∂x(ρu2 + p + pe) = 0,

∂t(ρE) + ∂x(ρE + p + pe)u = 0, (11)

∂t(ρSe) + ∂x(ρSeu) = 0,

∂t(ρjev,j) + ∂x(ρjev,ju) = 0, j = 1, ..., nν,

or equivalently

∂tu + ∂xf(u) = 0, (12)
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with a little abuse in notation since u denotes the vector ({ρi}i, ρu, ρE, ρSe, {ρjev,j}j)

instead of ({ρi}i, ρu, ρE, ρYeEe, {ρjev,j}j), from now on. Compared to sys-

tem (5), the variable ρYeEe has been replaced by the entropy Se of the elec-

tron gas. In this paper, we set Se = pe/ρ
γe and refer to Coquel-Marmignon9

for other definitions. Considering the phase space Ω ⊂ R
N with N =

n + nν + 3 where

Ω = {u = T ({ρi}i, ρu, ρE, ρSe, {ρjev,j}j),

ρi > 0, u ∈ R, p(u) > 0, ev,j > 0, Se > 0},

the next proposition summarizes some important properties of system (12).

Proposition 1 The first order system is hyperbolic over Ω and admits the

following three distinct eigenvalues :

u − c < u < u + c,

where the sound speed c is defined by

c2 =
γepe + γ̄p

ρ
with γ̄ = 1 +

R/M

Cv,t +
∑ dei

dT Yi

and the eigenvalue u has (n+nν +1) order of multiplicity. Moreover, eigen-

values u − c and u + c are associated with genuinely non linear fields, while

u is associated with linearly degenerate fields.

Let us mention that weak solutions of system (12) are naturally selected by

an entropy inequality of the form

∂tρS(u) + ∂xρS(u)u ≤ 0, (13)

where u → ρS(u) represents a convex function.

Assessment of the system for weakly ionized flows has been finally consid-

ered by developing an adapted Roe-linearization scheme. Due to the pres-

ence of the electron pressure, the extension of the Roe scheme to weakly

ionized gases is not at all straightforward. However that may be, numeri-

cal simulations on realistic configurations (RAM-C) have demonstrated the

interest of this approach.5

IV. A relaxation model

In this section, we propose a relaxation system for approximating the

weak solutions of (12). Motivated by pioneering works18–20 or more re-
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cently16, 21 , our aim is to overcome the strong nonlinearities that make

difficult the resolution of system (12). Keeping this in mind, we introduce

the following non linear first order system with singular perturbation :

∂tρi + ∂x(ρiu) = 0, i = 1, ..., n,

∂t(ρu) + ∂x(ρu2 + Π) = 0,

∂t(ρE) + ∂x(ρE + Π)u = 0,

∂t(ρSe) + ∂x(ρSeu) = 0,

∂t(ρjev,j) + ∂x(ρjev,ju) = 0, j = 1, ..., nν,

∂t(ρΠ) + ∂x(ρΠ + a2)u = λρ(p + pe − Π),

(14)

where solely the nonlinearities in p+pe have been relaxed. From this defini-

tion, we observe (at least formally) that relaxation variable Π tends to p+pe

as λ goes to infinity, so that the equilibrium system (12) is recovered when

the relaxation parameter λ tends towards that limit. In system (14), a > 0

denotes a free parameter in the relaxation procedure we propose. In the

description of the numerical strategy associated with system (14), we will

precise the sub-characteristic condition that the parameter a must satisfy

for stability requirements.

To avoid cumbersome notations, we give system (14) the following abstract

form :

∂tv + ∂xF(v) = λR(v), (15)

where both the flux F and the source term R find natural definitions. The

phase space Ωv ⊂ R
N+1 (recall that N = n + nν + 3) for (15) is given by :

Ωv = {v = T ({ρi}i, ρu, ρE, ρSe, {ρjev,j}j , ρΠ)

ρi > 0, u ∈ R, p(v) > 0, Se > 0, ev,j > 0}.

