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Abstract This work considers the barotropic Euler equations and proposes a high-
order conservative scheme based on a Lagrange-Projection decomposition. The
high-order in space and time are achieved using Discontinuous Galerkin (DG) and
Runge-Kutta (RK) strategies. The use of a Lagrange-Projection decomposition en-
ables the use of time steps that are not constrained by the sound speed thanks to an
implicit treatment of the acoustic waves (Lagrange step), while the transport waves
(Projection step) are treated explicitly. We compare our DG discretization with the
recent one [7] and state that it satisfies important non linear stability properties. The
behaviour of our scheme is illustrated by several test cases.
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1 Introduction

We are interested in the gas dynamics equations in Eulerian coordinates{
∂tρ +∂x(ρu) = 0,

∂t(ρu)+∂x
(
ρu2 + p

)
= 0,

(1)

where ρ > 0 is the density, u the velocity and p = p(ρ) is the pressure of the fluid
such that p′(ρ) > 0. In the numerical experiments, we will choose p(ρ) = gρ2/2
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Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université Paris-Saclay,
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where g > 0 is the gravity constant so that the model can also be understood as the
Shallow-Water equations with flat topography (in this case, ρ stands for the water
depth). The unknowns depend on the space and time variables x and t, with x ∈ R
and t ∈ [0,∞). At time t = 0, the model is supplemented with a given initial data
ρ(x, t = 0) = ρ0(x) and u(x, t = 0) = u0(x).

The aim of this paper is to propose a high-order discretization based on a
Lagrange-Projection decomposition of the governing equations and using a Dis-
continuous Galerkin (DG) [4, 9] strategy for the space variable.

The Lagrange-Projection (or equivalently Lagrange-Remap) decomposition is
interesting since it allows to naturally decouple the acoustic and transport terms
of the model. It proved to be useful and very efficient when considering subsonic or
low-Mach number flows. In this case, the CFL restriction of Godunov-type schemes
is driven by the acoustic waves and can be very restrictive. The Lagrange-Projection
strategy allows for a very natural implicit-explicit scheme with a CFL restriction
based on the (slow) transport waves and not on the (fast) acoustic waves. We refer
for instance the reader to [5], [1], [2], to the recent contribution [3], and to the refer-
ences therein. Note that the later contribution considers the Shallow-Water equations
with non flat topography and that the corresponding (implicit-explicit) Lagrange-
Projection scheme is well-balanced but only first-order accurate. It is the purpose
of this contribution to extend the first-order Lagrange-Projection schemes of the
above references to high-order of accuracy in both space and time. The proposed
approach is quite close to the one recently developed in [7], but as we will see, the
corresponding Projection step turns out to be different.

2 Lagrange-Projection decomposition and finite-volume scheme

In this section, we briefly present the Lagrange-Projection decomposition consid-
ered in this paper and the corresponding first-order finite volume scheme.

Operator splitting decomposition and relaxation approximation. Using the chain
rule for the space derivatives of (1), the Lagrange-Projection decomposition con-
sists in first solving {

∂tρ +ρ∂xu = 0,
∂t(ρu)+ρu∂xu+∂x p = 0, (2)

which gives in Lagrangian coordinates τ∂x = ∂m, with τ = 1/ρ ,{
∂tτ−∂mu = 0,
∂tu+∂m p = 0, (3)

and then the transport system{
∂tρ +u∂xρ = 0,
∂t(ρu)+u∂x(ρu) = 0. (4)
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The numerical approximation of (3) and (4) will be given in the next sections but
let us notice from now on that the Lagrangian system (3) will be treated considering
the following relaxation approximation [6], [8],

∂tτ−∂mu = 0,
∂tu+∂mΠ = 0,

∂tΠ +a2
∂mu = λ (p−Π) .

(5)

Here, the new variable Π represents a linearization of the real pressure p, the con-
stant parameter a is a linearization of the Lagrangian sound speed ρc such that the
sub-characteristic condition a > ρc, c =

√
p′(ρ), is satisfied, and the relaxation pa-

rameter λ allows to recover Π = p and the original system (3) in the asymptotic
regime λ →∞. As usual, the relaxation system will be solved using a splitting strat-
egy which consists in first setting Π = p at initial time (which is formally equivalent
to considering λ →∞ in (5)), and then solving the relaxation system (5) with λ = 0.

