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Abstract

This paper reviews recent contributions to the numerical approxima-

tion of solutions of nonconservative hyperbolic systems with singular vis-

cous perturbations. Various PDE models for complex compressible mate-

rials enter the proposed framework. Due to lack of a conservative form in

the limit systems, associated weak solutions are known to heavily depend

on the underlying viscous regularization. This small scales sensitiveness

drives the classical approximate Riemann solvers to grossly fail in the cap-

ture of shock solutions. Here, small scales sensitiveness is encoded thanks

to the notion of kinetic functions so as to consider a set of generalized

jum conditions. To enforce for validity these jump conditions at the dis-

crete level, we describe a systematic and effective correction procedure.

Numerical experiments assess the relevance of the proposed method.

1 Introduction

We survey some of the recent numerical methods for approximating the solutions
of nonlinear hyperbolic systems with viscous perturbations, in the form :

A0(vε)∂tvε + A1(vε)∂xvε = ε∂x(D(vε)∂xvε), x ∈ IR, t > 0. (1)

Here, the central issue stems from that neither A0 nor A1 coincide with Jaco-
bian matrices so that the nonlinear PDE model (1) does not take the standard
form of systems in conservation form. Proeminent models from the Physics of
complex compressible materials actually enter the present framework. The non-
conservative terms in (1) are generically the by-product of simplifying modelling
assumptions. In most instances, these assumptions intend to bypass the need
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for dealing with intricate mechanisms taking place at a too fine scale. Averaged
multiphase flows [26], [27] or averaged turbulent flows [1], [6] provide typical
major examples. Also do plasmas models when scales smaller than the Debye
lenght are neglected [17], [14]. At last, a recent multifluid model [15] falls into
the present setting. After [14], [1], [6], a surprising property met by most (if not
all) of these models stays in the existence of an admissible change of variable
such that (1) recasts in the form :

∂tuε + ∂xF(uε) = εR(uε, ∂xuε, ∂xxuε), x ∈ IR, t > 0, (2)

where in contrast with (3), the regularization term now stands in (genuine)
nonconservative form while the left hand side is conservative. Let us stress
from now on that this property will play a central role hereafter in view of the
difficulties we now enter.

In realistic applications, all the reported models have to be tackled in the
regime of a large Reynolds number : i.e. the rescaling parameter ε > 0 in (1) is
small, with typical order of magnitude 10−6. In view of the genuine nonlineari-
ties in the underlying hyperbolic operator in (1), solutions under consideration
involve in general propagating viscous shock layers which differ from their end
states u− and u+ only in a O(ε)-interval of stiff transition. Obviously, mesh
refinements of practical interest cannot afford for a proper resolution of such
small scales. Hence and away from solid boundaries, we are urged to consider
the singular limit ε→ 0+ in (1). Due to the lack of conservative form, discontin-
uous limit solutions cannot be understood in the classical sense of distributions.
However for these limit solutions, the nonconservative terms in the limit system
of (1) exhibit products of discontinuous functions with measures and these must
be given some suitable meaning. This difficulty has received several significant
contributions over the past decade after the works by LeFloch [21], Dal Maso,
LeFloch and Murat [18] to tackle the singular limit in (1) and by Berthon, Co-
quel and LeFloch [5] to handle the limit system in the distinct but equivalent
form (2). We also refer to Colombeau [11], Colombeau, Leroux [12] for a theory
in a distinct functionnal framework.

These suitable theories inevitably come with the property that shock solu-
tions in the limit system are inherently regularization dependent : two distinct
viscous mechanisms in (1) or equivalently in (2) generically give birth to two
different families of shock solutions in the limit system. The small-scales sen-
sitiveness in the discontinuous solutions is in complete opposition with the un-
dependence property met in the usual conservative setting. After [21], [18], we
hereafter shade light on the roots of such a sensitivity. In [21], [18], sensitive-
ness is encoded in terms of a fixed family of paths connecting possible end states
in the viscous shock profiles in (1) while in [5], it is encoded in the so-called
kinetic functions. Roughly speaking, these kinetic-functions can be regarded
as the mass of bounded Borel measures concentrated on the shock solutions to
(2) so as to give rise to generalized Rankine-Hugoniot jump conditions. More
precisely, the mass of these bounded measures actually coincide with entropy
dissipation rates coming with the viscous shock profiles of(2). Both approaches
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complement each other and are introduced in this review since they are involved
in the numerical procedures to be discussed.

These theories are exemplified, in this paper, on an important class of mod-
els encompassing several turbulence and multifluid as well modellings. We refer
the reader to [1] for the so-called (k, ε) model and variants of it, to [6] for the
multi-scales turbulence approach and to [15] for multifluid descriptions. All
these models naturally take the form (2) for extended Navier-Stokes equations
when considering several independent specific entropies for governing indepen-
dent pressure laws. The limit system is seen to yield an natural extension of the
classical Euler equations involving bounded Borel measures concentrated along
the discontinuity curves of the solutions and vanishing everywhere else.

The inherent small scale sensitiveness of weak solutions for the limit system
in (1) or (2) makes their numerical approximation a particularly challenging
issue. The core of the difficulty indeed stems from the property of shock solutions
to be regularization dependent : the artificial dissipation terms induced by
numerical methods tend to corrupt the discrete shocks. Large failures in the
celebrated Godunov method in the proper capture of shock solutions to (58)
are well exemplified in Chalons [6], approximate Riemann solvers grossly fail as
well as illustrated in Berthon [1] and Chalons [6]. We refer to Hou, LeFloch
[20] for an analysis in the scalar setting. By contrast, the Glimm method stays
free from artificial diffusion and has been shown to converge to the correct
solutions [23]. Our main purpose in this paper is to illustrate, after [3], [9]
and the related works we quote hereafter, how to enforce roughly speaking the
artificial diffusion in classical numerical methods to mimic the exact dissipation
mechanism. More precisely, the procedure we describe intends to keep all the
independent discrete rate of entropy dissipations in the exact balance prescribed
by the kinetic functions coming with (2). We refer the reader to Tadmor [28]
for a precise link between numerical viscosity and discrete entropy rates. As
a consequence of preserved balances, a far much better agreement is achieved
between exact and discrete solutions : errors are virtually negligeable for shocks
of moderate amplitude in the models investigated in [1], [6].

