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Abstract. This paper is concerned with the numerical approximation of the solutions of a
macroscopic model for the description of the flow of pedestrians. Solutions of the associated Riemann
problem are known to be possibly nonclassical in the sense that the underlying discontinuities may
well violate the Lax inequalities, which makes their numerical approximation very sensitive. This
study proposes to extend the Transport-Equilibrium strategy proposed in [2] for computing the
nonclassical solutions of scalar conservation laws with an either concave-convex or convex-concave
flux function and supplemented with an invertible kinetic function. These strong properties are not
fulfilled in the present setting since both the flow function admits several inflection points and the
kinetic function is not invertible. We nevertheless succeed in obtaining an efficient numerical scheme.
Numerical evidences are proposed.
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1. Introduction. In this paper, we are interested in the numerical approxima-
tion of the weak solutions of a scalar conservation law arising in the description of the
flow of pedestrians. The model reads

{

∂tρ+ ∂xq(ρ) = 0, ρ(x, t) ∈ R, (x, t) ∈ R×]0,+∞[,
ρ(x, 0) = ρ0(x), x ∈ R,

(1.1)

where ρ ≥ 0 is the pedestrian density and q : R
+ → R

+ is the flow function. Generally
speaking, the solutions of (1.1) may develop discontinuities in finite time, however are
smooth the function q and the initial data ρ0. Then, it turns out that the weak
solutions (in the integral sense) of (1.1) are not uniquely determined by initial data
ρ0. In order to single out the solution of interest, various admissibility principles
are used in the literature, depending on the geometric properties of the function q.
For instance, one may ask the discontinuities of (1.1) separating two constant states
ρ− and ρ+ and propagating with speed σ given by the Rankine-Hugoniot relation
σ = [q(ρ+) − q(ρ−)] / [ρ+ − ρ−], to obey Oleinik’s inequalities :

q(ρ) − q(ρ−)

ρ− ρ−
≥
q(ρ+) − q(ρ−)

ρ+ − ρ−
, for all ρ between ρ− and ρ+.(1.2)

Observe that (1.2) coincides with Liu’s criterion [15] for scalar conservation laws.
Another usual criterion is based on the Lax inequalities :

q′(ρ−) ≥ σ ≥ q′(ρ+).(1.3)

In particular, we note that Oleinik’s inequalities (1.2) imply the Lax inequalities (1.3).
Discontinuities satisfying (1.3) are said to be compressive.
When q is convex (or concave), conditions (1.2) and (1.3) are equivalent and select a
unique solution of the so-called Riemann problem associated with (1.1), i.e. problem
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(1.1) when considering the particular initial data

ρ0(x) =

{

ρl if x < 0,
ρr if x > 0.

(1.4)

If q is neither convex nor concave, Oleinik’s inequalities still lead to a unique solution
and following [11], this solution is called classical solution. Recall that the classical
solution of (1.1)-(1.4) satisfies a maximum principle, which means that for all x ∈ R

and t ≥ 0, ρ(x, t) ∈ [min(ρl, ρr),max(ρl, ρr)].
However, PDE (1.1) naturally generates shock waves violating the Lax inequalities
(1.3) (and then Oleinik’s inequalities) when q fails to be convex (or concave), and
these are to be considered. They are referred in [11] as undercompressive shocks,
or as nonclassical shocks and a solution which contains such a shock is said to be
nonclassical. The uniqueness of the nonclassical weak solution of problem (1.1)-(1.4) is
generally restored by means of a kinetic relation imposed along each undercompressive
discontinuity connecting a left state ρ− to a right state ρ+. It takes the form ρ+ =
ψ(ρ−) where ψ is the so-called kinetic function. In this context, note that the solution
no longer obeys a maximum principle and has in general a total variation larger than
its initial data. We refer the reader to [11] for a general theory of the classical and
nonclassical solutions.

The precise model we consider in this study was introduced recently by Colombo
and Rosini [7]. It is based on the well-known Lighthill-Whitam [14] and Richards [16]
model and takes the form of (1.1) as an immediate consequence of two basic assump-
tions, namely the conservation of the total number of pedestrians and a given speed
law which depends on the density ρ ∈ [0, R] only (R denotes the maximal density).
However, this model was first dedicated to car flows and so it is not able to reproduce
important features of pedestrian flows, at least when considering typical concave in-
creasing - decreasing flow functions. For instance let us mention the overcompression
phenomenon in a crowd or the fall of pedestrians in the outflow through a door of
a crowd in panic. In order to overcome this difficulty, Colombo and Rosini [7] first
proposed to modify the typical shape of the flow function q by introducing another
characteristic density R? > R for the maximal density in exceptional situations of
panic. The flow function now looks like a concave - convex and increasing - decreas-
ing function on [0, R] and a convex - concave and increasing - decreasing function on
[R,R?] (like in Figure 2.1 - Left below). In particular, discontinuities satisfying the
usual Rankine-Hugoniot condition but violating the standard admissibility conditions
such as the Lax inequalities (1.3) are present in the model. Then, the same authors
defined a unique Riemann solver using such undercompressive shocks. The main mo-
tivation in considering nonclassical solutions is to allow panic states (ρ ∈ ]R,R?]) to
appear in a calm situation (ρ ∈ [0, R]), because of a sharp increase in the density for
instance. Note that the maximum principle in classical solutions prevents such panic
situations from arising.

