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Abstract We consider the seven-equation model for compressibleptvase flows
and propose a large time-step numerical scheme based or antipticit-explicit
Lagrange-Projection strategy introduced in Coqgetedl. [6] for Euler equations.
The main objective is to get a Courant-Friedrichs-Lewy (C&andition driven by
(slow) contact waves instead of (fast) acoustic waves.
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1 Introduction

We are interested in the computation of compressible twaselilows with the so-
calledtwo-fluid two-pressurer seven-equatiomodel. It was first proposed in Baer
& Nunziato [4] and has since aroused more and more intei@stfos instance Em-
bid & Baer [7], Stewart & Wendroff [13], Abgrall & Saurel [11{zallouét, Hérard
& Seguin [8], Andrianov & Warnecke [3], Karrat al.[9] Schwendeman, Wahle &
Kapila [12], Munkejord [10], Tokareva & Toro [14], Ambros@halons, Coquel &
Galié [1], Ambroso, Chalons & Raviart [2], and the referesitherein. One of the
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main features of this model is that it is hyperbolic, at leashe context of subsonic
flows. In particular, an interesting property is that theeseequation model pos-
sesses sevenal eigenvalues given by (u) = U+, A2(u) = ug andA (u) = u,
whereuy denote the velocities of both phades- 1,2, ¢, the sound speeds, an
interfacial velocity andi the vector of unknowns.

However from a numerical point of view, the seven-equati@uel raises some is-
sues. The first difficulty is related to the large size of thelei@nd as a consequence
to the Riemann problem that is difficult to solve, even apprately. The second
difficulty comes from the presence of nonconservative pctgland more precisely
the fact that the model cannot be equivalently recast irchuilservative form. How-
ever, the nonconservative products naturally vanish whervoid fractionsy are
locally constant in space, and the model coincides in theg wath two (decoupled)
gas dynamics systems. This property will be used in the nigalestrategy.
Numerous papers are devoted to the numerical study of tvidtflo-pressure mod-
els, see again for instance [8], [3], [9], [12], [10], [141]] [2] and the references
therein. Many of the proposed methods are based on timéci#xpkact or approx-
imate, Godunov-type methods (Roe or Roe-like scheme, HLHLArC scheme...).
For stability reasons, the time stefs involved in such methods are subject to a
usual Courant-Friedrichs-Lewy (CFL) condition that reads

max(AE ()], AU, A (u)]) At < 0.54x,

whereAx represents the space step. It is then clear that the defitiat is driven
by the fastest eigenvaluéﬁ(u), associated with the so-called acoustic waves.
In many applications, like for instance in two-phase flowlaed in nuclear re-
actors, the acoustic waves are not predominant physicalgshena. A CFL condi-
tion based on the most influent waves, the so-called contaetsvassociated with
eigenvalues\2(u) and A, (u) would be more adapted. The idea is then to propose
a time-implicit treatment of the (fast) acoustic waves, idey to get rid of a too
restrictive CFL condition, together with an explicit trersint of the (slow) contact
waves in order to preserve accuracy. This was recently gexbm Coquekt al.
[6] in the context of Euler equations, using a Lagrange-€utipn approach. This
approach is well-adapted as it naturally decouples thedfagtslow waves in the
Lagrange and Projection steps respectively.

In this paper, we propose a first attempt to extend this appriwethe seven-equation
model. The idea is to operate a relevant operator splittetgzéen the conservative
and nonconservative parts of the original model, in ordenaie Euler systems for
each phase appear. The latter parts are treated as in [6horfe®nservative prod-
ucts are then discretized so as to maintain conservativiygrties of the model on
each partial mass, on the total momentum and total energyeNoal results are
proposed. We underline that this work is still in progress.
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2 Governing equations

The model under consideration in this contribution readek®ns:

o ay+u oay =0, t>0, XeR,

0 0Pk + OxQkPxUk = O,

& APk + Oxa(PRUE + Pi) — Prdxak = 0,

Ok O P + Ok (PxEx + Pi) Uk — Prui 0xak = O,

(1)

with k = 1,2. Here,ay, pk, Uk, & and px denote the volume fraction, density, ve-
locity, specific total energy and pressure of the phHasel, 2. The two phases are
assumed to be non-miscible thatas+ a, = 1. The structure of (1) is the one of
two gas dynamics systems for each phase, coupled with gterejuation on the
void fractionay at speed;. We note that nonconservative products involving the in-
terfacial pressurg, and velocityy, (to be precised later on) and the space derivative
of the void fractionsxy are present in the momentum and energy equations. These
terms act as coupling terms in the evolution of the two phe&&esrce terms like ex-
ternal forces, pressure and velocity relaxations, disisipaheat conduction, phase
changes and heat exchanges between the two phases areemanhtalkaccount.