The format of the present paper is as follows. The second section highlights
the roots in the small scales sensitiveness of shock solutions of (1) and (2) as well
to then introduce both theories of family of paths and kinetic functions in the
class of piecewise Lipshitz continuous functions. The third section describes the
main properties of the extended Navier-Stokes equations and their limit model,
the extended Euler equations, with a special emphasis put on the description of
full sets of extended generalized Rankine-Hugoniot jump relations respectively
derived from the two theories. The last section then explains the origin in the
failure of classical Riemann solvers so as to naturally introduce a systematic
and effective correction procedure.
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2 Shock solutions for nonconservative hyperbolic

systems

Given a smooth matrix-valued function D ≥ 0, this section introduces some of
the mathematical tools, developped over the past decade, to handle first order
systems with singular viscous perturbation built from D :

A0(vε)∂tvε + A1(vε)∂xvε = ε∂x(D(vε)∂xvε). x ∈ IR, t > 0, (3)

By singular, it is classically meant that (3) is addressed in the regime of a
vanishing rescaling parameter ε → 0+. Here, the unknown vε belongs to some
open convex subset Ωv ⊂ IRn. The matrix-valued functions Ai : Ωv → Mn(IR),
i = 0, 1, are supposed to be smooth with A0(v) invertible and A−1

0 (v)A1(v)
IR-diagonalizable for all states v ∈ Ωv. In other words, with fixed ε > 0, (3)
is nothing but a nonlinear hyperbolic system with viscous perturbation. For
simplicity in the discussion, all the fields in the underlying hyperbolic model
(i.e. obtained formally when setting ε = 0 in (3)) are supposed to be genuinely
nonlinear. Here, the central assumption is that neither A0 nor A1 coincide
with Jacobian matrices : namely the nonlinear PDE model (3) does not write
in conservation form. Motivated by several models from the Physics, we shall
assume the existence of a smooth change of variable v ∈ Ωv → u(v) ∈ Ωu so
that the smooth solutions of (3) obey the following equivalent form :

∂tu(vε) + ∂xF(u(vε)) = εR(u(vε), ∂xu(vε), ∂xxu(vε)), x ∈ IR, t > 0, (4)

which we shall write for short :

∂tuε + ∂xF(uε) = εR(uε, ∂xuε, ∂xxuε), x ∈ IR, t > 0. (5)

Notice of course that in contrast with (3), the regularization term in (5) :

R(u(vε), ∂xu(vε), ∂xxu(vε)) ≡ ∇vu(vε)A
−1
0 (vε)∂x(D(vε)∂xvε), (6)

is in general nonconservative while the underlying first order operator in (5)
now stands in conservation form. To shade further light in such a change of
variable, let us consider the underlying hyperbolic system in (3) (i.e. again
setting formally ε = 0) so as to evaluate the following scalar product :

∇vui(v) · ∂tv + ∇vui(v) · A−1
0 (v)A1(v)∂xv = 0, (7)

where for any given i ∈ {1, .., n}, the smooth function ui : Ωv → IR denotes the
ith component of the vector-valued function v → u(v). Due to (5), the above
scalar equation necessarily recasts in conservation form :

∂tui(v) + ∂xFi(u(v)) = 0, (8)

so that, by definition, the scalar functions ui, Fi play the role of an entropy pair
(trivial or non trivial) for smooth solutions of the underlying hyperbolic system
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in (3). Hence, the ith component of the regularization term (6) is nothing but
the associated entropy rate of production. At the present stage, we do not as-
sume convexity in the mapping v → ui(v) nor suppose that each of the possible
(second order) nonconservative products in (6) keeps a constant sign (say nega-
tive). Rephrazing the above observations in (6)–(8), the existence of the change
of variable v → u(v) in (5) thus requires the existence of as many additional en-
tropy pairs with independent gradients for (3) than there exist scalar equations
involving genuine nonconservative products in (3). Such a requirement might
sound rather restrictive but surprisingly, most of the important nonconservative
models for complex compressible materials actually achieve it. The interest in
the equivalent form (5) over (3) stays in that it allows for a mathematical frame-
work to handle the singular limit ε→ 0+ which turns to be really tractable from
the numerical standpoint. The next section introduces such a framework due
to Berthon, Coquel, LeFloch [5].

2.1 Definition of weak solutions

In this paragraph, we first address formal issues concerning the singular limit
in (3) to then motivate precise definitions that are needed in the forthcoming
sections devoted to applications. Since by assumption neither A0 nor A1 do co-
incide with Jacobian matrices, the underlying hyperbolic system in (3), obtained
setting ε = 0 :

A0(v)∂tv + A1(v)∂xv = 0, x ∈ IR, t > 0, (9)

writes in nonconservative form just like its viscous form (3). Therefore, one
cannot formally pass to the limit ε→ 0+ in (3) in the usual sense of distributions,
so as to recover (9) in the classical weak sense. But a weak sense is needed
since in general, the nonlinear hyperbolic system (9) does not admit smooth
solutions : propagating shock waves appear in finite time in smooth initial
data. Nevertheless and provided that some suitable estimates on the sequence
vε and its derivatives ∂tvε, ∂xvε are satisfied, one reasonnably expects to get
ε∂xD(vε)∂xvε ⇀ 0, ε→ 0, together with :

A0(vε)∂tvε ⇀ A0(v)∂tv, A1(vε)∂xvε ⇀ A1(v)∂xv, (10)

vaguely in the sense of measures so that (9) could be reached in this rather
vague sense. The central difficulty stems from the non conservative products in
(10) : they involve products of discontinuous functions with measures and thus,
they are generally not stable with respect to weak convergence (see [18] and [24]
for a definition and counterexamples). At present, several successful and stable
definitions exist in the BV framework : we refer the reader to LeFloch [21], [22],
Dal Maso, LeFloch, Murat [18] and LeFloch, Tzavaras [24]. These definitions
lead to a solution of the Riemann problem in the class of hyperbolic systems
with genuine nonlinearity for initial data sufficiently flat [18]. Existence of weak
solutions of (9) has been then established on the ground of the random choice
method [23]. Weak solutions to the nonconservative system (9) can be thus
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defined in the class of BV functions. After the classical results by Volpert [29]
and Federer [16], such functions can be manipulated as if they were piecewise
Lipschitz continuous functions. For the simplicity in this brief review and with-
out significant loss of generality, we restrict from now on attention to piecewise
Lipschitz continuous functions.

After [21], [18], and [24], here is now the key issue to be put forward. These
suitable theories necessarily come with the property that the singular limits
entering (10) intrinsically depends on the sequence vε via the choice of the
viscous regularization in (3). The core of this sensitiveness basically finds its
root in the non conservative products A0(v)×∂tv and A1(v)×∂xv in (9). Indeed
and without reference to the singular limit in (3), such products are ambiguous :
already the simplest formal product H×δ can be found to be equal to αδ with α
an arbitrary positive constant. Hence, the measures A0(v)×∂tv and A1(v)×∂xv

cannot be uniquely defined : this nonuniqueness precisely gives room for the
shock solutions to (9) to be regularization dependent. As underlined first by
LeFloch [21], uniqueness in the definition of the nonconservative products can
be restored with explicit reference to the precise shape of D in (3).

In sharp contrast is the undependence property met by shock solutions with
respect to small scale effects in the setting of conservative (genuinely) nonlinear
systems. Indeed assuming A0 and A1 to coincide with the jacobian matrices of
some flux functions F0 and F1, then from suitable estimates on the derivatives
of vε, ∂tF0(vε) ⇀ ∂tF0(v) and ∂xF1(vε) ⇀ ∂xF1(v) in the usual sense of
distributions with εD(vε)∂xvε ⇀ 0, so that we get at points of jump in the
limit function v :

[−σ(F0(v+) −F0(v−)) + (F1(v+) −F1(v−))]δx−σt = 0, (11)

for some speed of propagation σ. These so-called Rankine-Hugoniot jump con-
ditions stay completely free from the particular shape of the viscous matrix D
and allow to define v+ = v+(v−, σ) (at least locally) independently of D. As
already claimed, such a property cannot hold for nonconservative hyperbolic
systems and at points of jump, possible exit states v+ do depend on v− and σ
but also deeply on the shape of D : v+ = v+(D; v−, σ).

