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ABSTRACT. This work is concerned with the numerical approximation of a two fluid-two pressure
diphasic model. This model can be seen as two Euler systems coupled by a contact discontinuity.
On the basis of a relaxation approach, we propose an approximate Riemann solver that captures
exactly these contact discontinuities, is conservative for the mass of each phase and the total
momentum, and obeys a L1-stability property.
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1. The mathematical model and some basic properties

In recent years, the modelling and computation of two-phase flows by means of a
two fluid-two pressure system has gained interest. In this work, we are interested in
the numerical approximation of this system which reads, in one space dimension and
in the absence of source terms,

∂tα1 + uI∂xα1 = 0 ,
∂t(α1ρ1) + ∂x(α1ρ1u1) = 0 ,
∂t(α1ρ1u1) + ∂x(α1ρ1u

2
1 + α1p1(ρ1))− pI∂xα1 = 0 ,

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0 ,
∂t(α2ρ2u2) + ∂x(α2ρ2u

2
2 + α2p2(ρ2))− pI∂xα2 = 0 ,

[1]



for t > 0 and x ∈ R. The main unknowns αk, ρk and uk represent the volume
fraction, the density and the velocity of the phase k = 1, 2 and we have α1 + α2 = 1.
These are expected to belong to the following phase space

Ω = {u = (α1, α1ρ1, α1ρ1u1, α2ρ2, α2ρ2u2)t ∈ R5 such that
α1 + α2 = 1, αk > 0 and ρk > 0 for k = 1, 2} .

The pressure laws pk, k = 1, 2 are given smooth functions such that p′k(ρk) > 0,
limρk→0 pk(ρk) = 0 and limρk→∞ pk(ρk) = +∞. In order to close this system, we
set the interfacial velocity uI and pressure pI to be

uI = u2 , pI = p1(ρ1) . [2]

This choice was first proposed in [BAE 86] and we refer the reader to [GAL 04] for a
comprehensive study of more general closure laws. The self-similar solutions of this
system are studied in [EMB 92]. The first consequence of [2] is that the void fraction
is transported by a pure contact discontinuity. More precisely, it is proved that system
[1] admits the following five real eigenvalues

λ0 = u2, λ1 = u1 − c1, λ2 = u1 + c1, λ3 = u2 − c2, λ4 = u2 + c2, [3]

with a linearly degenerate characteristic field associated with λ0 (the characteristic
fields associated with {λi}i=1,...,4 are genuinely nonlinear). The sound speeds are
given by ck =

√
p′k(ρk), k = 1, 2. It is worth noticing that system [1] is not always

hyperbolic. When u2 = uk ± ck, the corresponding right eigenvectors matrix is no
longer diagonalizable and the system becomes resonant. This point is known to gener-
ate important difficulties like ill-posedness but will not be addressed here. In fact, we
are mainly interested in subsonic flows so that the restriction u2 6= uk ± ck, k = 1, 2
will be always satisfied in practice.
Then, the particular choice [2] allows to give sense to the system even if it can not be
written in a conservative form, as it was shown in [COQ 02]. Indeed, the linear degen-
eracy property makes the nonconservative products uI∂xαk and pI∂xαk locally well
defined by finding four λ0-Riemann invariants whose gradients are linearly indepen-
dent. Classical considerations lead to the following parametrisation of the so-called
admissible λ0-contact discontinuities.
Let us note h1 the enthalpy of the phase 1 defined as h1(ρ1) = e1(ρ1)+ p1(ρ1)

ρ1
, where

the internal energy e1 verifies e′1(ρ1) = p1(ρ1)
ρ2
1

.

Theorem 1 Let u− and u+ be two constant states in Ω. These states can be joined
by an admissible λ0-contact discontinuity if and only if the jump relations

u2 := u2− = u2+ ,
m := α1−ρ1−(u1− − u2) = α1+ρ1+(u1+ − u2) ,

mu1− + α1−p1(ρ1−) + α2−p2(ρ2−) = mu1+ + α1+p1(ρ1+) + α2+p2(ρ2+) ,
m2

2α2
1−ρ2

1−
+ h1(ρ1−) =

m2

2α2
1+ρ2

1+

+ h1(ρ1+) ,

[4]
hold true. The speed of propagation of the discontinuity is given by u2.
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2. Relaxation approximation