First-order numerical scheme. The first-order finite volume scheme associated with
the above decomposition and relaxation approximation is classical and given for
instance in [2]. Nevertheless, it will be recovered in the DG extension proposed in
the next section by setting the degree of all polynomials p to 0. Space and time
will be discretized using a space step ∆x and a time step ∆ t. We will consider a
set of cells κ j = [x j−1/2,x j+1/2) and instants tn = n∆ t, where x j+1/2 = j∆x and
x j = (x j−1/2 + x j+1/2)/2 are respectively the cell interfaces and cell centers, for
j ∈ Z and n ∈ N.

3 Discontinuous Galerkin discretization

We begin this section by introducing the notations of the DG discretization. Re-
call that the DG approach considers that the approximate solution at each time tn

is defined on each cell κ j by a polynomial in space of order less or equal than p
for a given integer p ≥ 1 (p = 0 corresponds to the usual first-order and piecewise
constant finite volume scheme). With this in mind, we consider the (p + 1) La-
grange polynomials {`i}i=0,...,p associated with the Gauss-Lobatto quadrature points
in [−1,1]. More precisely, denoting −1 = s0 < s1 < · · · < sp = 1 the p+ 1 Gauss-
Lobatto quadrature points, `i is defined by the relations `i(sk) = δi,k for k = 0, ..., p,
where δ is the Kronecker symbol. Then, in each cell κ j, we define the shifted La-
grange polynomials Φi, j by Φi, j(x) = `i

( 2
∆x (x− x j)

)
and we take {Φi, j}i=0,...,p as a

basis for polynomials of order less or equal than p on κ j. If we denote by X∆x the DG
approximation of X , we thus have X∆x(x, t) = ∑

p
k=0 Xk, j(t)Φk, j(x), ∀x∈ κ j, where

the coefficients Xk, j depend on time and correspond to the value of the numerical
solution at the shifted Gauss-Lobatto quadrature points xk, j = x j +

∆x
2 sk.

Before entering the details of the numerical approximation, let us briefly recall
that the Gauss-Lobatto quadrature formula for f : κ j×R+→ R writes
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κ j

f (x, t)dx≈ ∆x
2

p

∑
k=0

ωk f (xk, j, t),

where ωk are the weights of the Gauss-Lobatto quadrature. It is well-known that this
formula is exact as soon as f is a polynomial of order less or equal than (2p−1) with
respect to x on κ j. Just note that the integral

∫
κ j

Φi, j(x)Φk, j(x)dx will be therefore

approximated by ∆x
2 ωiδi,k in the following. At last, note that the piecewise constant

case p = 0 can be also considered in this framework provided that we set s0 = 0,
Φ0, j = 1 and ω0 = 2.

Time discretization (tn → tn+1). We begin with the acoustic step (5) with λ = 0.
Multiplying the three equations by Φi, j, integrating over κ j, and considering the
piecewise polynomial approximations X∆x for X = τ,u,Π easily leads to

∆x
2

ωi∂tτi, j(t)−
∫

κ j

Φi, j(x)∂mu(x, t)dx = 0,

∆x
2

ωi∂tui, j(t)+
∫

κ j

Φi, j(x)∂mΠ(x, t)dx = 0,

∆x
2

ωi∂tΠi, j(t)+a2
∫

κ j

Φi, j(x)∂mu(x, t)dx = 0,

that we discretize in time by

τ
n+1−
i, j = τ

n
i, j +

2∆ t
ωi∆x

∫
κ j

Φi, j(x)∂mu(x, tα)dx,

un+1−
i, j = un

i, j−
2∆ t

ωi∆x

∫
κ j

Φi, j(x)∂mΠ(x, tα)dx,

Π
n+1−
i, j = Π

n
i, j−a2 2∆ t

ωi∆x

∫
κ j

Φi, j(x)∂mu(x, tα)dx,

(6)

where the superscript n+1− formally represents the fictitious time tn+1− , and α = n
or α = n+1− if the time discretization is taken to be explicit or implicit.
As far as the transport step is concerned, the same process of reasoning leads to

ρ
n+1
i, j = ρ

n+1−
i, j − 2∆ t

ωi∆x

∫
κ j

Φi, j(x)u(x, tα)∂xρ(x, tn+1−)dx,

(ρu)n+1
i, j = (ρu)n+1−

i, j − 2∆ t
ωi∆x

∫
κ j

Φi, j(x)u(x, tα)∂x(ρu)(x, tn+1−)dx.
(7)

Note that this transport step is always treated explicitly in time.