Let us now turn considering the equivalent form (5). By contrast to (3), the
nonconservative regularization term εR(uε, ∂xuε, ∂xxuε) cannot be expected to
converge to zero in the sense of measures as ε goes to zero but instead to a
(vector-valued) bounded Borel measure µu{D} concentrated on the discontinu-
ities of the limit function u. Such a measure vanishes in the region of continuity
of u and has a non trivial mass, we denote KD(u−, σ), along any curve of dis-
continuity of u (see hereafter for the notations). From the very definition (6) of
the regularization term εR(uε, ∂xuε, ∂xxuε), it is clear that the mass of µu{D}
generically depends on the precise shape of D. The viscosity matrix D being
prescribed in (6), the exit state u+ at points of jump must then solves the
following set of generalized jump relations :

−σ(u+ − u−) + (F(u+) −F(u−)) = KD(u−, σ), (12)
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hence, another illustration of the inherent small-scale sensitiveness of shock
solutions to (9).

Let us now address precise definitions for weak solutions to (9) in the class
of piecewise Lipschitz continous functions. These definitions, needed in the
forthcoming sections, heavily rely on the properties of travelling solutions to
(3). For fixed ε > 0, these are smooth solutions to (3), and thus equivalently to
the companion system (5), of the form :

{

vε(x, t) = wε(x− σt) = wε(ξ),
limξ→±∞ wε(ξ) = v±, limξ→±∞

d
dξwε(ξ) = 0,

(13)

where σ denotes the speed of the wave and v−, v+ are two states in Ωv. A
solution to (3) of the form (13) must thus solve the following system of ordinary
differential equations :

(A1(wε) − σA0(wε))w
′
ε = ε(D(wε)w

′
ε)

′, w′
ε =

d

dξ
wε(ξ). (14)

Now considering the rescaled function w : IR → Ωv defined by :

w(
ξ

ε
) = wε(ξ), (15)

then w must solve the next ODE problem free from the parameter ε :

(A1(w) − σA0(w))w′ = (D(w)w′)′, (16)

while achieving the same asymptotic conditions as those stated independently
from ε in (13). Notice that in the present nonconservative case, (16) cannot
be integrated once to give rise to a first order sytem like in the conservative
framework. Assuming D(w) invertible for all w ∈ Ωv, one merely has to consider
the extended dynamical system :

{

r′ = (A1(w) − σA0(w))D−1(w)r,
w′ = D−1(w)r,

(17)

for which the set of critical points, i.e. (r,w) = (0,w), is a priori unknown.

Remark 1 Several authors have established sufficient conditions on the viscosity
matrix D ensuring the existence of small-amplitude traveling wave solutions to
hyperbolic systems with viscous regularization : we refer to the work by Majda,
Pego [25] and the references therein. Besides, let us stress that the left state
v− being fixed, the speed σ has to be properly prescribed so as to meet the Lax
compression condition λk(v−) > σ in order to give rise to a small-amplitude
traveling wave solution (see [25] for the details). We tacitly assume from now
on that all the reported conditions on D and σ are met without further reference.

Let a state v− be given and some velocity σ be prescribed so that there exists
a critical point (0,v+) = (0,v+(v−, σ)) that can be reached exponentially fast
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in the future by a smooth solution (r,w) of (17) and connecting exponentially
fast (0,v−) in the past. Notice that generally speaking, v+ does depend on the
fixed viscosity matrix D : namely v+ = v+(D;v−, σ). From (15), we are now
in a position to define a sequence of solutions {wε}ε>0 to (14) with the required
asymptotic conditions (13). This sequence obeys ||w′

ε||L1 = ||w′||L1 < ∞ and
thus converges strongly in L1

loc to the step function :

v(x, t) = v− + (v+(D;v−, σ) − v−)H(x − σt), x ∈ IR, t > 0, (18)

where H denotes the usual Heaviside function. These considerations have led
LeFloch [21] to state :

Definition 2.1 The limit function (18) is a shock solution to (9), compatible
with the viscosity matrix D in (3).

To go one step further in the characterization of shock solutions to (9) in the
sense of Definition 2.1, notice the next identities, valid for all ε > 0 :

∫

IRξ

Ai(wε(ξ))w
′
ε(ξ)dξ =

∫

IRξ

Ai(w(ξ))w′(ξ)dξ, i = 0, 1, (19)

while in view of the asymptotic conditions expressed in (13) :

∫

IRξ

(D(wε(ξ))w
′
ε(ξ))

′dξ = 0. (20)

Following [21], let us consider an increasing one to one function ψ : (0, 1) → IR
so as to introduce the following path connecting v− to v+ in the phase space
Ωv :

φD(s;v−,v+) = w(ψ(s)), s ∈ (0, 1). (21)

Equipped with these notations, we observe that integrating once the ODE sys-
tem (14) yields the following set of extended Rankine hugoniot relations :

−σ
∫ 1

0
A0(φD(s;v−,v+))∂φD

∂s (s;v−,v+)ds

+
∫ 1

0 A1(φD(s;v−,v+))∂φD

∂s (s;v−,v+)ds = 0,
(22)

to be solved by (18). It can be shown that the identity (22) stays invariant by
change of parametrization of the path (21). Next, D being fixed, letting the left
state v− run in Ωv and the speed σ (suitably) in IR give rise (at least locally)
to a complete family of travelling waves to (3) and thus to a whole family of
shock solutions according to Definition 2.1. In turn, (21) allows to define a
family of paths φD so as to connect left and right states in the shock solutions
of (9). This construction provides a particular exemple of the general theory of
family of paths introduced by Dal Maso, LeFloch, Murat [18] so as to propose
a weakly stable definition of nonconservative products in the BV framework.
We shall not enter the details in this review and we refer the reader to [18] for
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the required material. After [18], a fixed family of path being fixed, the limit
system (9) may be written :

[

A0(v)∂tv
]

φD

+
[

A1(v)∂xv
]

φD

= 0, (23)

in the sense of the next definition (see [18] for the BV framework) :

Definition 2.2 A piecewise Lipschitz continuous solution v = v(x, t) is called
a weak solution to (23) iff it satisfies in the strong sense (9) in each region of
continuity while at points of jump it obeys (22).

