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Abstract We are interested in the numerical approximation of the shallow water
equations in two space dimensions. We propose a well-balanced, all-regime and
positive scheme. Our approach is based on a Lagrange-projection decomposition
which allows to naturally decouple the acoustic and transport terms.

1 Governing equations and asymptotic limit

We consider the numerical approximation of the shallow water equations{
∂th + ∇ · (hu) = 0,
∂t (hu) + ∇ · (hu ⊗ u) + ∇ gh2

2 = −gh∇z,
(1)

where x ∈ R2 7→ z(x) denotes a given smooth topography and g > 0 is the gravity
constant. Both the water depth h and the velocity u = (u1, u2) ∈ R

2 depend on
the space and time variables, namely x ∈ R2 and t ∈ [0,∞). We assume that
h(x, t = 0) = h0(x) and u(x, t = 0) = u0(x) are given. We are interested in the design
of a numerical scheme that satisfies the well-balanced property, i.e. able to strictly
preserve the well-known lake at rest solutions such that h + z = constant and u = 0.
For a review on well-balanced numerical schemes, we refer for instance the reader
to [2], [8] and the references therein. We also refer to [5] where the authors focus
on the 1D case and propose a well-balanced Lagrange-projection strategy. In [3],
the proposed Lagrange-projection scheme is fully well-balanced, which means that
it preserves a full set of equilibrium solutions (and not only the lake at rest). The
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Lagrange-projection methodology is especially well suited for subsonic or near low-
Froude number flows. Indeed, it allows to design a natural implicit-explicit strategy
which is uniformly stable with respect to the Froud number since the CFL time step
restriction is driven by (slow) material waves and not by (fast) acoustic waves, see
[6]. Regarding the uniform consistency, we will follow the anti-diffusive technique
on the pressure numerical flux introduced in [7] and also used in [4].

The low-Froude limit. Before going further, we give the asymptotic behaviour of
the solutions of (1) in the low-Froude limit. With this in mind and as it is customary,
we consider the dimensionless quantities t = t/T , x = x/L, h = h/h0, u = u/u0 and
z = z/z0 where T , L, h0, u0 and z0 are respectively a reference time, length, water
height, velocity and topography of the flow and such that u0 = L/T and z0 = h0.
Defining the Froude number by Fr = u0/c0 where c0 =

√
gh0 is the reference sound

speed, easy calculations give the dimensionless equations{
∂th + ∇ · (hu) = 0,
∂t (hu) + ∇ · (hu ⊗ u) + 1

Fr2∇p = − 1
Fr2 h∇z, (2)

where p(h) = h2/2. Assuming that h and z can be written as

h = h(0) + h(1)Fr + h(2)Fr2 + O(Fr3) and u = u(0) + u(1)Fr + u(2)Fr2 + O(Fr3),

we get in particular p = p(0) + p(1)Fr + p(2)Fr2 + O(Fr3) = p(h(0)) + h(1)h(0)Fr +
O(Fr2). Therefore, at order −2 and −1 with respect to the Froude number, (2) gives
∇p(0) + h(0)∇z = 0 and ∇p(1) + h(1)∇z = 0, which is equivalent to h(0) + z = H(t)
and h(1) = h(1)(t), so that the asymptotic behavior is given by{

∂th(0) + ∇ · (h(0)u(0)) = 0,
∂t (h(0)u(0)) + ∇ · (h(0)u(0) ⊗ u(0)) + ∇p(2) = −h(2)∇z.

(3)

This system is not closed since p(2) and h(2) are not defined. We then consider a
bounded domain Ω for the space variable and periodic boundary conditions, so that
integrating (3) gives ∂th(0) = 0 and therefore h(0) + z = H is constant both in space
and time. This leads to ∇ · (h(0)u(0)) = 0 and to the low-Froude limit{
∇ · u(0) = ∇ · ( zH u(0))(
1 − z

H

)
∂tu(0) + ∇ · (u(0) ⊗ u(0)) + 1

H∇p(2) = ∇ · ( zH u(0) ⊗ u(0)) − h(2)∇ z
H .

(4)

Notice that when the topography is flat, i.e. z = 0, the classical incompressible Euler
equations are recovered.

2 Acoustic-transport decomposition and algorithm

Let us now turn to the acoustic-transport decomposition of (1). If we develop the
spatial derivatives and isolate the transport terms (u · ∇)ϕ, ϕ = h, hu, we can use an
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operator splitting with respect to time to obtain the acoustic and transport systems

∂th + h∇ · (u) = 0, ∂t (hu) + hu(∇ · u) + ∇p = −gh∇z, (5)

∂th + (u · ∇)h = 0, ∂t (hu) + (u · ∇)(hu) = 0. (6)

With these notations, the proposed Lagrange-projection algorithm is defined as
follows: for a given discrete state (h, hu)nj , j ∈ Z, at time tn, we define (h, hu)n+1

j at
time tn+1 by a two-step process namely first update (h, hu)nj to (h, hu)n+1−

j by solving
(5), and then update (h, hu)n+1−

j to (h, hu)n+1
j by solving (6). By solving we mean

here approximating the solution for a period of time ∆t. Let us note that if we set
τ = 1/h, (5) can be recast into

∂tτ − τ(x, t)∇ · u = 0, ∂tu + τ(x, t)∇p = −τ(x, t)
g

τ
∇z.