The aim of this section is to propose a suitable relaxation approximation of sys-
tem [1]. For that, we start from the principle that most of the difficulties arising in
the (attempt of) resolution of system [1] are closely related to the nonlinearities of the
pressure laws ρk 7→ pk(ρk). In the spirit of [JIN 95], [GOD 00], [CHA 05], we then
consider an enlarged system with two additional scalar unknown quantities associated
with two linearizations Πk of the pressure laws pk. The point is to modify the pressure
laws in the convective part of [1] in order to get a quasilinear enlarged system, and to
move the nonlinearities in a stiff relaxation term. This relaxation procedure is based
on the idea that solutions of the original system [1] are the limit of the solutions of
the proposed enlarged system with relaxation source term in the regime of an infinite
relaxation coefficient (see for instance [CHA ]).
As a relaxation approximation, we propose the following system of balance laws:

∂tα1 + uI∂xα1 = 0 ,
∂t(α1ρ1) + ∂x(α1ρ1u1) = 0 ,
∂t(α1ρ1u1) + ∂x(α1ρ1u

2
1 + α1Π1)−ΠI∂xα1 = 0 ,

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0 , for t > 0, x ∈ R
∂t(α2ρ2u2) + ∂x(α2ρ2u

2
2 + α2Π2)−ΠI∂xα2 = 0 ,

∂tT1 + uI∂xT1 = λ(τ1 − T1) ,
∂tT2 + uI∂xT2 = λ(τ2 − T2) ,

[5]

for some positive relaxation parameter λ > 0. Here, Tk and Πk can be understood
as relaxation variables associated with the specific volume τk = 1/ρk and the pressure
pk, and we set

Πk = pk(1/Tk) + a2
k(Tk − τk) , k = 1, 2 ,

for some constants ak precised just below. These relaxation quantities Tk and Πk are
expected to converge towards the corresponding equilibrium ones τk and pk in the
regime of an infinite relaxation rate λ (λ → +∞). However, for that to be true and in
order to prevent the relaxation system [5] from instabilities in the regime of large val-
ues of λ (λ � 1), the free parameters ak must be such that ak > ρkck(ρk) , k = 1, 2,
for all the ρk under consideration. This condition is the so-called Whitham condition
(see for instance [CHA 05] and the recent large literature on this subject).
Of course, the proposed interfacial velocity uI and pressure ΠI are naturally defined
by uI = u2, ΠI = Π1.
The main interest of this relaxation system lies in the fact that the first order system
extracted from [5] admits the following five real eigenvalues

λr
0 = u2 ,

λr
1 = u1 − a1τ1 , λr

2 = u1 + a1τ1 ,
λr

3 = u2 − a2τ2 , λr
4 = u2 + a2τ2 ,

[6]

whose associated characteristic fields are all linearly degenerate (the speeds λr
k, k =

1, ..., 4 are nothing but linearizations of λk, k = 1, ..., 4). In addition, system [5] is
hyperbolic as soon as u2 6= λr

k, k = 1, ..., 4, in perfect analogy with system [1].
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3. Numerical approximation

In this section, we describe a relaxation scheme associated with [5], for approxi-
mating the weak solutions of [1]. In what follows, ∆t and ∆x denote the time and
space steps and ν = ∆t

∆x . The mesh interfaces and intermediate times are xj+1/2 =
j∆x, j ∈ Z and tn = n∆t, n ∈ N, respectively. As usual in the context of fi-
nite volume methods, un

j represents an approximate value of the solution in the cells
Cj = [xj−1/2, xj+1/2[. At time t = 0, we set u0

j = 1
∆x

∫ xj+1/2

xj−1/2
u0(x)dx, j ∈ Z,

where u0 is a prescribed initial condition.

The relaxation method. The numerical strategy is very classical in the context of
relaxation methods and proposes to first treat the convective part of [5], and then to
take into account the relaxation source term. We begin by defining some approximate
values vn

j at equilibrium for system [5] when setting vn
j =

(
un

j , (τ1)n
j , (τ2)n

j

)t
. The

two steps are defined as follows.
Step 1 : Evolution in time (tn → tn+1−) In this first step, we solve the first order
system extracted from [5], that is with λ = 0, with initial data v(x, 0) = vn

j if x ∈
Cj , j ∈ Z . Since this initial condition is piecewise constant, the exact solution is ob-
tained by glueing together the solutions of the Riemann problems set at each interface
xj+1/2 provided that ∆t satisfies the usual CFL condition

∆t

∆x
max

v
{|λr

i (v)|, i = 0, ..., 5} ≤ 1
2

. [7]

More precisely

vν(x, t) = vr(
x− xj+1/2

t
;vn

j ,vn
j+1) for all (x, t) ∈ ]xj , xj+1[×[0,∆t] , [8]

where (x, t) 7→ vr(x
t ;vL,vR) denotes the self-similar solution of the Riemann prob-

lem associated with [5] (with λ = 0), that is with initial condition

v(x, 0) =
{

vL if x < 0 ,
vR if x > 0 .