From a numerical point of view, the approximation of nonclassical solutions is
known to be very challenging and still constitutes (generally speaking) an open prob-
lem nowadays (see for instance [8], [9], [12], [3], [4], [5], but also [1] and the references
within). The main difficulty is related to the respect of the kinetic relation at the
discrete level. Very recently, a new efficient numerical strategy has been proposed in
[2] for computing nonclassical solutions of scalar conservation laws in the situation
when the flux function is concave-convex or convex-concave and, in an important way,
when the kinetic function is an invertible function from R to R. The algorithm pro-
posed in [2] heavily relies on the latter property. Roughly speaking, the corresponding
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finite volume scheme is based on two steps, namely an Equilibrium step which treats
each undercompressive shock as a non-moving discontinuity, and a Transport step
for propagating these discontinuities. Here, it turns out that on the one hand the
flow function q admits several inflexion points, and on the other hand the kinetic
function ψ (defined in (3.2) and represented on Figure 3.1 - Right) is neither defined
on the whole domain R nor invertible. In this paper, we thus propose to adapt the
Transport-Equilibrium scheme developed in [2] to the present setting. The resulting
scheme still provides numerical solutions in full agreement with exact ones.

2. Governing equation and closure relation. In this section, we present the
model we use for describing the flow of pedestrians. Our approach considers the well-
known Lighthill-Whitam [14] and Richards [16] model as a basic model. According
to (1.1), it takes the form

{

∂tρ+ ∂xq(ρ) = 0, q(ρ) = ρv(ρ), (x, t) ∈ R×]0,+∞[,
ρ(x, 0) = ρ0(x), x ∈ R,

(2.1)

where ρ denotes the pedestrian density, v the pedestrian speed, and q the flux function.
This equation expresses the conservation of the number of pedestrians in the space
domain, while the speed v is assumed to depend only on the density ρ. Let us recall
that this model was first dedicated to car flows and so is not a priori in position to
account for specific features of human flows, like the overcompression phenomenon
due to panic for instance. That is the reason for which, following [7], we introduce
two remarkable values R and R? (R < R?) for the density ρ. The first one represents
a natural bound of ρ in situations with little or not panic (ρ ∈ [0, R]), and the second
one is a maximal value of ρ in situations of great panic (ρ ∈ ]R,R?]). In each of these
two regions, the flow function q typically increases at first and then decreases. More
precisely, the following assumptions are made in [7] :































(i) q : [0, R?] → [0,+∞[ belongs to C0([0, R?]) ∩ C2([0, R[∪ ]R,R?]),
(ii) q(ρ) = 0 if and only if q ∈ {0, R,R?},
(iii) q′ is bounded and vanishes exactly twice, once inRM ∈ ]0, R[, and once in

R?M ∈ ]R,R?[,
(iv) q has at most one inflection pointRI ∈ ]RM , R[, and at most another one

R?I ∈ ]R,R?M [.
(2.2)
For the sake of illustration, we already mention that the numerical experiments in the
Section 5 are performed with

q(ρ) = −ρ(ρ−R)2(ρ−R?), R = 2, R? = 3,(2.3)

so that

RM ' 0.5570, R?M ' 2.6930, RI ' 1.1208, R?I ' 2.3792.(2.4)

Both the graphs of this flux function ρ→ q(ρ) and the corresponding speed function
ρ → v(ρ) = q(ρ)/ρ are plotted on Figure 2.1. In particular, note that the speed
function ρ → v(ρ) is decreasing on [0, R], while it is first increasing, then decreasing
on [R,R?].

3. The Riemann solver. This section aims at defining a (unique) weak solution
of (2.1)-(2.2) defined for all (x, t) ∈ R×R

+,∗ when initial data x→ ρ0(x) is only made
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Fig. 2.1. Closure relations : ρ→ q(ρ) (Left) and ρ→ v(ρ) = q(ρ)/ρ (Right)

of two constant states ρl and ρr, unspecified in [0, R?] and separated by a discontinuity
located at x = 0 :

ρ0(x) =

{

ρl if x < 0,
ρr if x > 0.

(3.1)

With this in mind and following [7] and [11], we define two functions ψ : [0, R?] →
[R,R?] and Φ : [0, R] → [0, R] related to the graph of the function q in the (ρ, q)-
plane. We proceed as follows : as soon as it is possible, ψ(ρ) is such that the line that
passes through the points with coordinates (ρ, q(ρ)) and (ψ(ρ), q(ψ(ρ))) is tangent
to the graph of the function q at point (ψ(ρ), q(ψ(ρ))), while Φ(ρ) is such that this
line intersects the curve q = q(ρ) at a further point with coordinates (Φ(ρ), q(Φ(ρ)));
otherwise, these functions are extended by continuity as follows :

ψ(ρ) =







r such that q′(r) = q(r)−q(ρ)
r−ρ if possible,

R?I if ρ = R?I ,
R or R? otherwise,

(3.2)

and

Φ(ρ) =

{

r such that q(r)−q(ρ)
r−ρ = q(ρ)−q(ψ(ρ))

ρ−ψ(ρ) if possible,

0 otherwise.
(3.3)

Note that the required continuity property of the function ρ→ ψ(ρ) actually selects a
unique value between R and R? in the last situation of (3.2) (see [7] for an example).
Moreover, the inflection point R?I does not necessarily exist in (2.2)-(iv). In this case,
we set R?I = R.