Following [4], we will choose to discretize (5) thanks to a pressure relaxation
∂tτ − τ(x, t)∇ · u = 0,
∂tu + τ(x, t)∇Π = −τ(x, t) gτ∇z,
∂tΠ + τ(x, t)a2∇ · u = λ(pEOS(τ) − Π),

(7)

with pEOS(τ) = g/(2τ2), in the limit λ → +∞. This limit is accounted for by
setting Π(x, tn) = pEOS(τ(x, tn)), and then solving (7) with λ = 0. We add another
approximation by replacing τ(x, t)∂xr with τ(x, tn)∂xr , r = 1, 2. To sum up, we will
define our approximation of (5) by solving (7) over the time interval [tn, tn + ∆t),
with Π(x, tn) = pEOS(τ(x, tn)) and λ = 0. Note that since (7) and (6) are rotational
invariant, it is sufficient to focus on the corresponding quasi-1D systems

∂tτ − τ(x, tn)∂xu1 = 0,
∂tu1 + τ(x, tn)∂xΠ = −τ(x, tn)

g
τ ∂x z,

∂tu2 = 0,
∂tΠ + τ(x, tn)a2∂xu1 = 0,

(8)

and ∂tϕ + u1∂xϕ = 0, ϕ ∈ {h, u1, u2}, see [4] for more details. Considering a local
space step ∆xj , the following discretization strategy of (8) was presented in [5],

τn+1−
j = τnj − τ

n
j
∆t
∆x j

(
u]
j+1/2 − u]

j−1/2

)
(u1)

n+1−
j = (u1)

n
j − τ

n
j
∆t
∆x j

(
Π

L,]
j+1/2 − Π

R,]
j−1/2

)
(u2)

n+1−
j = (u2)

n
j

Πn+1−
j = Πn

j − τ
n
j
∆t
∆x j

a2
(
u]
j+1/2 − u]

j−1/2

) (9)

where Πn
j = ghn

j
2/2 and the numerical fluxes u]

j+1/2, Π
L,]
j+1/2 and ΠR,]

j−1/2 are such

that u]
j+1/2 = u∆(U]

j,U
n
j ,U

]
j+1,U

n
j+1), Π

R,]
j+1/2 = Π

−
∆
(U]

j,U
n
j ,U

]
j+1,U

n
j+1), Π

L,]
j+1/2 =
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Π+
∆
(U]

j,U
n
j ,U

]
j+1,U

n
j+1), where U = (h, hu,Π, z)t and

Π∆(U]
L,U

]
R) =

Π
]
L + Π

]
R

2
− a
(u1)

]
R − (u1)

]
L

2
,

u∆(U]
L,U

n
L,U

]
R,U

n
R) =

(u1)
]
L + (u1)

]
R

2
−
Π
]
R − Π

]
L

2a
−

1
2a
{gh∆z}∆(Un

L,U
n
R),

Π
±
∆
(U]

L,U
n
L,U

]
R,U

n
R) = Π∆(U

]
L,U

]
R) ±

1
2
{gh∆z}∆(Un

L,U
n
R)

and {gh∆z}∆(Un
L,U

n
R) = g(hn

L + hn
R)(zR − zL)/2. If one chooses ] = n (resp.

] = n+1−) we get an explicit (resp. implicit) scheme.Note that {gh∆z}∆ that accounts
for the gravity source term is always evaluated at time tn. As far as the transport step
is concerned, we consider a classic explicit scheme for ϕ ∈ {h, hu1, hu2},

ϕn+1
j = ϕnj −

∆t
∆xj

(
u]
j+1/2ϕ

n+1−
j+1/2 − u]

j−1/2ϕ
n+1−
j−1/2

)
−
∆t
∆xj

ϕn+1−
j

(
u]
j+1/2 − u]

j−1/2

)
,

(10)
with ϕn+1−

j+1/2 = ϕ
n+1−
j (resp. ϕn+1−

j+1 ) if u]
j+1/2 ≥ 0 (resp. < 0). In the above formulas,

a is taken as a local approximation of the Lagrangian sound speed at each interface,
aj+1/2 = 1.01 max(hj

√
ghj, hj+1

√
ghj+1). For the detailed properties of (9)-(10) we

refer the reader to [5]. Let us just recall that it is conservative in the usual sense
of finite volumes methods. Moreover, the scheme is well-balanced for lake at rest
solutions, which means that if un

j = 0 and hn
j + znj = hn

j+1 + zn
j+1 for all j ∈ Z, then

hn+1
j = hn

j and un+1
j = un

j , j ∈ Z. At last, the time-implicit scheme is stable under a
condition which does not depend either on the acoustic system or the sound speed
c, but which only depends on the transport step and its material velocity u. This is
of particular interest in the low-Froude regime, since the definition of ∆t is uniform
with respect to the Froude number.