Volume integrals and flux calculations. Considering the acoustic step, we aim at
approximating the integrals

∫
κ j

Φi, j(x)∂mX(x, tα)dx with X = u,Π . Observe that
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Φi, j(x)∂mX(x, tα)dx≈ ∆x
2

ωiτ
n
i, j∂xX(xi, j, tα)dx = τ

n
i, j

∫
κ j

Φi, j(x)∂xX(x, tα)dx,

the last equality is indeed exact since X and Φ are polynomials of order less or equal
than p, so that Φi, j∂xX(·, t) is of order less or equal than (2p−1). The objective is
now to use one integration by part to move the derivative from X to Φ , and to use
the numerical fluxes to evaluate the interfacial terms, which gives∫

κ j

Φi, j(x)∂xX(x, tα)dx≈ δi,pX∗,αj+1/2−δi,0X∗,αj−1/2−
∆x
2

p

∑
k=0

ωkXα
k, j∂xΦi, j(xk, j).

Again, we refer the reader to [2] for the expressions of the star quantities in the
above formula and the following ones, which are nothing but the numerical fluxes
of the first-order finite volume scheme. At last, from (6) we obtain the acoustic step

τ
n+1−
i, j = τn

i, j +
2∆ t

ωi∆x τn
i, j

[
δi,pu∗,αj+1/2−δi,0u∗,αj−1/2−

∆x
2 ∑

p
k=0 ωkuα

k, j∂xΦi, j(xk, j)

]
= Lα

i, jτ
n
i, j,

un+1−
i, j = un

i, j− 2∆ t
ωi∆x τn

i, j

[
δi,pΠ

∗,α
j+1/2−δi,0Π

∗,α
j−1/2−

∆x
2 ∑

p
k=0 ωkΠ α

k, j∂xΦi, j(xk, j)

]
,

Π
n+1−
i, j = Π n

i, j−a2 2∆ t
ωi∆x τn

i, j

[
δi,pu∗,αj+1/2−δi,0u∗,αj−1/2−

∆x
2 ∑

p
k=0 ωkuα

k, j∂xΦi, j(xk, j)

]
,

(8)

with Lα
i, j = 1+ 2∆ t

ωi∆x

[
δi,pu∗,αj+1/2−δi,0u∗,αj−1/2−

∆x
2 ∑

p
k=0 ωkuα

k, j∂xΦi, j(xk, j)

]
.

Regarding the transport step, we want to evaluate the integrals∫
κ j

Φi, j(x)u(x, tα)∂xX(x, tn+1−)dx

with X = ρ,ρu. The same process as before leads to∫
κ j

Φi, j(x)u(x, tα)∂xX(x, tn+1−)dx = δi,pX∗,n+1−

j+1/2 u∗,αj+1/2−δi,0X∗,n+1−

j−1/2 u∗,αj−1/2

−
∫

κ j

(Xu)∂xΦi, j dx−Xn+1−
i, j

∫
κ j

Φi, j(x)∂xu(x, tα)dx,

where we take∫
κ j

Φi, j∂xu(x, tα)dx = δi,pu∗,αj+1/2−δi,0u∗,αj−1/2−
∆x
2 ∑

p
k=0 ωkuα

k, j∂xΦi, j(xk, j)

and
∫

κ j
(Xu)∂xΦi, j dx≈ ∆x

2 ∑
p
k=0 ωkXn+1−

k, j uα
k, j∂xΦi, j(xk, j).