Figure 3.1 is concerned with the functions ψ and Φ when q is given by (2.3). On the
left, we have plotted both the function q and line L0 passing through the points with
coordinates (0, q(0) = 0), (Φ(0), q(Φ(0))) and (ψ(0), q(ψ(0))). Of course, we observe
that L0 is actually tangent to the graph of the function q at point (ψ(0), q(ψ(0))) and
cuts this graph at point (Φ(0), q(Φ(0))). From a numerical point of view, we have

ψ(0) =
8

3
' 2.6667 and Φ(0) =

5

3
' 1.6667.(3.4)

On the right are represented the functions ρ → ψ(ρ) and ρ → Φ(ρ) on their whole
interval of definition.
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Fig. 3.1. Function q and line L0 (Left) - Functions ψ and Φ (Right)

The next theorem, first stated and proved by Colombo and Rosini [7], now defines
a unique Riemann solver for (2.1)-(2.2).

Theorem 3.1. Let s and ∆s be two real thresholds such that

s ∈ ]0, RM [ and ∆s ∈ ]0, R− s[.(3.5)

Then, for all (ρl, ρr) ∈ [0, R?]2, there exists a unique weak solution (x, t) ∈ R×R
+ →

ρ(x, t) ∈ [0, R?] to the Riemann problem (2.1)-(2.2)-(3.1) satisfying the following
property :

The Riemann solution coincides with the classical solution unless
A. ρl and ρr are such that (ρl, ρr) belongs to A with

A = {(ρl, ρr) ∈ [0, R?]2 / s ≤ ρl ≤ R, Φ(ρl) < ρr ≤ R, (ρr − ρl) > ∆s}.(3.6)

In this case, the Riemann solution contains an undercompressive shock con-
necting ρl to ψ(ρl) followed by the classical Riemann solution associated with
the initial states ψ(ρl) and ρr.

B. ρl and ρr are such that (ρl, ρr) belongs to B with

B = {(ρl, ρr) ∈ [0, R?]2 / ρr > R, ρr > ρl, ρr < ψ(ρl)}.(3.7)

In this case, the Riemann solution again contains an undercompressive shock
connecting ρl to ψ(ρl) followed by the classical Riemann solution associated
with the initial states ψ(ρl) and ρr.

C. ρl and ρr are such that (ρl, ρr) belongs to C with

C = {(ρl, ρr) ∈ [0, R?]2 / ρr > R, ρr > ρl, ρr ≥ ψ(ρl)}.(3.8)

In this case, the Riemann solution is an undercompressive shock connecting
ρl to ρr.

Before addressing the numerical approximation of the solutions of (2.1)-(2.2), let us
briefly comment this theorem. First of all, it is important to notice that the conditions
(3.6)-(3.7)-(3.8) in the Riemann solver separate data leading to classical solutions from
those generating nonclassical behaviors. Put in other words and following [11], [13] or
[2], these conditions represent in some sense a nucleation condition, which determines
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when the solution becomes nonclassical. As it may be expected, this nucleation condi-
tion will play a central part in the numerical strategy. Then, a physical interpretation
may be given to situation A. In this case, ρr is sufficiently close to the border be-
tween calm and panic and ρl is sufficiently both large and far from ρr to create a panic
state when facing ρr. An undercompressive shock between ρl and ψ(ρl) expresses the
corresponding violation of the usual maximum principle. In cases B and C, we have
ρr ∈ ]0, R?]. Thus, we observe that if ρl ∈ [0, R], the two distinct regions associated
with calm and panic are joined by a nonclassical behavior, using an undercompressive
shock, either from ρl to ψ(ρl) if possible, or from ρl to ρr otherwise. In some sense,
one thus sees that the Theorem 3.1 makes the function ψ play the part of kinetic func-
tion as soon as possible. Finally, we refer the reader to [7] for additional properties
of interest satisfied (or not) by the Riemann solver proposed in the Theorem 3.1.

4. Numerical approximation. In this section, we derive a relevant algorithm
for approximating the nonclassical solutions of (2.1)-(2.2). To that purpose, the only
information we rely on about the Riemann solver given in previous section is the nu-
cleation condition (3.6)-(3.7)-(3.8). In particular, and contrarily to Godunov’s scheme
or Glimm’s scheme for instance, we are not explicitly using the knowledge of the Rie-
mann solutions. We follow the same approach as in [2]. The scheme is composed of
two steps : an equilibrium step and a transport step. In the equilibrium step, our
aim is to put at equilibrium all the admissible undercompressive discontinuities by
modifying any given consistent and conservative scheme for (2.1). Then, the transport
step takes into account the dynamics of these discontinuities and propagates them.