We now state the first result of this section, of which the proof is left to

the reader. It proves the relevance of the relaxation model (15).

Proposition 2

Assume that a > 0. Then, the first order system extracted from (15) is hy-

perbolic over Ωv and admits the following three real and distinct eigenvalues

:

λ1,3(v) = u ∓ aτ = u ∓
a

ρ
, λ2(v) = u,

with an order of multiplicity (N − 1) for λ2(v). Moreover, each eigenvalue

is associated with a linearly degenerate field.
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The theorem makes the solution of the Riemann problem associated with

(15) (when λ is taken to be 0) explicitly known. Since each field is linearly

degenerate, the solution is indeed systematically made of four constant

states, called vL, v∗
L, v∗

R and vR, separated by three contact discontinuities

propagating with the characteristic speeds

λ(vL,v∗
L) < λ(v∗

L,v∗
R) < λ(v∗

R,vR),

where we have used clear notations. More precisely, let us recall that we

necessarily have for the three waves λ(vL,v∗
L) = λ1(vL) = λ1(v

∗
L), λ(v∗

L,v∗
R) =

λ2(v
∗
L) = λ2(v

∗
R) and

λ(v∗
R,vR) = λ3(v

∗
R) = λ3(vR) and that there is no entropy dissipation across

contact discontinuities. Therefore, invoking the Rankine-Hugoniot jump

relations across admissible discontinuities leads to the next theorem.

Theorem 1

Let be given vL and vR two constant states in Ωv.

Assume that the parameter a > 0 satisfies the condition

λ1(vL) = uL − aτL < u? < λ3(vR) = uR + aτR,

u? = 1

2
(uL + uR) + 1

2a (ΠL − ΠR),

(16)

with the definition τ = 1/ρ.

Then, the self-similar solution va(x, t;vL,vR) ≡ va(x/t;vL,vR) of the Cauchy

problem (15) with λ = 0 and for the initial data

v0(x) =







vL if x < 0,

vR if x > 0,
(17)

at time t = 0 is made of four constant states separated by three contact

discontinuities as follows :

va(x/t;vL,vR) =



























vL if x
t < λ1(vL),

v∗
L if λ1(vL) < x

t < λ2(v
∗
L),

v∗
R if λ2(v

∗
R) < x

t < λ3(vR),

vR if λ3(vR) < x
t ,

with

λ2(v
∗
L) = λ2(v

∗
R) = u?.
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Setting

u∗
L = u∗

R = u∗,

τ∗
L = τL + (u∗ − uL)/a,

τ∗
R = τR − (u∗ − uR)/a,

(ρi)
∗
L = (ρi)L τL/τ∗

L, i = 1, ..., n,

(ρi)
∗
R = (ρi)R τR/τ∗

R, i = 1, ..., n,

Π∗ = Π∗
L = Π∗

R = 1
2
(ΠL + ΠR) − a

2
(uR − uL),

(eν,j)
∗
L = (eν,j)L, j = 1, ..., nν,

(eν,j)
∗
R = (eν,j)R, j = 1, ..., nν,

(Se)
∗
L = (Se)L,

(Se)
∗
R = (Se)R,

E∗
L = EL + (ΠLuL − Π∗u∗)/a,

E∗
R = ER − (ΠRuR − Π∗u∗)/a,

the intermediate states are defined by :

v∗
L =



























{(ρi)
∗
L}i=1,...,n

(ρu)∗L

(ρE)∗L

(ρSe)
∗
L

{(ρeν,j)
∗
L}j=1,...,nν

(ρΠ)∗L



























,

v∗
R =



























{(ρi)
∗
R}i=1,...,n

(ρu)∗R

(ρE)∗R

(ρSe)
∗
R

{(ρeν,j)
∗
R}j=1,...,nν

(ρΠ)∗R



























.