Each phase is provided with an equation of stpte= px(ox, &), whereg =

& — uﬁ/z is the specific internal energy. So far as the definitiong, aind p, are
concerned, we follow [8] and first observe that the charéttespeeds of (1) are al-
ways real and given by, uy, ux +cx, k= 1,2, whereck denotes the speed of sound
in phasek. System (1) turns out to be only weakly hyperbolic since érae not
enough eigenvectors to span the entire space whenuy + ¢, for some index
(resonance occurs). When (1) is hyperbolic, one can eadsdglcthat similarly to
the classical gas dynamics equations, the characteristits fassociated with the
eigenvaluesi + ¢k are nonlinear while the one associated withs linearly degen-
erate. Regarding the characteristic field associated wyjth is generally required

to be linearly degenerate in practice. This property hotdscmn as

Xa1p1

u=pBu+(1-Bup, P= Xa1p1+ (1— x)azp2

(2)

wherey € [0,1] is a constant (we refer to [8] for the details), which givesatunal
definition for the interfacial velocity,. The usual choices fgy are Q1/2 and 1.
Regarding the interfacial pressupg we setp; = pup1+ (1— t)pz, 4 € [0,1].The
choice of the coefficient is not detailed here (see again [8]) but is related to the
ability to provide the system with an entropy balance equatindeed, it can be
proved that for a specific choice gf smooth solutions of (1) verify the conservation
law dn + 6xq = 0, where(n,q) plays the role of a mathematical entropy pair.



4 Christophe Chalons, Frédéric Coquel, Samuel Kokh acdINiSpillane

3 A natural operator splitting

The starting point is to propose an equivalent form of (1) igtlike space derivatives
of aypx andaypyux are decomposed using a chain rule:

G0y + U dkay = 0,

0; O Px + Oxay Py = 0,

Gk OePrUK + Ok Qi PRUE + Otk Py + (P — Pr )tk = 0,

O, Ot Pk + Ox Ak PUK + Ak Ox Pl + (PkUk — Prup ) dxa = 0.

3)

We then suggest to split (3) into two independent qudsi-classicagas dynamics
equations (their Lagrangian forms will be seen talzessica), namely

dax =0,

0 Pk + FxakPxUk = O,

8 Ak PKUK + OxOlkPUE + QicdyPr = O,

0 Ok Pr€ + Ox Qi PxE Uk + 0O PxUk = O,

(4)

and into the following genuinely nonconservative system:

0 + Uy oxai = 0,

daxpx = 0, (5)
A Ok PcUk + (Px — Ppr)oxak = 0,

Oy Ok Px& + (PxUk — Pruy ) oxak = 0.

This transformation aims at proposing in the next sectioimgaticit-explicit Lagrange-
Projection scheme similar to [6], and at treating sepaydtet nonconservative
products. Note from now on that the overall algorithm will benservative on
the partial massrpy, total momenturmo; piu; + a2pou2 and on the total energy
o1p1€1 + 020262, as it is expected from the original form (1) of the model.

4 Numerical approximation

This section is devoted to the discretization of (1), us#gafid (5). Let us introduce
atime stepAt > 0 and a space stejx > 0 that we assume to be constant for simplic-
ity. We setA = At/Ax and define the mesh interfaces 1>, = jAx for j € Z, and

the intermediate timet' = nAt for n € N. In the sequelu? = (al,ul,uz)’j‘ where
(uk)'j1 = (OkPx, Ok PxUk, akpkeﬂ)'j1 denotes the approximate value of the unknowns at
timet" and on the cel6} =]x;_1/2,Xj;1/2-

Implicit-explicit discretization of (4). We first recall that (4) is made of two in-
dependent quasi-classical gas dynamics systems, whaosevalges are given by
Uk + Cx, Uk and 0. As already stated, our aim is to propose an implicétinent
of the fast wavesi + ¢k, and an explicit treatment af. With this in mind, we
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follow [6] and adopt a Lagrange-Projection scheme, coupligdl a pressure relax-
ation strategy that is well adapted to this purpose. A LaggaRrojection splitting
strategy applied to (4) amounts to introducing the Lagramgiystem

dax =0, o ax =0,
0 Ay Px + APKOxUk = 0, 0; Tk — TkOxUy = 0,

or equivalentl
O; Qi Pr U + Ol Ui Oy U + Ot Ox Py = q y O U+ Tkdxpk = 0,

G Ok Pk + Ok PkEOxUk + Ok Ox Prlk = O, A&+ TkOxPxUk = O,
with 1y = 1/py, and the transport (or projection) system ©
doax =0,
0 0Pk + UkOx Pk = O, 7

Ot QP U + U Oy e Pl = 0,
O O Pr€ + Uk Oy kP = 0.

We note that (6) coincides with two classical gas dynamissesys written in La-
grangian coordinates, the eigenvalues of which are givehdpand 0. This system
is treated using a pressure relaxation approach that ¢snsisntroducing a lin-
earized pressurg (see for instance [5] and especially the references theioh

that(7%)] = (p«)], and in solving the partial differential system

aax =0, dax =0,

O T — Tk = 0, Al =0,

AU+ ok =0,  or equivalently gwy + axTkdwy =0, (8)
6 i+ 8T kU = 0, AW, — aTkdW, =0,

Ot + TkxTkUk = 0, A& + Tk TkUk = 0,

Where\/\fkt = Tkt agUy, lx = Tk + ai%rk, anday is a constant satisfying the subchar-
acteristic conditioray > pxC«. A natural time-implicit discretization of (8) is

(o)1= = (e,

(Ik erl: = (Ik)Ta

(Wi )T = (W] — A (T (W) — (w)17), 9)
(W )T = (wi )} A (e (W )11 — (W) T ).