[9]

Moreover, the constants ak are chosen large enough to verify a discretized Whitham
condition. Unfortunately, and despite that all the characteristic fields associated with
[5] are linearly degenerate, the Riemann solution is difficult to obtain. In particular,
it is not given by an explicit formula. Therefore, an approximate solution (x, t) 7→
ṽr(x

t ;vL,vR) is going to be used in practice. This point will be discussed in the next
paragraph.
We then propose a classical averaging procedure to define the sequence (vn+1−

j )j :

vn+1−
j =

(
uj

n+1−, (T1)n+1−
j , (T2)n+1−

j

)t
. =

1
∆x

∫ xj+1/2

xj−1/2

ṽν(x,∆t)dx . [10]

Step 2 : Relaxation (tn+1− → tn+1) In this second step, we propose to account for
the stiff relaxation source term when solving the ordinary differential equations

∂tv = λR(v) , x ∈ R , [11]
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withR(v) = (0, 0, 0, 0, 0, τ1−T1, τ2−T2)t, in the asymptotic regime λ →∞. As ini-
tial condition, we take v(x, 0) = vn+1−

j if x ∈ Cj , j ∈ Z . This clearly amounts to

set vn+1
j =

(
un+1

j , (T1)n+1
j , (T2)n+1

j

)t
with un+1

j = un+1−
j , (T1)n+1

j = (τ1)n+1−
j

and (T2)n+1
j = (τ2)n+1−

j . This completes the description of the method.

The Riemann solution (x, t) 7→ ṽr(x
t ;vL,vR). As mentioned above, the exact

Riemann solution of [5] is not explicitly known, except, of course, in the very par-
ticular situation α1L = α1R which leads to two decoupled systems for each phase.
In the general case, the value of the nonconservative product ΠI∂xα1 is difficult to
calculate and this makes the resolution of the Riemann problem pretty challenging
(see [AMB ] for more details). Note that this nonconservative product acts on the
λ0-contact discontinuity only. This discontinuity propagates at the speed u∗2 and the
Rankine-Hugoniot jump relation applied to the fifth equation in [5] (with λ = 0) gives

−u∗2[α2ρ2u2] + [α2ρ2u
2
2 + α2Π2]+ < ΠI∂xα1 >= 0 .

Here the jump of a quantity X between the right and left states of a discontinuity is
noted [X] and < ΠI∂xα1 > refers to the mass of the nonconservative product. Since
u2 is continuous and equals u∗2, this relation yields

< ΠI∂xα1 >= −[α2Π2] .

In order to facilitate the resolution of the Riemann problem, we propose not to find the
exact value [α2Π2], i.e. not to consider it as an unknown, but to guess it a priori. In
other words, we replace the actual value [α2Π2] with an estimation [α2Π2](uL,uR)
depending on the initial states uL and uR. Once this prediction is provided (see
below), we are thus led to consider the following system (recall that λ = 0),

∂tα1 + uI∂xα1 = 0 ,
∂t(α1ρ1) + ∂x(α1ρ1u1) = 0 ,

∂t(α1ρ1u1) + ∂x(α1ρ1u
2
1 + α1Π1) = −[α2Π2](uL,uR)δx−u∗2t ,

∂t(α2ρ2) + ∂x(α2ρ2u2) = 0 ,

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2 + α2Π2) = [α2Π2](uL,uR)δx−u∗2t ,

∂tT1 + uI∂xT1 = 0 ,
∂tT2 + uI∂xT2 = 0 ,

[12]

for t > 0, x ∈ R. Solving the Riemann problem associated with [12] turns out to be
easier. Indeed, we show in [AMB ] that the corresponding self-similar solution may be
explicitly obtained after some manipulations on the Rankine-Hugoniot jump relations.
The latter are classical on all the waves except for the λ0-contact discontinuity, since
the right-hand side vanishes in [12]. Across the λ0-wave, they read

u∗2 := u2− = u2+ ,
m := α1−ρ1−(u1− − u∗2) = α1+ρ1+(u1+ − u∗2) ,

mu1− + α1−Π1− + α2−Π2− = mu1+ + α1+Π1+ + α2+Π2+ ,

α2+Π2+ − α2−Π2− = [α2Π2](uL,uR) .