Some of the forthcoming developments will make use of this definition. Let
us next turn considering another relevant definition for weak solutions when
addressing the equivalent formulation (5) in the setting of the travelling solutions
(13) to (3). Since such solutions are smooth, the sequence of functions uε =
u(wε) equally solve (5) with the asymptotics limξ→±∞ uε(ξ) = u± = u(v±),
for all ε > 0. Hence and with little abuse in the notations, the next identities
hold true for all ε > 0 :

−σu′
ε + (F(uε))

′ = εR(uε,u
′
ε,u

′′
ε ), (24)

while the rescaled function ũ(ξ) = u(w) defined from (15) satisfies :

−σũ′ + (F(ũ))′ = R(ũ, ũ′, ũ′′). (25)

Again the sequence {uε}ε>0 is seen to converge strongly in L1
loc to the step

function :

u(x, t) = u− + (u+(D;u−, σ) − u−)H(x − σt), x ∈ IR, t > 0. (26)

The very interest in the derivation of the limit function (26) stems from its char-
acterization by the following set of generalized Rankine-Hugoniot jump condi-
tions :

−σ(u+ − u−) + (F(u+) −F(u−)) = KD(u−, σ); (27)

where the so-called kinetic function KD(v−, σ) ∈ IRn is defined thanks to the
next identity valid for all ε > 0 and derived from (24)–(25) :

ε

∫

IRξ

R(uε,uε
′,uε

′′)dξ =

∫

IRξ

R(ũ, ũ′, ũ′′)dξ ≡ KD(u−, σ). (28)

Clearly, the vector-valued kinetic function defined in (28) solely depends on the
prescribed state v− and velocity σ who gave birth to a travelling wave solution
to (5), the viscosity matrix D being fixed. Equipped with a kinetic-function built
from a prescribed viscosity matrix D, Berthon, Coquel, LeFloch [5] introduce
the following notion of weak solutions :
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Definition 2.3 Let be given a smooth kinetic function KD. A piecewise Lips-
chitz solution u = u(x, t) is called a weak solution of the nonconservative limit
system in (5) iff in each region of continuity, u solves in the classical sense :

∂tu + ∂xF(u) = 0, (29)

while at points of jump, it obeys the generalized Rankine-Hugoniot conditions
(27).

In other words, defining µu{D} the bounded Borel measure which vanishes in
the region of continuity of u and has the mass KD(u−, σ) along any curve of
discontinuity of u, Definition 2.3 is equivalent to the requirement that u solves :

∂tu + ∂xF(u) = µu{D}, x ∈ IR, t > 0. (30)

3 The Euler equations with several independent

entropies

This section describes some of the main properties of the following nonconser-
vative system with singular viscous perturbation :



















∂tρ
ε + ∂xρu

ε = 0,

∂tρu
ε + ∂x(ρuε2 +

N
∑

i=1

pε
i) = ε∂x(

N
∑

i=1

µi∂xu
ε) + ε∂x(

N
∑

i=1

κi∂xT
ε
i ),

∂tρε
ε
i + ∂xρεiu

ε + pε
i∂xu

ε = εµi(∂xu
ε)2 + ε∂x(κi∂xT

ε
i ), i = 1, ..., N,

(31)
in the regime of an infinite Reynolds number Rey = 1/ε→ +∞. Here and with
classical notations, ρ, ρu and {ρεi}i=1,...,N respectively stand for the density,
the momentum and N independent internal energies of a complex compressible
material. Observe that the system (31) just reads as a natural extension of
the usual Navier-Stokes equations when a single pressure is involved in the
momentum equation. In (31), N pressure laws enter and are independently
governed via N distinct internal energies ρεi. Several models from the physics
actually enter the present framework with N > 1 and we refer the reader to
[1] ,[6] for detailed exemples. The system (31) is given the following condensed
form :

∂tvε + A(vε)∂xvε = εB(vε, ∂xvε, ∂xxvε), x ∈ IR, t > 0, (32)

which natural phase space reads :

Ωv = {v := (ρ, ρu, {ρεi}1≤i≤N) ∈ IRN+2/ρ > 0, ρu ∈ IR, ρεi > 0, 1 ≤ i ≤ N}.

At the present stage, (32) does not seem to fit with either the model (3) or (5)
we have promoted in the last section. Actually, (32) will be seen hereafter to
recast in some instances as (3) but always as (5).
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3.1 Closure equations and basic properties

Let us first state the (general) closure equations we assume in (31). The internal
energies are assumed to obey the second principle of the thermodynamics, i.e.
for any given i ∈ {1, ..., N}, ρεi is associated with an entropy ρsi solution of :

−Tidsi = dεi + pidτ, τ = 1/ρ, (33)

with the property that the mapping (τ, si) → εi(τ, si) is strictly convex. Thus
we get the required thermodynamic closure equations from (33) :

pi(τ, si) = −∂τεi(τ, si), Ti(τ, si) = −∂siεi(τ, si),

where the temperature Ti(v) is classically assumed to stay positive on Ωv. As a
well known consequence, the well defined mapping (τ, εi) → si(τ, εi) is strictly
convex and so is also, with little abuse in the notation, the mapping (ρ, ρεi) →
{ρsi}(ρ, ρεi) := ρsi(

1
ρ ,

ρεi

ρ ). Each pressure law pi(v) is assumed in addition to

obey the general Weyl’s conditions for real gases (see [19] for the details). At
last, the viscosity laws µi : Ωv → IR+ and the conductivity laws κi : Ωv → IR+,
1 ≤ i ≤ N , in (31) are assumed to be smooth non negative functions but with
the requirement that for some fixed µ0 > 0 :

N
∑

i=1

µi(v) > µ0, for all v ∈ Ωv. (34)

All the above assumptions are quite classical within the frame of the usual
Navier-Stokes equations (i.e. whenN = 1 in (31)). Owing to these assumptions,
our first statement highlights the relationships with this usual setting :

Lemma 3.1 The underlying first order system in (31), obtained formally set-
ting ε = 0 :







∂tρ+ ∂xρu = 0,

∂tρu+ ∂x(ρu2 +
∑N

i=1 pi(v)) = 0,
∂tρεi + ∂xρεiu+ pi(v)∂xu = 0, i = 1, ..., N,

(35)

is hyperbolic over Ωv, with the following increasingly arranged eigenvalues :

λ1(v) = u− c < λj=2,...,N+1(v) = u < λN+2(v) = u+ c, c2(v) =

N
∑

i=1

c2i (v),

where each of the partial sound speed follows from c2i (v) := (∂ρpi)si > 0. Under
the Weyl’s assumption on the pressure laws, the 1− and (N + 2)− fields are
genuinely nonlinear. All the other intermediate fields are linearly degenerate.

The intermediate fields with i ∈ {2, .., N+1} coincide with a contact discontinu-
ity across which the eigenvalue u stays continuous. In other words, discontinu-
ities coming with these fields do not induce ambiguity in all the non conservative
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products pi(v) × ∂xu involved in (35). By contrast, the two extreme fields are
genuinely nonlinear and are thus responsible for the occurence of shock waves
where the velocity u and each of the partial pressures pi(v) can be seen to
achieve non trivial jumps [1], [6]. This is already the case in the standard Euler
equations with N = 1. Hence and for these extreme discontinuities, ambiguities
arise in the nonconservative products entering (35).

