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Finite Volumes schemes (relaxation schemes, averaging versus sampling)
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The general idea (numerical viewpoint)

Given a PDE systemat equilibrium

∂tu + ∇. f (u) = 0, u ∈ ω ⊂ Rn, (1)

propose arelaxation system of the form

∂tUλ + ∇. F(Uλ) = λQ(Uλ), Uλ ∈ Ω ⊂ RN, (2)

such that

lim
λ→∞

Uλ = u (λ > 0 stands for the relaxation coefficient rate)

system (2) withλ = 0 is easier to handle than (1)

Some remarks

the litterature is vast on this numerical subject :
Jin and Xin ’95, Coquel and Perthame ’98, Coquelet al ’01, Bouchut ’02...
see alsoNatalini, Serre, Yong, Zumbrun...

the conservative form of (1) is not a restriction

N may equaln+ 1, n+ 2, 2n...
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The governing equations


















∂tρ + ∇. ρw = 0, t > 0, x ∈ D ⊂ Rd,

∂tρw + ∇. (ρw ⊗ w + p(u) Id) = 0,
∂tρE+ ∇. (ρE+ p(u))w = 0,

The relaxation system






























∂tρ + ∇. (ρw) = 0, t > 0, x ∈ D,
∂t(ρw) + ∇. (ρw ⊗ w + Π Id) = 0,
∂t(ρE) + ∇. ((ρE+ Π)w) = 0,
∂t(ρΠ) + ∇. (ρΠw) + a2∇. w = λρ(p− Π),

−→ Recall that ∂tρp(u) + ∇. (ρp(u)w) + ρ2c2∇. w = 0

−→ a is a given real number subject to a stability condition :a > ρc(u)

−→ Question : is it possible to prove that lim
λ→+∞

Π
λ
= p(u) ?
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Theorem

1 The relaxation system admits smooth solutions that converge towards thelocal
in timesmooth solutions of the Euler equations asλ→ ∞

2 Arbitrarily large entropic shock of the Euler equations admits a shock profile for
the relaxation system

Proof

1 Use the structural properties of the relaxation system, andthe main convergence
result of Yong ’99

2 Pretty technical, use a detailed analysis of the dynamical system satisfied by the
shock profile and the center manifold theorem as well

C. Chalons and J.-F. Coulombel
Relaxation approximation of the Euler equations
Analysis and Applications (2008)
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Splitting technique

In order to solve∂tUλ + ∇. F(Uλ) = λQ(Uλ)

First, setλ = 0 and solve∂tU + ∇. F(U) = 0

Then, solve∂tUλ = λQ(Uλ) in the asymptotic regimeλ→∞

Key point : all the fields of∂tU + ∇. F(U) = 0 arelinearly degenerate
(the waves behave as linear waves)

Gathering these two steps leads to a standard finite volume scheme

un+1
K = un

K −
∆t
|K|

∑

e∈∂K

Gn
e,K |e|

Thanks to therotational invariance

Gn
e,K = T−1

e,K G(Te,Kun
K ,Te,Kun

Ke
; i1)

G(., .; i1) is built from the Godunov methodin the first space directioni1
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Theorem

Under a standard CFL condition and provided thata is sufficiently large (a > ρc(u)),
the relaxation scheme

1 keeps the invariant domain :ρn+1
K > 0 and (ρe)n+1

K = (ρE)n+1
K −

1
2

||(ρw)n+1
K ||

2

ρn+1
K

> 0

2 satisfies an entropy inequality :

(ρS)(un+1
K ) − (ρS)(un

K) +
∆t
|K|

∑

e∈∂K

(ρSw)n
e,K ≤ 0

3 obeys a maximum principle :

Sn+1
K ≤ max

K
Sn

K

4 is exact for stationary contact discontinuities

C. Chalons and F. Coquel
Navier-Stokes equations with several independent pressure laws and explicit
predictor-corrector schemes
Numerisch Math. (2005)
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Splitting technique