Moreover, v∗
L and v∗

R are in Ωv.

In the notation va(x/t;vL,vR), the subscript a highlights the dependence of

the solution with respect to the parameter a. In addition, observe that

condition (16) gives the characteristic speeds in the Riemann solution with

increasing order.
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V. Numerical scheme

In this section, we present a relaxation scheme for approximating the

weak solutions of the Cauchy problem (12)-(13) with initial data

u(x, 0) = u0(x).

Based on system (15), the procedure is classical within the framework of

relaxation method (see for instance, Jin,20 Coquel and al.21 or Chalons16).

It is made of two steps that we describe in details : the first one consists in

a time evolution of the solution according to system (15) with λ = 0, while

the second one projects the uptaded solution at equilibrium state λ = +∞.

We first set some notations.

Let ∆x and ∆t be two constant steps for space and time discretizations. Let

(xj)j∈Z be a sequence of equidistributed points of R : xj+1 − xj = ∆x. For all

j ∈ Z and all n ∈ N, we introduce the notations

xj+1/2 = xj +
∆x

2
, tn = n∆t,

and consider the following discretization of the computational domain Rx ×

R
+
t :

Rx × R
+
t =

⋃

j∈Z

⋃

n≥0

Cn
j , Cn

j = [xj−1/2, xj+1/2[×[tn, tn+1[.

As usual in the context of finite volume methods, the approximate solution

u∆t,∆x(x, t) of (12)-(13) with initial data u0 is sought as a piecewise constant

function on each slab Cn
j .

u∆t,∆x(x, t) = un
j for (x, t) ∈ Cn

j ,

and for the sake of completeness

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z.

On the other hand, we also define from u∆t,∆x another piecewise constant

approximate solution v∆t,∆x by setting

v∆t,∆x(x, t) = vn
j =





un
j

(ρΠ)n
j



 for (x, t) ∈ Cn
j .
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This solution is set to be at equilibrium, that is

(ρΠ)n
j = (p + pe)(u

n
j ).

Let us assume as known the solution u∆t,∆x(x, tn) at time tn. In order to

advance it to the next time level tn+1, we now precise each of the two steps

of the algorithm.

First step : evolution in time (tn → tn+1−)

In this step, we take λ = 0 and solve system (15) with v∆t,∆x(x, tn) as initial

data and for times t ∈ [0,∆t]. Under CFL condition

∆t

∆x
max

v
(|λi(v)|, i = 1, 2, 3) <

1

2
, (18)

where the maximum is taken over all the v under consideration, the solution

is obtained by solving a sequence of non interacting Riemann problems set

at each cell interface xj+1/2, and so is actually known thanks to theorem 1.

Note that a can be chosen locally in space, i.e. with a value that possibly

differs from one interface to another. If aj+1/2 denotes the value of a for the

Riemann problem set at interface xj+1/2, we have :

v(x, t) = vaj+1/2
(
x − xj+1/2

t
;vn

j ,vn
j+1),

for (x, t) ∈ [xj, xj+1]×]0,∆t], j ∈ Z.

As it is usually done, we propose to get back a piecewise constant function

in x ∈ [xj−1/2, xj+1/2] by means of a L2 projection :

ṽ(x, t) =
1

∆x

∫ xj+1/2

xj−1/2

v(x, t)dx,

for (x, t) ∈ [xj−1/2, xj+1/2]×]0,∆t], j ∈ Z.

We then complete this first step by setting

vn+1−
j =





un+1−
j

(ρΠ)n+1−
j



 = ṽ(xj,∆t), j ∈ Z. (19)

Of course, this procedure is nothing but the celebrated Godunov method

applied to (15). As a consequence, updated formula (19) equivalently re-
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casts according to the following conservation form

vn+1−
j = vn

j − ∆t
∆x(g(vn

j ,vn
j+1) − g(vn

j−1,v
n
j )),

j ∈ Z, n ≥ 0,

(20)

where the numerical flux function writes

g(vn
j ,vn

j+1) = F(vaj+1/2
(0;vn

j ,vn
j+1)). (21)

Let us recall that the numerical flux (21) is here explicitly known.