Truncation error in the low-Froude regime. In this paragraph, we consider the
dimensionless shallow-water equations and we motivate a correction to get the
uniform consistency. The correction is similar to the one in [7] for low-Mach regimes
and we focus on the explicit case ] = n. In the following we will say that the flow is in
the low Froude regime if Fr � 1 and ∂xp+ h∂x z = O(Fr2). Using the dimensionless
quantities, the pressure numerical fluxes write

Π
L,n
j+1/2 =

Πn
j

Fr2 +
1

2Fr2

(
Π

n
j+1 − Π

n
j +

hn
j + hn

j+1

2
(zj+1 − zj)

)
−

a
2Fr
(un

j+1 − un
j ),

Π
R,n
j+1/2 =

Πn
j+1

Fr2 −
1

2Fr2

(
Π

n
j+1 − Π

n
j +

hn
j + hn

j+1

2
(zj+1 − zj)

)
−

a
2Fr
(un

j+1 − un
j ).

If we compute the truncation errors and use the fact thatΠn
j+1−Π

n
j +(h

n
j +hn

j+1)(zj+1−

zj)/2 = O(Fr2∆x), we obtain
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Π
L,n
j+1/2 =

Πn
j

Fr2 +
1

2Fr2

(
Π

n
j+1 − Π

n
j +

hn
j + hn

j+1

2
(zj+1 − zj)

)
+ O(

∆x
Fr
),

Π
R,n
j+1/2 =

Πn
j+1

Fr2 −
1

2Fr2

(
Π

n
j+1 − Π

n
j +

hn
j + hn

j+1

2
(zj+1 − zj)

)
+ O(

∆x
Fr
).

It is thus clear that the consistency errors are not uniform with respect to the Froude
number. In order to avoid large errors in the numerical diffusion terms when Fr→ 0,
we suggest to replace the definition of Π∆(U]

L,U
]
R) by

Π
θ
∆
(U]

L,U
]
R) =

Π
]
L + Π

]
R

2
− θ(U]

L,U
]
R)a
(u1)

]
R − (u1)

]
L

2
,

which, as long as we take θ j+1/2 = O(Fr), now gives the uniform consistency. In
practice, we will set θ j+1/2 = min

(
|un

j+1/2 |/max(cj, cj+1), 1
)
.

At last, recall that the scheme easily extends to 2D unstructured meshes by
rotational invariance. Morevover, it is easily proved that both fully explicit (EXEX)
and implicit-explicit (IMEX) schemes are well-balanced also in 2D.

3 Numerical experiments

We first consider a traveling vortex as in [1]. For this test case we consider a flat
bottom and we use a regular cartesian mesh of 160 × 160 cells that discretizes the
physical domain [0, 1] × [0, 1]. The boundary conditions imposed are periodic along
the x-direction and absorbing boundaries along the y-direction. The mapping of the
velocity magnitude is displayed in Figure 1 and we can observe that the accuracy
of the solution is really improved by the low-Froude correction. Furthermore, the
accuracy of the solution between the EXEX and the IMEX scheme with low-Froude
correction is comparable whereas it took about 100 times less time steps and 10
times less CPU time computation with the IMEX than with the EXEX scheme.

We nowconsider a non-flat bottom.We extend the physical domain of the traveling
vortex test above to the rectangle [0, 2] × [0, 1]. The boundary conditions and initial
conditions for h and u are the same as before. However we consider here a topography
defined by z(x, y) = 10 exp

(
−5(x − 1)2 − 50(y − 0.5)2

)
following [1].

We compare in Figure 2 the results between EXEX and IMEX schemes, with
or without low Froude correction. Here again, the vortex structure of the flow is
completely destroyed by numerical diffusion without low-Froude corrections θ =
O(Fr), with both schemes. Finally, we can remark that the EXEX scheme took about
20 times more iterations and 15 times more CPU times than the IMEX scheme, both
with low-Froude correction.
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Fig. 1 Flat bottom. Velocity magnitude at final time Tf = 0.1 with the EXEX scheme (top) and
the IMEX scheme (bottom). θ = 1 (left), θ = O(Fr) (center) and exact solution (right).

Fig. 2 Non-flat bottom. Velocity magnitude at final time Tf = 0.1 with the EXEX scheme (top)
and IMEX scheme (bot) with θ = 1 (left) and θ = O(Fr) (right).
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