3.2 Equivalent formulations

In order to study the singular limit ε→ 0 in (31), let us implement the program
sketched in Section 2 and thus exhibit all the nontrivial conservation laws (8)
satisfied by the smooth solution of (35). The next statement provides such laws
but when directly expressed in the presence of the viscous perturbations in (31)
:

Proposition 3.2 Smooth solutions of (31) satisfy the following conservation
law :

∂t(ρE)(vε) + ∂x(ρHu)(vε) = ε∂x((

N
∑

i=1

µi)u
ε∂xu

ε) +

N
∑

i=1

∂x(κi∂xT
ε
i ), (36)

where the total energy ρE : Ωv → IR+ and the total enthalpy ρH : Ωv → IR+

respectively read :

(ρE)(v) =
(ρu)2

2ρ
+

N
∑

i=1

ρεi, (ρH)(v) = (ρE)(v) +

N
∑

i=1

pi(v). (37)

These solutions next obey the following N equations :

−Ti(v
ε) × {∂t(ρsi)(v

ε) + ∂x(ρsiu)(v
ε)} = εµi(∂xu

ε)2 + ε∂x(κi∂xT
ε
i ), (38)

and thus also the N entropy balance equations :

∂t(ρsi)(v
ε) + ∂x(ρsiu)(v

ε) = −ε
µi

T ε
i

(∂xu
ε)2 − εκi

(∂xT
ε
i

T ε
i

)2
− ε∂x(κi

∂xT
ε
i

T ε
i

). (39)

Note from (39) that classical non linear tranformations in the si yield further
additional balance equations for governing ϕ(s1, ..., sN ) where ϕ : R

N → R

denotes any given arbitrary smooth function. Nevertheless and without specific
assumptions on the thermodynamic closure equations (see [1], [6]), none of these
additional equations boils down to a non trivial additional conservation law. In
the light of this result, we are led to introduce the well-defined change of variable
v → u(v) = u = {ρ, ρu, {ρsi}1≤i≤N}T so as to recast (31) under the form (5)
according to :

12



Proposition 3.3 Smooth solutions of (31) obey equivalently the system :






















∂tρ
ε + ∂xρu

ε = 0,

∂tρu
ε + ∂x(ρuε2 +

N
∑

i=1

pε
i) = ε∂x(

N
∑

i=1

µi∂xu
ε),

∂tρs
ε
i + ∂xρsiu

ε = −ε µi

T ε
i
(∂xu

ε)2 − εκi

(

∂xlnT
ε
i

)2
− ε∂xκi∂x(lnT ε

i ).

(40)

Note that the conservation law for the total energy is recovered from (40) as an
additional nontrivial law :

∂t(ρE)(uε) + ∂x(ρHu)(uε) = ε∂x((

N
∑

i=1

µi)u
ε∂xu

ε) +

N
∑

i=1

∂x(κi∂xT
ε
i ). (41)

The reason for promoting the equivalent system (40) stems from the important
property :

Proposition 3.4 The function u ∈ Ωu → (ρE)(u) ∈ IR is strictly convex.

We refer to [6] for a proof and related convexity properties. Other relevant
equivalent forms are actually available [1], [6] but will not be addressed here for
shortness. Let us now illustrate that under specific modelling assumptions, the
system (31) takes the form (3). This will help to shade light in the forthcoming
numerical methods. Let assume the viscosity laws to be given by N non negative
real numbers µi ∈ IR+, 1 ≤ i ≤ N , with up to some relabelling µN > 0 so that
the requirement (34) is met. Then, observe the following (N−1) relations easily
derived from (38) :

−T ε
N

µi

µN
× {∂t(ρsN )ε + ∂x(ρsNu)

ε} = εµi(∂xu
ε)2 + ε∂x(

κNµi

µN
∂xT

ε
N ), (42)

which substracted from (38) yield the (N − 1) additional laws :

T ε
i × {∂t(ρsi)

ε + ∂x(ρsiu)
ε} − TN

µi

µN
× {∂t(ρsN )ε + ∂x(ρsNu)

ε} =

ε∂x(κN µi

µN
∂xT

ε
N − κi∂xT

ε
i ).

(43)

Equipped with (43), it can be shown (see [6] for a related proof) :

Proposition 3.5 Let be given N constant non negative viscosity coefficients
{µi}1≤i≤N with µN > 0. Then the smooth solutions of (31) obey equivalently in
the u-variable the following system :














































∂tρ
ε + ∂xρu

ε = 0,

∂tρu
ε + ∂x(ρuε2 +

N
∑

i=1

pε
i) = ε∂x(

N
∑

i=1

µi∂xu
ε) + ε∂x(

N
∑

i=1

κi∂xT
ε
i ),

Ti(u
ε) × {∂t(ρsi)

ε + ∂x(ρsiu)
ε} − TN(uε) µi

µN
× {∂t(ρsN )ε + ∂x(ρsNu)

ε} =

ε∂x(κN µi

µN
∂xT

ε
N − κi∂xT

ε
i ),

∂t(ρE)(uε) + ∂x(ρHu) = ε∂x((
N

∑

i=1

µi)u
ε∂xu

ε) +
N

∑

i=1

∂x(κi∂xT
ε
i ),

(44)
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which condensed form clearly reads :

A0(uε)∂tuε + A1(uε)∂xuε = ε∂x(D(uε)∂xuε), x ∈ IR, t > 0, (45)

with A0 invertible :

Det(A0(u)) = −
1

µN
(

N
∑

i=1

µi)(Π
N
i=1Ti(u)) < 0, for all u ∈ Ωu. (46)

Remark 2 Observe that for general viscosity laws, the above manipulations gen-
erally yield the rather cumbersome form :

A0(uε)∂tuε + A1(uε)∂xuε = εB(uε, ∂xuε, ∂xxuε), x ∈ IR, t > 0, (47)

with a nonconservative regularization term. Precisely except when the conduc-
tivity laws are set to zero, in which case (44) is still valid but with ratios of
viscosities depending on u.

The equivalent form (40) with the additional law (41) stays free from modelling
assumptions on both the viscosity and conductivity laws. (40)–(41) will play a
central role in the numerical analysis of the system (31) in the singular limit
ε→ 0 we now address.

3.3 Singular limit

We discuss on the ground of the mathematical tools introduced in Section 2
the limit system obtained from (31) as the rescaling parameter ε goes to zero.
For reasons put forward in Section 2, the 2N viscosity and conductivity laws
entering the singular viscous perturbation in (31) are tacitly fixed from now on,
except when otherwise specified. With little abuse in the notations, this set of
2N constitutive laws is referred hereafter as to the viscous closure D.

Focusing ourselves on the notion of weak solutions in the class of piecewise
Lipschitz continuous functions, we first report the main properties of the rescaled
travelling wave solutions to (31) with ε = 1 (see (15)–(16)) :

u(x− σt) = u(ξ), lim
ξ→±∞

u(ξ) = u±, lim
ξ→±∞

u′(ξ) = 0, (48)

for some speed σ ∈ IR and states u−, u+ in Ωu. Under the asymptotic conditions
expressed in (48), the above function u has to solve (40) (again with ε = 1) and
thus the following (N + 2) × (N + 2) ODE system :







−σdξρ+ dξρu = 0,

−σdξρu+ dξρu
2 +

∑N
i=1 pi(v)) = dξ(

∑N
i=1 µidξu),

−σdξρsi + dξρsiu = −µi

Ti
(dξu)

2 − κi

(dξTi

Ti
)2 − dξ(κi

dξTi

Ti
).