[13]
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Let us briefly comment this set of relations, in comparison to [4]. First of all, the first
three equations are similar. They express the continuity of u2 and both the mass and
momentum conservation. Then, the fourth ones seem to be different but are shown
to be equivalent provided that the prediction [α2Π2](uL,uR) is exact (see below the
case of a λ0-contact discontinuity joining uL to uR).

To sum up, we are able to prove the following accuracy and stability properties of
the proposed relaxation method (see [AMB ] for the proof).

Theorem 2 (The relaxation method) The proposed relaxation method :
(i) (Conservativity) : is always conservative on αkρk, k = 1, 2 and α1ρ1u1+α2ρ2u2. If,
in addition, α1j is constant, the method is also conservative on αkρkuk, k = 1, 2.
(ii) (L1 stability) : provides numerical solutions that remain in the phase space Ω pro-
vided that the free parameters ak, k = 1, 2 are chosen sufficiently large.
(iii) (Isolated λ0-contact discontinuities) : captures exactly the stationary admissible
λ0-contact discontinuities of the equilibrium system [1], provided that [α2Π2](uL,uR)
is chosen as explained below.

Remark. Due to the averaging procedure [10], it is usual that only the stationary ad-
missible λ0-contact discontinuity may be exactly computed.

To conclude, it remains to precise the way we predict [α2Π2](uL,uR).

Estimation of [α2Π2](uL,uR). Recall that this quantity aims at providing a relevant
approximation of the actual jump [α2Π2](uL,uR) across the λ0-contact discontinuity
in the Riemann solution of [5]. For the sake of accuracy, we would like this approx-
imate value to be exact when uL and uR can actually be joined by an admissible
λ0-contact discontinuity, i.e. when u− = uL and u+ = uR are such that the jump
relations [4] are satisfied. With this in mind, we first define a reconstructed subsonic
state uR such that α1R = α1R and such that it can be joined to uL by an admis-
sible λ0-contact discontinuity. We compute a first estimate of [α2Π2](uL,uR) =
(α2Π2)(uR)− (α2Π2)(uL). In a symmetric way, we reconstruct a subsonic state uL

and compute a second estimate [α2Π2](uL,uR) = (α2Π2)(uR) − (α2Π2)(uL). Of
course, we note that if uL and uR are joined by an admissible λ0-contact discontinu-
ity, we have uL = uL and uR = uR so that both possibilities coincide with the exact
jump [α2Π2](uL,uR). We give then a criterion to chose among these two, namely
we chose the estimate corresponding to the situation which is closer , in the sense of
the Euclidean distance, to the original Riemann problem initial data. Actually this
criterion doesn’t seem to play an important role: in the numerical tests we performed,
no difference can be spotted if one estimate is preferred to the other (see Fig 2).

Remark. Notice that if α1L = α1R we have by definition uL = uR and uR = uL,
and then [α2Π2](uL,uR) = 0 as expected.
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4. Numerical experiments

In this section we present two numerical simulations of the two fluid-two pressure
diphasic model. Other numerical experiments can be found in [AMB ]. The pressure
laws of the phases are given by pk(ρk) = Akργk

k (k = 1, 2), where γk is the adiabatic
coefficient of phase k and Ak a constant depending on the entropy of the gas. In
this case, coefficient Ak takes the constant value of 105 for k = 1, 2 and we choose
γ1 = 1.4 and γ2 = 1.2. Initial conditions correspond to shock tube test cases:

u0(x) =

{
uL if x < 10 ,

uR if x > 10 ,

In the first simulation, we compare the Riemann solver based on the relaxation ap-
proach we propose and a non-conservative version of the Rusanov solver which is
explained in detail in [GAL 04] when the left and right states are chosen in a way to
verify relations [4] exactly with u2 = 0, i.e. they are separated by a pure stationary
λ0-contact wave. Computations are performed on 200 cells. Results are displayed
at final time 0.02s on Figure 1. In agreement with Theorem 2 above, the relaxation
solver provides a perfectly sharp discontinuity at x = 10m while the Rusanov scheme
diffuses the profile. In particular, one can easily notice on Figure 1(b) that only the
relaxation scheme exactly preserves the stationary profile of velocity u2. The second
simulation corresponds to a general shock tube test where we compare results ob-
tained using the two different estimates of [α2Π2] presented above. On fine meshes
(400 cells here), no difference can be spotted.
Again, we refer the reader to [AMB ] for additional simulations.
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Figure 1. Pure stationary contact discontinuity
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