Let ∆t and ∆x be the time and the space steps. Introducing the interfaces
xj+1/2 = j∆x for j ∈ Z and the intermediate times tn = n∆t for n ∈ N, we classicaly
seek at each time tn an approximation ρnj of the solution x→ ρ(x, tn) on each interval
Cj = [xj−1/2;xj+1/2), j ∈ Z. The middle point of Cj is noted xj = 0.5 (xj−1/2 +
xj+1/2). In this context, we assume as given a two-point (without loss of generality)
numerical flux function (u, v) → g(u, v) consistent with the flux function q, and we set
λ = ∆t/∆x. See also the Remark 2 below. Let us start by motivating our algorithm.

4.1. Preliminary motivation. Our scheme is designed on the following re-
mark. A natural discretization of the Riemann initial data (3.1) consists in setting

ρ0
j =

{

ρl if j ≤ 0,
ρr if j ≥ 1.

(4.1)

By Theorem 3.1, we know that if (ρl, ρr) obeys (3.8), the solution is an undercom-
pressive shock connecting ρl to ρr and propagating with speed σ(ρl, ρr) given by the
Rankine-Hugoniot jump relation :

σ(ρl, ρr) =
q(ρr) − q(ρl)

ρr − ρl
.(4.2)

In particular, ρ(x, t) always equals either ρl or ρr. From a numerical standpoint,
we are tempted to take the usual conservative update formula associated with the
numerical flux g, that is

ρn+1
j = ρnj − λ(gj+1/2 − gj−1/2), j ∈ Z,(4.3)
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with gj+1/2 = g(ρnj , ρ
n
j+1) for all j ∈ Z. It gives :

ρ1
j =















ρl − λ(g(ρl, ρl) − g(ρl, ρl)) = ρl if j ≤ −1,
ρl − λ(g(ρl, ρr) − g(ρl, ρl)) if j = 0,
ρr − λ(g(ρr, ρr) − g(ρl, ρr)) if j = 1,
ρr − λ(g(ρr, ρr) − g(ρr, ρr)) = ρr if j ≥ 2.

with, generally speaking, ρ1
0 /∈ {ρl, ρr} and ρ1

1 /∈ {ρl, ρr}. After the first time iteration,
two intermediate states have thus been created by the conservative scheme (4.3). In
order to avoid such spurious values, we are thus led to replace (4.3). We suggest this
nonconservative formula :

ρn+1
j = ρnj − λ(gLj+1/2 − gRj−1/2), j ∈ Z,(4.4)

where the numerical fluxes gLj+1/2 = gLj+1/2(ρ
n
j , ρ

n
j+1) and gRj+1/2 = gRj+1/2(ρ

n
j , ρ

n
j+1)

have to be suitably defined. First of all, it is natural to set

gLj+1/2(ρ, ρ) = gRj+1/2(ρ, ρ) = g(ρ, ρ), j ∈ Z,

for all ρ. Then, if (ρl, ρr) satisfies (3.8) with in addition ρr = ψ(ρl), setting

gLj+1/2(ρl, ρr) = g(ρl, ρl) and gRj+1/2(ρl, ρr) = g(ψ(ρl), ρr), j ∈ Z,(4.5)

is sufficient to avoid intermediate values since we get

{

ρ1
0 = ρl − λ(gL1/2(ρl, ρr) − gR

−1/2(ρl, ρl)) = ρl − λ(g(ρl, ρl) − g(ρl, ρl)) = ρl,

ρ1
1 = ρr − λ(gL3/2(ρr, ρr) − gL1/2(ρl, ρr)) = ρr − λ(g(ρr, ρr) − g(ψ(ρl), ρr)) = ρr.

In the same way, if (ρl, ρr) satisfies (3.8) but ρr 6= ψ(ρl), setting

gLj+1/2(ρl, ρr) = g(ρl, ρl) and gRj+1/2(ρl, ρr) = g(ρr, ρr), j ∈ Z,(4.6)

is fitting since

{

ρ1
0 = ρl − λ(gL1/2(ρl, ρr) − gR

−1/2(ρl, ρl)) = ρl − λ(g(ρl, ρl) − g(ρl, ρl)) = ρl,

ρ1
1 = ρr − λ(gL3/2(ρr, ρr) − gL1/2(ρl, ρr)) = ρr − λ(g(ρr, ρr) − g(ρr, ρr)) = ρr.

Thanks to the new update formula (4.4), we are thus able to remove nondesired
values. Nevertheless, it is clear at this stage that the initial discontinuity (4.1) is
made stationary by our new update formula. Instead, it should be moving at speed
σ(ρl, ρr) given in (4.2). This is the reason for which a transport step must be included
in our algorithm. A sampling strategy will be proposed in the next section, again in
order to avoid the emergence of spurious values (see just below for more details).