(49)

Classical considerations allow for studying travelling solutions coming solely
with the first genuinely nonlinear field. Indeed, travelling solutions for the sym-
metrical extreme field are just recovered when reversing the sign of the velocity
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and ξ while exchanging the role of the endpoints u− and u+. Berthon, Coquel
[2], [4] have proved the existence in the large of solutions (48) to the dynam-
ical system (49) with the closure equations discussed in Section 3.1 but under
the simplifying assumption of zero heat conductivities. Such an assumption is
made to allow for a Lasalle invariance principle for the large ODE system (49)
which in connexion with a suitable Lyapunov function yield the existence of an
endpoint u+ ∈ Ωu as soon as the state u− and the velocity σ are prescribed
according to :

Proposition 3.6 Let u− ∈ Ωu be given. Let us consider a velocity σ subject to
the Lax compression condition :

u− − c(u−) > σ, c2(u−) =

N
∑

i=1

∂ρpi(u−). (50)

Then there exists a travelling wave solution (48) to (49), unique (up to some
translation) and connecting some (unique) state u+(u−, σ) at +∞.

We conjecture that such a positive result persists in the case of general con-
ductivity laws. Let us underline that due to the nonconservative nature of the
dynamical system (49), barely little is known about the exit state u+(u−, σ) ex-
cept its existence and the property that its precise form heavily depends on the
viscous closure D through the N ratios of the viscosity laws µi(u)/

∑N
j=1 µj(u).

The state u− and the speed σ being fixed according to (50), Berthon, Coquel
[2], [4] have proved the existence of a smooth manifold of codimension 2 in Ωu

uniquely made of critical points in the future for the dynamical system (49) with
the property that each of these critical points can be reached at +∞ provided
that N ratios of viscosities are suitably prescribed. In the setting of N constants
viscosities for N given polytropic gases, Chalons, Coquel [8] have shown how to
explicitly determine the exit state u+(D;u−, σ) when simply solving a (known)
scalar nonlinear algebraic equation with coefficients depending on D.

Remark 3 In the case of a general viscous closure D, let us stress that the system
(49) can be given a dimensionless form. Then all the possible dimensionless exit
states ũ+(D; ., .) (inferred from Proposition 3.6 with u− running in Ωu and σ in
IR according to (50)) entirely depend on a reduced set of dimensionless numbers.
Typically, N numbers : Ωu × IR → [0, 1]N are in order :

0 ≤ M =
c(u−)

u− − σ
≤ 1, 0 ≤ Mi =

√

∂ρpi(u−)

c(u−)
≤ 1, i ∈ 1, .., N − 1, (51)

where M denotes the inverse of the usual Mach number while the Mi can be
referred as to thermodynamic Mach numbers (see [8] for related reduced num-
bers). This makes feasible the numerical tabulation of the dimensionless exit
states ũ+(D; {Mi}(u−),M(u−, σ)) on the compact domain (51).

Next, the sequence uε : ξ ∈ IR → u(ξ/ε) ∈ Ωu built from the travelling wave
solution (48)–(49) is seen to converge strongly in L1

loc when ε → 0 to a limit
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step function :

u(x, t) = u+ + (u+(D,u−, σ) − u−)H(x− σt), x ∈ IR, t > 0. (52)

With the chainrule (24)–(27) proposed in Section 2, this limit function, re-
ferred as to a shock solution to the singular limit in (40), solves the generalized
Rankine-Hugoniot jump conditions :






−σ(ρ+ − ρ−) + ((ρu)+ − (ρu)−) = 0,

−σ((ρu)+ − (ρu)−) + ((ρu2 +
∑N

i=1 pi(u))+ − (ρu2 +
∑N

i=1 pi(u))−) = 0,
−σ((ρsi)+ − (ρsi)−) + ((ρsiu)+ − (ρsiu)−) = K{D}i(u−, σ), i = 1, .., N,

(53)

where for each i ∈ {1, ..., N}, the kinetic functions are given by :

K{D}i(u−, σ) = −

∫

IRξ

{µi

Ti
(dξu)

2 + κi

(dξTi

Ti
)2

}

(u(ξ))dξ ≤ 0. (54)

Remark 4 In practical issues, once the right state u+(D;u−, σ) has been numer-
ically solved (see Remark 3), the required kinetic functions are evaluated thanks
to the identities (see [8] for instance) :

K{D}i(u−, σ) = ρ−(u− − σ)((si)+(D;u−, σ) − (si)−), i = 1, .., N, (55)

in place of the equivalent but cumbersome form (54). Of course, dimensionnless
forms of (55) are again in order.

Observe that the smooth travelling solution (48) also solves the additional con-
servation law (41) so as a by-product, we get the additional jump condition :

−σ((ρE)(u+) − (ρE)(u−)) + ((ρHu)(u+) − (ρHu)(u−)) = 0. (56)

For forthcoming numerical reasons, it is then crucial to recognize that the next
set of generalized Rankine-Hugoniot jump conditions can be built from (53)–
(56) according to :

Proposition 3.7 Assume that up to some relabelling µN (u) > 0 so that K{D}N (u−, σ) <
0. Then the shock solution (52) solves in the u variable :























−σ(ρ+ − ρ−) + ((ρu)+ − (ρu)−) = 0,

−σ((ρu)+ − (ρu)−) + ((ρu2 +
∑N

i=1 pi(u))+ − (ρu2 +
∑N

i=1 pi(u))−) = 0,
{(ρsi)+ − (ρsi)−) + ((ρsiu)+ − (ρsiu)−}

− K{D}i(u−,σ)
K{D}N(u−,σ){(ρsN )+ − (ρsN )−) + ((ρsNu)+ − (ρsNu)−} = 0, i = 1, ..., N − 1,

−σ((ρE)(u+) − (ρE)(u−)) + ((ρHu)(u+) − (ρHu)(u−)) = 0.

(57)

For any given i ∈ {1, ..., N}, let us define µu{D}i the non positive bounded
Borel measure which vanishes in the region of continuity of u and has the mass
K{D}i(u−, σ) along any curve of discontinuity of u, we introduce :
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Definition 3.8 The singular limit system (40), in the class of piecewise Lips-
chitz continuous functions, takes the form of the following extended Euler equa-
tions :



















∂tρ+ ∂xρu = 0,

∂tρu+ ∂x(ρu2 +

N
∑

i=1

pi(u)) = 0,

∂tρsi + ∂xρsiu = µu{D}i, i = 1, .., N.