Before presenting the second step of the algorithm, we briefly discuss the

definition of the parameter aj+1/2 in the numerical flux (21). It is known

from literature18, 19 that each value aj+1/2 has to be carefully chosen. In

order to avoid instabilities in the relaxation procedure as λ goes to infinity,

some compatibility conditions with respect to the original system (12) have

to be satisfied. These conditions, often referred as to sub-characteristic

conditions or Whitham conditions, express that each characteristic speed of

the relaxation model (15) with λ = 0 must be greater than the corresponding

one in the equilibrium system (12), that is a > ρc (see indeed propositions

1 and 2). ¿From a numerical point of view, we propose to impose

aj+1/2 > max({ρc}(un
j ), {ρc}(un

j+1)). (22)

At each interface, the parameter a can thus a priori be selected unspecified

in the infinite domain described by relation (22). However, a deeper anal-

ysis of the relaxation system (14) would demonstrate that the associated

rate of entropy dissipation actually depends on this parameter. In fact, this

rate increases with a. As a consequence, this parameter should be chosen

as small as possible according to (22) in order to lower the numerical dissi-

pation. This is the main motivation in the use of a local definition.

Second step : relaxation (tn+1− → tn+1)

We now project the solution v∆t,∆x(x, tn+1−) obtained at the end of the pre-

vious step on the equilibrium manifold λ = +∞. More precisely, we set for

all j ∈ Z :

vn+1
j =





un+1
j

(ρΠ)n+1
j



 with un+1
j = un+1−

j

and (ρΠ)n+1
j = (p + pe)(u

n+1
j ).

(23)
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Such an operation can be seen as a rough but efficient manner of bringing

v∆t,∆x(x, tn+1−) closer to the equilibrium system (12). Indeed, v∆t,∆x(x, tn+1−)

is in general far from an equilibrium state and so cannot be considered as

a fair approximation of the solution of (12). In addition, updating formula

(23) are equivalent to solve the following ordinary differential equations

system with λ = +∞ :



















































∂tρi = 0, i = 1, ..., n,

∂t(ρu) = 0,

∂t(ρE) = 0

∂t(ρSe) = 0,

∂t(ρjev,j) = 0, j = 1, ..., nν,

∂t(ρΠ) = λρ(p + pe − Π),

(24)

so that the whole algorithm may be understood as a splitting strategy

applied on (15) : we solve first the convective part and, afterwards, we

consider the source term in the regime λ → ∞.

In agreement with the description of these two steps, the approximate so-

lution u∆t,∆x is then updated according to the following consistent finite

volume method:

un+1
j = un

j − ∆t
∆x(f(un

j ,un
j+1) − f(un

j−1,u
n
j )),

j ∈ Z, n ≥ 0,

where the numerical flux f(un
j ,un

j+1) is given by the N first components of

the consistent numerical flux function g(vn
j ,vn

j+1).

We conclude this section by emphasizing that several stability properties

are met by this relaxation scheme. For instance, a discrete version of en-

tropy inequality (13) can be obtained. Such a result is pretty technical to

establish and so is not presented in this paper. We refer the reader to a

follow-up paper from the authors, and to Chalons16 for similar results in

a slightly different context. Notice that a refinement of the Whitham con-

dition (22) is needed. In addition, expected discrete maximum principles

also hold on Se and {ev,j}j=1,...,nν.
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VI. Numerical Experiments

A. Shock Tube configuration

The gas mixture under consideration contains three species, namely nitro-

gen atoms N, nitrogen ions N+ and electrons. Three shocktube testcases

have been considered and the description of the initial left and right states

are given in tables 1,2,3. Note that we only need to prescribe the mass

fraction of the nitrogen atoms since the other concentrations comes from

the local charge neutrality and the relationship
∑n

i=1 Yi + Ye = 1. The con-

ditions have been chosen in order to get different types of waves.