4.2. Transport-Equilibrium scheme. We now describe the two steps of our
numerical strategy in details. As motivated in the previous subsection, the very idea is
to modify the numerical flux gj+1/2(ρ

n
j , ρ

n
j+1) by means of two fluxes gLj+1/2(ρ

n
j , ρ

n
j+1)

and gRj+1/2(ρ
n
j , ρ

n
j+1) each time that an undercompressive shock appears in the solu-

tion of the Riemann problem (2.1)-(2.2)-(3.1) associated with ρl = ρnj and ρr = ρnj+1.
According to whether this undercompressive shock connects the states ρnj and ψ(ρnj )
or not, that is depending on if (ρnj , ρ

n
j+1) ∈ A ∪ B or (ρnj , ρ

n
j+1) ∈ C, we will use the

formulas (4.5) or (4.6) respectively. But we have shown in the previous section that
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with such a modification, the undercompressive discontinuities are made stationary.
Then, we will introduce a transport step in order to make moving these discontinuities
with the right speed.

First step (tn → tn+1−) This first step aims at making stationary the admissible un-
dercompressive discontinuities of (2.1)-(2.2) (see Theorem 3.1). We thus consider the
nonconservative version of (4.3) given by (4.4) where the numerical fluxes gLj+1/2 and

gRj+1/2 are defined as follows with the aid of the nucleation condition (3.6)-(3.7)-(3.8)
and for all j ∈ Z :

gLj+1/2 =

{

g(ρnj , ρ
n
j ) if (ρnj , ρ

n
j+1) ∈ A ∪B ∪ C,

g(ρnj , ρ
n
j+1) otherwise,

(4.7)

and

gRj+1/2 =







g(ψ(ρnj ), ρnj+1) if (ρnj , ρ
n
j+1) ∈ A ∪B,

g(ρnj+1, ρ
n
j+1) if (ρnj , ρ

n
j+1) ∈ C,

g(ρnj , ρ
n
j+1) otherwise.

(4.8)

With these definitions, we easily check (see also previous subsection) that discontinu-
ities separating two states ρ− and ρ+ such that (ρ−, ρ+) ∈ C (that is in particular
when ρ+ = ψ(ρ−)) are kept at stationary equilibrium during this first step.

Second step (tn+1− → tn+1) This step is concerned with the dynamics of the dis-
continuities left stationary during the first step. Recall that the speed of propagation
σ(ρ−, ρ+) of a discontinuity between ρ− and ρ+ is given by the Rankine-Hugoniot re-
lation (4.2). We then decide to define at each interface xj+1/2 a speed of propagation
σj+1/2:

σj+1/2 =

{

σ(ρn+1−
j , ρn+1−

j+1 ) if (ρnj , ρ
n
j+1) ∈ A ∪B ∪C,

0 otherwise,
(4.9)

and solve locally (at each discontinuity xj+1/2) a transport equation with speed
σj+1/2. If ∆t is chosen sufficiently small to avoid wave interactions, we can glue
together the corresponding solutions to define a solution in the whole domain. In
order to get a new approximation ρn+1

j at time tn+1 = tn + ∆t, we propose to pick
up randomly on the interval [xj−1/2, xj+1/2[ a value at time ∆t in this solution. In
particular, such a sampling strategy prevents the emergence of spurious intermediate
values with respect to those obtained at time tn+1−. Given a well distributed random
sequence (an) within the interval (0, 1), it amounts to set :

ρn+1
j =











ρn+1−
j−1 if an+1 ∈ [0, λσ+

j−1/2[,

ρn+1−
j if an+1 ∈ [λσ+

j−1/2, 1 + λσ−

j+1/2[,

ρn+1−
j+1 if an+1 ∈ [1 + λσ−

j+1/2, 1[,

(4.10)

with σ+
j+1/2 = max(σj+1/2, 0) and σ−

j+1/2 = min(σj+1/2, 0) for all j ∈ Z. The descrip-

tion of our numerical strategy is now completed.

Remark 1. - Let us consider the Riemann initial data (3.1), naturally dis-
cretized by (4.1), such that ρl and ρr are joined by an undercompressive discontinuity.
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Then, the definitions of gLj+1/2 and gRj+1/2 make invisible the first step of the method

(ρn+1−
j = ρnj for all j) and only the second step operates. This second step propa-

gates the discontinuity using a sampling strategy. We conclude that in this particular
case, our method reduces to Glimm’s random choice scheme. In addition, note that
the speed of propagation σ(ρl, ρr) intervening in the second step is exact since it is
calculated from the Rankine-Hugoniot relation between ρl and ρr.
- Let us now consider the Riemann initial data (3.1), again naturally discretized
by (4.1), but with ρl and ρr such that the Riemann solution is classical, that is
(ρl, ρr) /∈ A ∪ B ∪ C. Then, gLj+1/2 = gRj+1/2 = gj+1/2 and σj+1/2 = 0 at each
time step. In this particular case, our method thus reduces to the usual conservative
scheme (4.3).

We conclude this section by highlighting the main difference between the present
algorithm and the one proposed in [2]. The latter actually uses the property that
the kinetic function is invertible to define gLj+1/2 when an undercompressive shock
is present in the Riemann solution associated with the initial states ρnj and ρnj+1.