(58)

Weak solutions of (58) obeys the additional non trivial conservation laws in the
usual weak sense :

∂t(ρE)(u) + ∂x(ρHu)(u) = 0. (59)

Here, weak solutions of the extended Euler equations (58) are understood in
the sense of Definition 2.3. For forthcoming numerical purposes, it is useful
to consider the setting of viscous closures D with arbitrary conductivity laws
but constant viscosities (or arbitrary viscosity laws with null conductivities).
In view of the equivalent form (44), weak solutions of (58) equally solve in the
sense of Definition 2.2 :











































∂tρ+ ∂xρu = 0,

∂tρu+ ∂x(ρu2 +

N
∑

i=1

pi(u)) = 0,

[

Ti(u){∂t(ρsi) + ∂x(ρsiu}
]

φD

−
[

TN(u) µi

µN
{∂t(ρsN ) + ∂x(ρsNu)}

]

φD

= 0, 1 ≤ i ≤ N − 1,

∂t(ρE)(u) + ∂x(ρHu) = 0,

(60)

where the nonconservative products take the form (22) at points of jump. To go
one step further, it can be easily seen that at such points the following identities
hold for any given i ∈ {1, .., N − 1} :

Ti(u−, σ){−σ((ρsi)+ − (ρsi)−) + ((ρsiu)+ − (ρsiu)−)}
−TN(u−, σ) µi

µN
{−σ((ρsN )+ − (ρsN )−) + ((ρsNu)+ − (ρsNu)−)} = 0,

(61)

for some averaged temperatures {Ti(u−, σ)}1≤i≤N . These relations can be un-
derstood as a particular case of the generalized jump conditions entering (57).
Let us conclude this section with the following (global) existence result of solu-
tions to the Riemann problem for the extended Euler Equations (58)

Theorem 3.9 (Chalons, Coquel [8]). Let be given N constant non negative
viscosity coefficients {µi}1≤i≤N with up to some relabelling µN > 0 in the setting
of N independent pressure laws for polytropic gases. Let be given two states uL

and uR in Ωu. Then the Cauchy problem (58) with initial data u0(x) = uL, x <
0, uR, x > 0 has an unique solution away from vacuum.

We refer to [8] for a precise definition of vacuum. The proof of the above result
requires a sharp characterization of the right states u+(D,u−, σ) coming with
travelling wave solutions. Hence the setting under consideration.
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4 Riemann Solvers and Kinetic functions

In this section, we address the numerical approximation of the weak solutions
of the extended Euler equations (58). The small scale sensitiveness of shock
solutions makes this issue particularly challenging. The core of the difficulty in-
deed stems from the property of shock solutions to be regularization dependent
: the artificial dissipation terms induced by numerical methods tend to corrupt
the discrete shocks. Our main purpose in this section is to illustrate how to
enforce the artificial diffusion in classical numerical methods to mimic the exact
dissipation mechanism. Kinetic functions play a central role in the correction
procedure we describe hereafter. This procedure intends to keep all the inde-
pendent discrete rate of entropy dissipation in the exact balance prescribed by
the kinetic functions in the generalized jump conditions (57). A deeply related
strategy has been first introduced by Berthon, Coquel [3] with N = 2 in terms of
a local (cell by cell) nonlinear correction procedure, then extended to the general
case N ≥ 2 by Chalons, Coquel [7]. It has recently received several fully explicit
versions in the case N ≥ 2 in the works by Chalons, Coquel [9], [10] and has
been successfully extended to problems with two space variables in [6]. For con-
venience, all these works address the numerical approximation of the equivalent
form (60) under the assumption of general viscosity laws with null conductiv-
ity coefficients (or say constant viscosity coefficients for arbitrary conductivity
laws, see Remark 2). In this review, we extend the correction procedure to the
general case, thus tackling directly the formulation (58) of the extended Euler
Equations. To avoid unnecessary technical details with approximate Riemann
solvers, the extension is performed on the basis of the pure Godunov method.
We first motivate the very need to correct this classical solver when pointing out
the origin of its failure. Understanding its roots then dictates the procedure.
We conclude when highlighting the deep relations in all the existing techniques.

4.1 Origin of the failure

For simplicity in the notations, we restrict ourselves to uniform cartesian dis-
cretization of IRt × IRx defined by a constant time step ∆t and a constant space
step ∆x. Introducing xj+1/2 = (j + 1/2)∆x with j ∈ Z and tn = n∆t with
n ∈ N, the cartesian grids under consideration then read :

∪j∈Z,n∈NC
n
j , Cn

j = [xj−1/2, xj+1/2) × [tn, tn+1). (62)

The approximate solution of the Cauchy problem (58) with u0 as initial data,
we denote uλ(x, t) with λ = ∆t/∆x, is classically sought as a piecewise constant
function at each time level tn :

uλ(x, tn) := un
j , for all x ∈ [xj−1/2, xj+1/2), n > 0, j ∈ Z, (63)

with when n = 0 :

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z. (64)
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Assuming the approximate solution uλ(x, tn) to be known at a given time tn ≥ 0,
this one is then defined for t ∈ [tn, tn+1) as the solution of the Cauchy problem
(58) with uλ(x, tn) as initial data. Choosing ∆t small enough, i.e. under the
CFL restriction :

λmax
u

ρ(∇uF(u)) ≤
1

2
, (65)

where the maximum is taken over all the u under consideration, uλ(x, t) with
t ∈ [tn, tn+1) is nothing but the juxtaposition of a sequence of non interacting
adjacent Riemann solutions w((x−xj+1/2)/(t− t

n);un
j ,u

n
j+1), centered at each

cell interface xj+1/2. Let us then classically consider the L2-projection of this
solution at time tn+1− onto piecewise constant functions :

un+1−
j =

1

∆x

∫ xj+1/2

xj−1/2

uλ(x, tn+1−)dx, j ∈ Z. (66)

Easy calculations based on the Green formula show that the averages (66) re-
express conveniently in the form :











ρn+1−
j = ρn

j − λ∆{ρu}(w(0+;un
j ,u

n
j+1)

(ρu)
n+1−
j = (ρu)

n
j − λ∆{ρu2 +

∑N
i=Npi}(w(0+;un

j ,u
n
j+1),

(ρsi)
n+1−
j = (ρsi)

n
j − λ∆{ρsiu}

n
j+1/2 + λ µu{D}i(C

n
j ),

(67)

where for any given i ∈ {1, ..., N}, µu{D}i(C
n
j ) denotes the (non positive) mass

of the bounded Borel measure µu{D}i taken over all the possible shock waves
that propagate in the cell Cn

j .
According to the usual Godunov’s procedure, one would update the ap-

proximate solution at time tn+1 when defining uλ(x, tn+1) = un+1−
j for all

x ∈ [xj−1/2, xj+1/2) and j ∈ Z. However, such an updating formula would pre-
vent the L1 norm of the total energy to be preserved with time because of the
next statement :

Lemma 4.1 Under the CFL condition (65), the following inequality holds for
all j ∈ Z :

{ρE}(un+1−
j ) ≤ 1

∆x

∫ xj+1/2

xj−1/2
{ρE}(uλ(x, tn+1−))dx

= {ρE}(un
j ) − λ∆{ρHu}(w(0+;un

j ,u
n
j+1)),

(68)

the first inequality being strict generally speaking.