()1 = (@)~ A(T >?(<n:«uk>1+l/2 (78U 772)

with (1)1, = (7807 75(u) 17, and

_ 1 _ ni1— _ 1 _ \ntle
(Tk)?ﬁ/}: 5((W;)T+l’+(wk )TH ), (Uk)';ﬁ/z: E((W@?ﬂ — (w )?Jrl ).
The updated values ak, 1x and px are recovered from the formulag = (Wk
W ) /28, Tk = (W +W, )/2, Tx = (I — T&) /a2 andpx = 1/Tx. The computation of

(Wki)TJrl: is cheap and amounts to solving a tridiagonal system ofliagaations,
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while the time-implicit definition o(e,()?“: explicitly follows.
Then, the transport equations involved in (7) are assatiatth the following clas-
sical time-explicit update formula

()™ = (u) =+ A (

max((Uc) 175, 0) (uk)'T3~ — min((ui) 7775, 0) (i) 11~
+

[min((u) 117 0) — max((ue) 17, 0)] (U=

)’ (10)

n+i- n+l=
and of courséay); = ()] -

Discretization of (5). Our objective is to propose a consistent approximation of
(5) such that the overall algorithm is conservative for gaattial mass, for the total
momentum and for the total energy, as already motivatest &frall and similarly

to (10), the transport equation associated wighs treated as follows:

(@)™ = (@)} + A (
max( ()17, 0) (a1 — min((u) 37, 0) (a1
+
[min((u)+15,0) — max( ()15, 0)] ()T

)

Where(u|);‘ﬁ/*2 Bl o+ (1= Bl (L) 17, and for instanc@]' - =

3(BM=+Bl17). We set(aip) [ = (akpy) [ for the partial mass, so that
only the treatments of the momentum and total energy of ehelgare now left.
We propose

(akpkuk)n+1 (akpkuk)n+1 - (@) g (@) g,
At + (PO — () — L —— =0,
(kakex)rwl (kapkex)lwl (@) 12— (@) 4 _

At ((m)] - (W)J) AX

In order to get the expected overall conservativity prapsrtwe pay a particular
attention to the definitions afpx);, (Pr)j, (PxUk)j and (prar);. For any consistent
definition of the flux(ay)" we set withk; € [0,1]

j+1/2
(@)} = Kj ()] 1+ (L= Kj) (@),

(PR)j = (L= K)) (781375 + K (7817,

(PRi)j = (1~ K3) (TR 175 + K5 (TRu) T 375,
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and

(P)j = H]7172(P0)j + (1= i 575) (P2);, with pl 7 = 5 (U4 + o)

(W) = B 175(00); + (1= BJ175) (W), with (T)j = (i) / (Pk) .

(prt)j = (pr); (W)

We choosed in practice)", ; , = (ax)] or equivalentlyk; = 1.

j+1/2 —
With such definitions, it can be proved that under a suitalsle €ndition based on
the velocitiesu, andu; only, and not on the acoustic waves+t ¢, the void frac-
tions (ak)”+1 belong to(0,1) if (a)] do. We can also prove that under the same

restriction on the time stefpy)]** is positive, as well age)™*~ and (p)]™.
Unfortunately, the positivity o(.ek)r”rl and(pk)”+1 is not proved at the moment.

5 Numerical experiments

For the sake of illustration, we present in this section #mults given by our al-
gorithm on three Riemann problems. They are all taken fropafil are fully de-
scribed therein. Space and time orders of accuracy are dwefirbt one (top left)
corresponds to an isolated contact discontinuity propagatith a positive velocity,
while the second one (top right) and the third one (bottowdlive several distinct
waves. The scheme we propose here is denoted LP implicitsacahipared with
its explicit version (which amounts to replacing (9) by ite¢-explicit version) and
the well-known Rusanov scheme (see [8]). We observe thaamuroach is clearly
less diffusive around the contact discontinuities sinee @fL condition is well-
adapted to the corresponding speed of propagation, but ditfusive around the
acoustic waves since it is implicit. Table 1 gives for eadt tase the number of
iterations needed to perform the computations. As expetitedyain is important
when using the proposed implicit-explicit algorithm ane ttorresponding CFL
restriction based on the material waves (instead of the simowaves as for the
explicit scheme). A careful evaluation of the CPU cost nsitates an additional
programming effort that has not been implemented yet.

Test I Test 4Test 3
Rusanov|4231| 550 | 2630
LP explicit| 4297| 551 | 2631
LP implicit| 63 | 41 | 151

Table1 Number of time-iterations for each test case
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Fig. 1 Comparison of several schemes with a reference solutiorsifgeprofile)
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