More precisely and using the notations of the present paper, it writes gLj+1/2 =

g(ρnj , ψ
−1(ρnj+1)) instead of gLj+1/2 = g(ρnj , ρ

n
j ) in (4.7). Basically, it turns out that

this definition of gLj+1/2 is actually crucial in [2] for obtaining good numerical results,
but only in the situation when the flux is convex-concave. In this case, the under-
compressive shock in the Riemann solution associated with states ρnj and ρnj+1 indeed

always connects the states ψ−1(ρnj+1) and ρnj+1. It is then important to involve ψ−1

in the definition of the numerical scheme. But in the present situation, we remark
(see Theorem 3.1) that the undercompressive shocks always get ρnj as left state, and

then (necessarily) ψ(ρnj ) as right state. We thus expect that the definition of gRj+1/2

in (4.8) involving ψ is sufficient to properly capture such discontinuities.

5. Numerical experiments. This section is devoted to the validation of the
transport-equilibrium scheme we have proposed. To that purpose and without re-
striction, we consider a relaxation scheme as a basic numerical flux g, that is

g(u, v) =
1

2
(q(u) + q(v)) +

a(u, v)

2
(u− v) with a(u, v) = max

[min(u,v),max(u,v)]
|q′|,(5.1)

(see [10] for instance) and we use the following standard CFL condition for computing
the time step ∆t at each time iteration :

∆t =
1

2
×

∆x

maxj |a(ρnj , ρ
n
j+1)|

.

Remark 2. At this stage, it is important to notice that generally speaking both the
numerical flux g and the time step ∆t must be chosen so that the standard conservative
scheme (4.3) :

(i) generates the classical solution of (2.1), in order to be relevant in situations
where the solution is classical and the Transport-Equilibrium scheme simply reduces
to (4.3).

(ii) obeys a discrete version of the maximum principle, that is ∀n, j we have
ρnj ∈ [minj ρ

0
j ,maxj ρ

0
j ]. Indeed, imagine that ρ0 has the particular form (3.1) with

(ρl, ρr) ∈ [0, R]2 but (ρl, ρr) /∈ A; the corresponding solution to (2.1) is classical by
Theorem 3.1 and stays in the interval [0, R]. Then, if the conservative scheme (4.3)
fails in satisfying a discrete maximum principle, a value ρnj > R may well appear for
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some n, j with the (very bad) consequence of starting the nonconservative Transport-
Equilibrium scheme (that is gL and gR no longer equal g in the whole domain) so as
to generate a nonclassical solution.

Following a proposal by Collela [6], we consider the van der Corput random sequence
(an) defined by

an =

m
∑

k=0

ik2
−(k+1),

where n =
∑m
k=0 ik2

k, ik = 0, 1, denotes the binary expansion of the integers n =
1, 2, .... We easily find that the first few elements of this sequence are

a1 = 0.5, a2 = 0.25, a3 = 0.75, a4 = 0.125,
a5 = 0.625, a6 = 0.375, a7 = 0.875, a8 = 0.0625.

This sequence is actually well distributed within the interval (0, 1). Moreover, one
can prove for instance that ai < 0.5 for i even and ai > 0.5 for i odd. This well-known
sequence is often favourite since it leads to very good results in the smooth parts of
the solutions (see [6] and [5] for an illustration).

The closure relations for the numerical simulations are as follows. First of all, the flux
function q is chosen as in (2.3) (see also (2.4) and Figure 2.1 for the graphs of the
functions q, ψ and Φ). Then, the thresholds s and ∆s in the Theorem 3.1 are chosen
to be

∆s = Φ(0) =
5

3
, s =

1

2
(R− ∆s) =

1

6
,

so that the condition (3.5) holds true. As last, we mention that the computa-
tions are performed on two grids, containing respectively 100 (∆x = 0.01) and 500
(∆x = 0.002) points per unit interval. Let us now consider several typical behaviors
of the Riemann solution given in the Theorem 3.1. Note that the discontinuity in the
Riemann initial data is still located at x = 0 (see (3.1)).

The first test corresponds to the choice ρl = 0.5 and ρr = 1.9, so that (ρl, ρr) ∈ [0, R]2

but (ρl, ρr) /∈ A since (ρr − ρl) < ∆s. The solution thus coincides with the classical
one. More precisely, we observe on Figure 5.2 that it is made of a classical shock
attached to a rarefaction wave.
For the Test 2, we choose ρl = 0.2 and ρr = 1.9 so that it is easily checked that
(ρl, ρr) ∈ [0, R]2 and (ρl, ρr) ∈ A. In such a situation, panic arises and the solution is
composed of an undercompressive discontinuity between ρl = 0.2 and ψ(ρl) ' 2.7744,
followed by a classical part made of a rarefaction wave and a classical shock attached
to the rarefaction. We observe on Figure 5.3 that our algorithm properly captures
this nonclassical solution. Note also that the undercompressive discontinuity from
ρl to ψ(ρl) is sharp : there is no point in the profile. For the sake of comparison,
Figure 5.4 shows that the usual relaxation scheme defined by the update formula (4.3)
generates a (classical) solution which lies entirely in the interval [0, R] and so is far
from the expected one. What proves both the need of modifying classical conservative
approaches and the good design of our strategy.
In the third test case (Test 3), we choose ρl = 5/2 and ρr = 1 so that ρr < ρl and the