Conservativity property and mean values. Easy calculations not reported here show
that the whole Lagrange-Projection scheme can be written as follows

ρ
n+1
i, j = ρ

n
i, j−

2∆ t
ωi∆x

[
δi,pρ

∗,n+1−

j+1/2 u∗,αj+1/2−δi,0ρ
∗,n+1−

j−1/2 u∗,αj−1/2−
∆x
2

p

∑
k=0

ωkρ
n+1−
k, j uα

k, j∂xΦi, j(xk, j)

]
,
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(ρu)n+1
i, j = (ρu)n

i, j−
2∆ t

ωi∆x

[
δi,pΠ

∗,α
j+1/2−δi,0Π

∗,α
j−1/2−

∆x
2

p

∑
k=0

ωkΠ
n+1−
k, j ∂xΦi, j(xk, j)

]

− 2∆ t
ωi∆x

[
δi,p(ρu)∗,n+1−

j+1/2 u∗,αj+1/2−δi,0(ρu)∗,n+1−

j−1/2 u∗,αj−1/2−
∆x
2

p

∑
k=0

ωk(ρu)n+1−
k, j uα

k, j∂xΦi, j(xk, j)

]
while the mean values Xn+1

j = 1
∆x
∫

κ j
X(x, tn+1)dx = ∑

p
i=0

ωi
2 Xn+1

i, j with X = ρ,ρu
obey the conservative formulas

ρ
n+1
j = ρ

n
j −

∆ t
∆x

[
ρ
∗,n+1−

j+1/2 u∗,αj+1/2−ρ
∗,n+1−

j−1/2 u∗,αj−1/2

]
,

(ρu)
n+1
j = (ρu)

n
j −

∆ t
∆x

[
Π
∗,α
j+1/2 +(ρu)∗,n+1−

j+1/2 u∗,αj+1/2

−Π
∗,α
j−1/2− (ρu)∗,n+1−

j−1/2 u∗,αj−1/2

]
.

(9)

Additional nonlinear stability properties can be proved for both the implicit and ex-
plicit schemes (α = n and α = n+ 1−). In particular, we have been able to prove
the positivity of the nodal densities ρ

n+1−
i, j at time tn+1− and of the mean densities

ρ
n+1
j at time tn+1, but also the validity of a discrete entropy inequality for the mean

energy following the same lines as in [7].

Comparison with the double integration by part used in [7]. The present scheme
turns out to be very close to the one recently proposed in [7], and it shares the same
stability properties. However, the overall process in [7] is based on double integra-
tions by part leading to the use of both numerical and exact fluxes at the interfaces,
instead of only numerical fluxes in our approach. Interestingly, we observed that
both schemes are strictly equivalent if one considers the mean values, but the nodal
values turn out to be different because of the transport step. These little differences
are due to the use of quadrature formulas to integrate the polynomials Xu∂xΦi, j. In
this case, the numerical integrations are not exact since polynomials Xu∂xΦi, j are
of order 3p−1 > 2p−1.

Positivity and generalized slope limiters. We have already stated the positivity of
the nodal values ρ

n+1−
i, j at the end of the acoustic step and of the mean values ρ

n+1
j

at the end of the transport step. Similarly to [7], we suggest to use a positivity limiter
to ensure that ρ

n+1
i, j > 0. More precisely, we replace ρ

n+1
i, j by θ jρ

n+1
i, j +(1−θ j)ρ

n+1
j ,

where the coefficients θ j are taken to be θ j = min
(

1,
ρ

n+1
j −ε

ρ
n+1
j −mini ρ

n+1
i, j

)
. This formula

ensures that if ρ is less than the threshold ε , the nodal values of the corresponding
cell are corrected, using the positive mean value, towards values greater than ε . In
general we set the parameter ε to 1.0e−10. Note that in the forthcoming numerical
experiments, the positivity limiter is not active. In order to avoid non physical oscil-
lations, we also use the generalized slope limiters introduced in [4]. More precisely,
considering the minmod function m(a,b,c) = s ·min(|a|, |b|, |c|) if
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s = sign(a) = sign(b) = sign(c) and 0 otherwise, the increments
∆+Xn+1