The equality entering the above estimate simply follows from the property that
the weak solution uλ(x, t) with t ∈ [tn, tn+1) preserves the total energy in view
of the additional conservation law (56) valid in D′. Next, the inequality in (68)
is just a consequence of the classical Jensen inequality when invoking the strict
convexity property of the function u ∈ Ωu → {ρE}(u) ∈ IR stated in Proposi-
tion 3.4. It is well known that in general, the resulting inequality holds strictly.
More precisely, it can be seen that (see Coquel, LeFloch [13] for instance) :

{ρE}(un+1−
j ) = 1

∆x

∫ xj+1/2

xj−1/2
{ρE}(uλ(x, tn+1−))dx

−O(1)
(

||un
j − un

j−1||
2 + ||un

j+1 − un
j ||

2
)

,
(69)
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for some positive O(1) depending on the convexity modulus of {ρE}(u). Rephraz-
ing the inequality (68) and its precised form (69), the updating formulae (67)
make the L1-norm of the total energy to dramatically decrease with time as
soon as non trivial shock solutions propagate in the discrete solution. Thus
the classical Godunov method (67) cannot provide us with a relevant numeri-
cal method for approximating the discontinuous solutions under consideration.
The estimate (69) is nothing but the origine of the reported failure in the proper
capture of shock solutions to (58).

One would be tempted to promote the conservation of the total energy at the
discrete level so as to understand (up to some relabelling) the governing equation
for {ρsN}(ρ, ρu, ρE, {ρsi}1≤i≤N−1) as an additional nontrivial equation. Again
and because of convexity properties not reported here, such a strategy can only
grossly fail. Indeed, it can be easily shown that this time, the equivalent set of
generalized jump conditions (57) cannot hold true at the discrete level (already
in the case of a single propagating shock wave). We refer the reader to [7], [9] and
[10] for closely related proofs. The correction procedure we now propose finds
its root in the negative result we have just reported : we propose to enforce for
validity at the discrete level the generalized Rankine-Hugoniot conditions (57).

4.2 Correction procedure

In order to restore the validity of the generalized jump conditions (57) at
each time level, we consider a cell by cell procedure to take place as soon as
µu{D}N(Cn

j ) < 0. The assumption of a non zero mass in the current cell Cn
j

just expresses the fact that non trivial shock waves do propagate in, so that
a correction is needed to counteract the negative effects of (69). We propose
to keep unchanged the updated values of both the density and momentum in
conservation form :

ρn+1
j = ρn+1−

j , (ρu)n+1
j = (ρu)n+1−

j , for all j ∈ Z, (70)

Next, the N entropies (ρsi)
n+1
j are sought to be solutions of the following (N−1)

relations with i ∈ {1, .., N − 1} :

{

(ρsi)
n+1
j − (ρsi)

n
j + λ∆{ρsiu}

n
j+1/2

}

−
µu{D}i(C

n
j )

µu{D}N(Cn
j )

{

(ρsN )n+1
j − (ρsN )n

j + λ∆{ρsNu}
n
j+1/2

}

= 0,
(71)

supplemented by (see (68)) :

{ρE}(ρn+1−
j , (ρu)n+1−

j , {ρsi}
n+1
j ) ≡ {ρE}n

j −λ∆{ρHu}(w(0+,un
j ,u

n
j+1)) (72)

Let us underline that the identities (71)–(72) are discrete forms of the N last
jump relations in (57). When focusing ourselves in the setting of general vis-
cosity laws with zero conductivity coefficients (or say constant viscosity coeffi-
cients with arbitrary conductivity laws), it can be easily seen that for any given
i ∈ {1, .., N−1}, the ratio µu{D}i(C

n
j )/µu{D}N (Cn

j ) coincides with an averaged
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form of the ratio {µiTN/µNT i}(u) in the singular limit in (44) (see Proposition
3.5). In this sense, (71)–(72) just provide a consistent discrete approximation
of the limit system in (44). Achieving such a consistency property stays at the
basis of the prediction-correction discrete methods developped in [3], [9].

Closely related proofs in these works allow to prove the existence of a unique
state un+1

j ∈ Ωu solution of (70)–(71)–(72). The discrete method is thus well-
defined. Let us stress that an essential ingredient in the proof stays in the
property that the total energy has been over-dissipated in the prediction step !
(see [3], [9] for instance for the details).

4.3 Numerical experiments

We present here numerical evidences for illustrating the validity of the numer-
ical strategy that we have proposed in previous section. For that, we consider
system (31) where N is taken equal to 3 and the corresponding three internal
energies are associated with polytropic ideal gases (thermally and calorically
perfect). More precisely, introducing N constant adiabatic exponents γi > 1 for
all i=1,...,3, we set

ρεε
i =

pε
i

γi − 1
, i = 1, ..., 3.

For simplicity we make the choice of constant viscosity laws with a Reynolds
number equal to 105. As initial data, we propose a step function made of two
constant states, called left state and right state in the following, separated by
a discontinuity located at x = 0 and we approximate the solution on a uniform
grid with ∆x = 1/300.

Experiment 1 We set (γ1, γ2, γ3) = (1.4, 1.6, 1.8) and (µ2/µ1, µ3/µ1) = (1., 1.),
while the left (l) and right (r) states of initial data read: (ρ, u, p1, p2, p3)l =
(4., 1., 1.2, 1.4, 1.6), (ρ, u, p1, p2, p3)r = (2.5568,−1.4305, 0.5162, 0.5103, 0.4999).

Experiment 2 We set (γ1, γ2, γ3) = (1.4, 1.4, 1.4) and (µ2/µ1, µ3/µ1) = (1., 1.)
Left and right states of initial data now read: (ρ, u, p1, p2, p3)l = (3., 1., 1., 1.2, 1.4),
(ρ, u, p1, p2, p3)r = (2.6529,−1.1153, 0.8160, 0.9844, 1.1528).

In Figures 1 and 2, we compare some of the corresponding pressure profiles for
the exact solutions together with the numerical solutions generated by an usual
Godunov approach and our prediction-correction like scheme. As expected, we
observe that the classical approach (without correction) fails in capturing the
correct solution while the correction step provides us with a numerical solution
in good agreement with the exact one. We refer for instance the reader to [6],
[9], [10] for additional numerical experiments.
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Figure 1: Experiment 1 - Pressures 1 and 2
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[2] Berthon C. and Coquel F., Travelling wave solutions of a convective dif-
fusive system with first and second order terms in nonconservation form,
Hyperbolic Problems. Theory, Numerics, Applications, Internat. Ser. Nu-
mer. Math., 129, Birkhuser, Basel, pp 47-54 (1999)

[3] Berthon C. and Coquel F., Nonlinear projection methods for multi-entropies
Navier-Stokes systems Innovative methods for numerical solutions of partial
differential equations, World Sci. Publishing, River Edge, NJ, pp 278-304
(1998),

[4] Berthon C. and Coquel F., Travelling wave solutions for the Navier-Stokes
equations with several specific entropies, preprint.

[5] Berthon C., Coquel F. and LeFloch P.G., Entropy dissipation measure and
kinetic relation associated with nonconservative hyperbolic systems, work in
preparation.

[6] Chalons C., Bilans d’entropie discrets dans l’approximation numérique des
chocs non classiques. Application aux équations de Navier-Stokes multi-
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