Pedestrian flows 11

solution is classical. On Figure 5.5, we see that the panic state ρl is connected to ρr
by means of a single classical shock.
For the Test 4, we choose ρl = 0.2 and ρr = 5/2 so that (ρl, ρr) ∈ B (recall that
ψ(ρl) ' 2.7744 > ρr). By Theorem 3.1, we know that the solution is composed of
an undercompressive discontinuity between ρl and ψ(ρl), followed by a rarefaction
wave. Here again, we observe on Figure 5.6 that our algorithm provides a numerical
solution in agreement with the exact one, with in addition a sharp transition from
ρl to ψ(ρl). On the contrary, the usual relaxation scheme would generate a classical
behavior really different from the nonclassical one (the result is not presented here).
In the fifth test case (Test 5), we take ρl = 0.2 and ρr = 2.9 so that we have now
(ρl, ρr) ∈ C. By Theorem 3.1, the solution is a single undercompressive shock con-
necting ρl to ρr. Figure 5.7 shows that our algorithm again sharply captures this
undercompressive discontinuity. Note that it and Glimm’s random choice scheme are
identical for this test case since the first step is clearly transparent.

Remark 3. On certain figures, some undershoots and overshoots are observed
near the shocks for the q component. Recall that q is calculated as a function of ρ
(the conservative unknown). They are due to the numerical diffusion of the method
and to the property that the function ρ → q(ρ) is not monotone between the left and
right states of the discontinuity in general. Then, depending on the densities that
appear in the numerical profile of the discontinuity, an oscillation is created. Observe
that having removed the numerical diffusion of the undercompressive shocks with our
algorithm implies that there are not oscillations around these discontinuities.

We finish this section by giving a particular attention to the speed of propagation
provided by the second step of the algorithm. This speed is calculated at each time
iteration and may well vary, while in reality the speed of propagation of each under-
compressive shock is constant. Let us first consider the fifth test case for which the left
and right states ρl and ρr are connected by a single undercompressive discontinuity.
In this case, the speed of propagation of the method is constant in time and rightly
calculated, see the Remark 1 above. In the second and fourth test cases, the situation
is different since only the left state ρl = 0.2 of the undercompressive shock is present
in the initial data, but not the right state ψ(ρl) ' 2.7744. The latter is created by
the method after some time iterations (this state behaves like an equilibrium point
of the strategy) and during this process, the corresponding speed of propagation is
changing to eventually reach the expected value. On Figure 5.1, we have plotted for
Test 2 (Left) and Test 4 (Right) the values taken by this speed of propagation in the
course of the computations (from time t = 0 to the final time) and for several meshes.
We observe that the method only needs few time for correctly appoaching the exact
speed of propagation. For instance, the relative error is around 0.01% at the final
time, which explains the good results of the method.

6. Quantitative evaluation of the method. In this section, we propose to
evaluate the numerical solutions obtained for the five Riemann problems we have
considered above through quantitative tests. We begin with the computation of the
conservation errors and then, we study the order of convergence of the method through
the L1-norm.

6.1. Conservation errors. It is obvious that our method is nonconservative
since first, two numerical fluxes gL and gR are used in the first step and then, the
transport step is based on a random sampling. We then propose to measure the
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Fig. 5.1. Numerical propagation speed of the undercompressive shock versus time : Test 2
(Left) and Test 4 (Right)
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Fig. 5.2. Test 1 - classical solution : x → ρ(x) (Left) and x→ q(ρ)(x) (Right)

conservation error on piecewise constant numerical solution ρλ defined as

ρλ(x, t) = ρnj if (x, t) ∈ [xj−1/2, xj+1/2) × [tn, tn+1),

between the times t = 0 and let us say t = T > 0. For that, we denote [xm, xM ]
the computational domain and we proceed exactly as in [2] by comparing with 0 the
function E : T ∈ R

+ → E(T ) ∈ R with E(T ) defined by the relation

∫ xM

xm

ρλ(x, T )dx× E(T ) =(6.1)

∫ xM

xm

ρλ(x, T )dx−

∫ xM

xm

ρλ(x, 0)dx+

∫ T

0

q(ρλ(xM , t))dt−

∫ T

0

q(ρλ(xm, t))dt.

Figures 6.1, 6.2, 6.3, 6.4 and 6.5 show the function T → E(T ) for the five test cases
considered in the previous section. We used xm = −0.5 and xM = 0.5.