j = Xn+1
j+1−Xn+1

j , ∆−Xn+1
j = Xn+1

j −Xn+1
j−1 , and the values

X−,n+1
j+1/2 = Xn+1

j +m
(

Xn+1
p, j −Xn+1

j ,∆+Xn+1
j ,∆−Xn+1

j

)
,

X+,n+1
j−1/2 = Xn+1

j −m
(

Xn+1
j −Xn+1

0, j ,∆+Xn+1
j ,∆−Xn+1

j

)
,

the new states at time tn+1 are defined byXn+1
i, j if X−,n+1

j+1/2 = Xn+1
p, j and X+,n+1

j−1/2 = Xn+1
0, j ,

Xn+1
j + 2

∆x (xi, j− x j) ·m
(

∂xXn+1(x j),∆+Xn+1
j ,∆−Xn+1

j

)
otherwise.

4 Numerical results

The aim of this section is to compare our explicit-explicit EXEXp and implicit-
explicit IMEXp Lagrange-Projection schemes, where p refers to the polynomial
order of the DG approach. The time integrations are performed using Strong
Stability Preserving Runge-Kutta methods described in [4]. Recall that p(ρ) =
gρ2/2 so that the parameter a is chosen locally at each interface according to

a j+1/2 = κ max
(

ρn
j

√
gρn

j ,ρ
n
j+1

√
gρn

j+1

)
with κ = 1.01 and g = 9.81. We set

∆ t = min(∆ tLag,∆ tTra) for the EXEXp schemes and ∆ t = ∆ tTra for the IMEXp

schemes where ∆ tLag = ∆x
2p+1 min j

(
2a j+1/2 min(τp, j,τ0, j+1)

)
is the DG time-step

restriction associated with the Lagrangian step, while the Transport step CFL re-
striction reads ∆ tTra = ∆xmini, j

2
ωi

(∫
κ j

uα ∂xΦi, j dx−δpu∗,α,−
j+1/2 +δ0u∗,α,+

j−1/2

)
.

Manufactured smooth solution. This preliminary test case is taken from [7] and al-
lows us to test the experimental order of accuracy (EOA) of the schemes, especially
on the Transport step. The space domain is [0,1], the boundary conditions are peri-
odic and the initial conditions are ρ0(x) = 1+0.2sin(2πx) and u0(x) = 1. We solve
(1) with a source term such that the exact solution is ρ(x, t) = 1+0.2sin(2π(x− t))
and u(x, t) = 1, which just means that we impose un+1−

i, j = 1 and Π
n+1−
i, j = Π n

i, j, so
that the Acoustic step is trivial. Note that we use in this special case the EXEXp
schemes. The EOA are reported in Table 1.

Table 1 EOA for the manufactured smooth solution at time T = 0.5

∆x
p = 0 p = 1 p = 2

‖ρ∆x−ρ‖1 order ‖ρ∆x−ρ‖1 order ‖ρ∆x−ρ‖1 order

1/512 9.3986E-03 0.9432 1.0196E-05 1.9996 1.3457E-08 2.9907

1/1024 4.7945E-03 0.9710 2.5493E-06 1.9998 1.6849E-09 2.9977

1/2048 2.4217E-03 0.9854 6.3736E-07 1.9999 2.1070E-10 2.9994



8 Christophe Chalons and Maxime Stauffert

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000  1200  1400

W
at

er
 h

ei
gh

t :
 h

x

HLLref
HLL

EXEX0
EXEX1
EXEX2

 0

 5

 10

 15

 20

 25

 0  200  400  600  800  1000  1200  1400

W
at

er
 h

ei
gh

t :
 h

x

HLLref
HLL

IMEX0
IMEX1
IMEX2

Fig. 1 Dam Break problem, water height at time T = 10, EXEXp (left), IMEXp (right)

Dam break problem. In this test case, we take ρ0(x) = 20 if x ∈ [0,750[, ρ0(x) = 10
if x ∈ ]750,1500], and u0 = 0 everywhere. The solutions given by the EXEXp and
IMEXp schemes with p = 0, 1 and 2 are shown on Figure 1 using a 100-cell mesh,
and compared with the classical first-order HLL scheme over a 100-cell mesh and a
reference 1000-cell refined mesh. Note that the slope limiters allow to reduce spuri-
ous oscillations, but there is still a little undershoot for the EXEX1 scheme.
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