The results are presented in figures 1,2,3. For each testcase, we show

Table 1. Testcase A definition

Left state Right state

u(m/s) 1500 -2000

p(Pa) 7.5x104 1.5x104

T(K) 4000 1378

Te(K) 6000 1000

YN 0.7999998 0.8999998

Table 2. Testcase B definition

Left Right

u(m/s) 2200 0

p(Pa) 1x104 5x105

T(K) 780 4742

Te(K) 2000 8300

YN 0.7999999 0.8989998

Table 3. Testcase C definition

Left Right

u(m/s) 0 -1500

p(Pa) 3x105 6.5x103

T(K) 2452 346

Te(K) 8000 300

YN 0.8998999 0.7989998
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the heavy species pressure, the electron pressure and the total pressure

p + pe and we compare the distributions obtained with a Godunov solver,

the previous Roe scheme and the relaxation scheme. Results are in good

agreement even if some discrepancies appear in the region of the 2-wave

(contact discontinuity) for the heavy species pressure and the electron pres-

sure. Note that, as it is expected from the mathematical properties of the

system, the variable p + pe is constant through the contact discontinuity.
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(a) Total pressure.
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(c) Electron gas pressure.

Figure 1. Pressure distribution - Testcase A
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Figure 2. Pressure distribution - Testcase B
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Figure 3. Pressure distribution - Testcase C
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B. RAM-C II 2D Configuration

The RAM-C project was launched in the sixties to provide data on the Ra-

dio Attenuation Measurement22, 23 occuring during an atmospheric reentry

on Earth. Many numerical studies have been based on this testcase since it

provided flight data, in particular, measuring the electron densities in the

flowfield. By performing calculations for this testcase, we aim at assessing

the capabilities of the relaxation scheme for a 2D application through a

comparison with previous numerical results obtained with Roe scheme24

and flight data.

The probe has a sphere-cone shape with a nose radius R = 0.1524m, an

overall length of 1.295m and an half-cone angle α = 9o. Flow conditions

are specified in table 4. The wall conditions correspond to a temperature

of 1500K and a non-catalytic surface. The computational grid contains 102

points in the streamwise direction and 52 points along the normal direction.

The height of the first cell is equal to 10−5m. Note that the same grid was

used for the calculation with the Roe scheme.

Figure 4 compares the distributions of temperature and pressure for the

heavy species and the electron gas along the stagnation line for the Roe

scheme and the relaxation scheme. All the results are in fair agreement

and assess the use of the relaxation scheme. The shock stand-off distance

is close to 10mm. The second plot (figure 5) provides the electron number

density at x/R = 8.1 along the normal to the wall. Although the numerical

values are in quantitative agreement with the experimental ones, their be-

haviors are quite different. Such a trend has already been reported for the

case at altitude 71km.3, 24

Table 4. RAM-C II
flow conditions

Upstream conditions

altitude(km) 61

u(m/s) 7650

Mach number 23.9

p(Pa) 19.7

T(K) 254
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Figure 4. Distributions along the stagnation line - RAM-C II
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Figure 5. Electron density at x/R=8.1 - RAM-C II
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VII. Concluding Remarks

The paper presents a relaxation model developed for the numerical ap-

proximation of weakly ionized flows in the context of hypersonic hyperen-

thalpic flows. Governing equations rest on a conservative system proposed

by Coquel and Marmignon. The use of different solvers for the shocktube

applications assesses the relaxation approach since the comparison of the

numerical results with a Godunov solver and a Roe solver is fair. Extension

of the relaxation scheme to a two dimensional configuration has also been

successfully done on the RAM-C II flight testcase.
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