For the first test case (Figure 6.1), no conservation error is made since the solu-
tion is classical so that our algorithm exactly reduces to the standard (conservative)
relaxation scheme. The same happens for Test 3, see Figure 6.3.
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Fig. 5.3. Test 2 - nonclassical solution : x→ ρ(x) (Left) and x→ q(ρ)(x) (Right)
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Fig. 5.4. Test 2 - (classical) solution generated by standard relaxation method : x → ρ(x)
(Left) and x→ q(ρ)(x) (Right)

In Test 2 and Test 4, for which the solution is nonclassical, we observe on Figures 6.2
and 6.4 that we have a very small conservation error : it seems to stay around 1%
and 2% with 100 points in the mesh, and around 0.3% and 0.5% with 500 points in
the mesh.
At last, in the last test case (Figure 6.5), we observe that the conservation error is
once more low and stays around 2.2% with 100 points and around 0.5% with 500
points.

To conclude this section, we now address this lack of conservation in term of the
number of pedestrians. Let us first notice that the exact solution obeys

0 =

∫ xM

xm

ρ(x, T )dx−

∫ xM

xm

ρ(x, 0)dx+

∫ T

0

q(ρ(xM , t))dt−

∫ T

0

q(ρ(xm, t))dt,

so that provided the dynamics of the numerical solution has not reached xm and xM
(which means q(ρλ(xm, t)) = q(ρ(xm, t)) and q(ρλ(xM , t)) = q(ρ(xM , t))) we get

E(T ) =

∫ xM

xm

ρλ(x, T )dx−

∫ xM

xm

ρ(x, T )dx

∫ xM

xm

ρλ(x, T )dx

.
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Fig. 5.5. Test 3 - classical solution : x → ρ(x) (Left) and x→ q(ρ)(x) (Right)
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Fig. 5.6. Test 4 - nonclassical solution : x→ ρ(x) (Left) and x→ q(ρ)(x) (Right)

Then, E(T ) represents the relative conservation error of ρ at time T on the inter-

val [xm, xM ] and

∫ xM

xm

ρλ(x, T )dx × E(T ) gives the number of persons lost in each

computation. At the final time, we found this number equals 0.0097, −0.0203 and
−0.0169 for Tests 2, 4 and 5 respectively (and for 100 points only). This represents
only a small portion of a person. Since to get integer numbers of people we have to
round these results, we then eventually recover the conservation property (nobody is
lost).

6.2. Convergence rate. We now investigate numerically the convergence rate
of the method for all the Riemann problems considered until now. We measure the
L1-norm EL1 of the difference between the exact and the numerical solution by the
following usual formula :

EL1 = ∆x
∑

j∈Z

|ρλ(xj , Tf ) − ρ(xj , Tf )|,

where Tf is the final time of the computation. This quantity is evaluated for several
space steps ∆x and the results are presented on a graph relating ln(EL1) to ln(∆x).
Figure 6.6 - Left is concerned with Tests 1 and 3 for which the solutions are classical.
In this case, we have already underlined (see the Remark 1) that our algorithm is
equivalent to the conservative scheme given by the numerical flux g. Then, what we
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Fig. 5.7. Test 5 - nonclassical solution : x→ ρ(x) (Left) and x→ q(ρ)(x) (Right)
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Fig. 6.1. Test 1 - conservation error with 100 (Left) and 500 (Right) points in the mesh

are measuring here is nothing but the convergence rate of the numerical solution to
the exact solution for the relaxation scheme (5.1). The meshes we have used contain
2i × 500 nodes per unit interval, with an integer i varying from 0 to 5. The solution
of Test 3 is a pure classical shock and we obtain a convergence rate of approximately
0.999. On the contrary, for Test 1 the solution is a classical shock followed by an
attached rarefaction wave. The convergence rate observed for this compound wave is
around 0.845 and then is less than for the pure shock.
Figure 6.6 - Right shows the results for Tests 2, 4 and 5 for which the solutions
develop an undercompressive shock. The meshes now contain 2i × 500 nodes per
unit interval, with i varying from 0 to 6. Let us begin with Test 5. The solution
is a pure undercompressive shock and our method is identical to Glimm’s random
choice scheme in this case (see again the Remark 1). We get a convergence rate of 1
which is expected for this scheme. For Tests 2 and 4 the patterns of the solutions are
more complicated since the undercompressive shock is not pure anymore but attached
to a rarefaction wave. Around this undercompressive discontinuity, our method then
actually blends Glimm’s random choice scheme and the relaxation scheme. We observe
that the experimental order of convergence for Test 2 is close to 1, while for Test 4 it
is not yet established but the convergence seems secured.

7. Conclusion. We have proposed a very efficient numerical strategy for com-
puting the nonclassical solutions of a particular non genuinely nonlinear scalar con-
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Fig. 6.2. Test 2 - conservation error with 100 (Left) and 500 (Right) points in the mesh
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Fig. 6.3. Test 3 - conservation error with 100 (Left) and 500 (Right) points in the mesh

servation law (q is neither convex nor concave), recently introduced by Colombo and
Rosini [7] for simulating human flows. The validation has been (successfully) carried
out past several relevant Riemann initial data. The fact is that our approach is non-
conservative, but measurements have shown that the loss of mass is extremely low,
while the numerical solutions fully agree with the exact ones. Now it would be of
interest to use the method past initial data associated with concrete situations.
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