First, setλ = 0 and solve∂tU + ∇. F(U) = 0

Then, solve∂tUλ = λQ(Uλ) in the asymptotic regimeλ→∞

−→ At least formally,time convergenceto some steady solutionU would require

∇. F(U) = 0 andQ(U) = 0

Lemma (convergence failure)

Let U be such that∇. F(U) = 0 andQ(U) = 0 anda > ρc. ThenU also obeys

(a2 − ρ2c2) ∇. w = 0

Remark : ∇. ρw = 0 but∇. w , 0 in general !
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−→We propose, in orderto avoid

∇. F(U) = 0 = Q(U)

and thusto keep the balance

∇. F(Uλ) = λQ(Uλ)

Prediction-correction technique

First, solve in alinearized time-implicit way∂tUλ + ∇. F(Uλ) = λQ(Uλ)
in the limit λ→ ∞

Then, solveexactly∂tUλ = λQ(Uλ) in the limit λ→∞

C. Chalons, F. Coquel and C. Marmignon
Well-balanced time implicit relaxation schemes for the Euler equations
SIAM Journal of Scientific Computing (2008)
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Residues

Iteration

Well-balanced time implicit relaxation method CFL=200

Well-balanced time implicit relaxation method CFL=25

First implicit method CFL=25

F.: ρ (left) and‖ ∂tρ ‖L2 (right)
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Navier-Stokes equations with several independant pressure laws
C. Chalons and F. Coquel
Multi-pressure Navier-Stokes equations and predictor-corrector schemes
Numerisch Math. (2005)

C. Chalons, F. Coquel and C. Marmignon
Time-implicit approximation of the multi-pressure gas dynamics equations
to besubmitted (2008)

Weakly ionized gases
C. Chalons, C. Marmignon, O. Rouzaud and T. Soubrié
Development of a relaxation scheme for weakly ionized gases
AIAA paper 05-0603 (2005)

Two fluid-two pressure diphasic model(non trivial !)
A. Ambroso, C. Chalons, F. Coquel and T. Galié
Relaxation and numerical approximation of a two fluid-two pressure model
submitted (2008)
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−→ Collaboration between

Laboratory Jacques-Louis Lions
CC, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart, N. Seguin

CEA Saclay
A. Ambroso, J. Segré
B. Boutin and T. Galié (PhD students)

Also participate
S. Kokh (CEA), J.-M. Hérard (EDF R&D)

−→We want to solve

(S1) : ∂tu + ∂xf−(u) = 0, x < 0

(S2) : ∂tu + ∂xf+(u) = 0, x > 0

+ a transmission condition(conservation, continuity...) atx = 0
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−→ Both models (S1) and (S2) share the same physics(thermohydraulic flow,
multiphase flow...)but are associated with different modelling

different closure laws

different accuracy of description

different space dimension...

CC, P.-A. Raviart and N. Seguin
The interface coupling of the gas dynamics equations
Quarterly of Applied Mathematics (2008)

A. Ambroso, CC, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart
and N. Seguin
Coupling of general Lagrangian systems
Mathematics of Computation (2008)

A. Ambroso, CC, F. Coquel, E. Godlewski, F. Lagoutière, P.-A. Raviart
and N. Seguin
The coupling of homogeneous models for two-phase flows
International Journal of Finite Volumes (2007)
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The model under consideration
{

∂tu+ ∂xf (u) = 0, u(x, t) ∈ R, (x, t) ∈ R × R+,
u(x,0) = u0(x),

+ ∂tS(u) + ∂xQ(u) ≤ 0 (singleentropy inequality)

-4

-2

 0

 2

 4

-1.5 -1 -0.5  0  0.5  1  1.5

x**3-x

F.: Concave-convex flux function

These works are motivated by the computation of phase transitions in van der
Waals fluids and nonlinear elastic two-phase material(see for instance my PhD)
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−→ The Riemann problem admits (up to)a one-parameter family of solutions
=> non-uniqueness

−→ Some of them are bothnonclassical(they violate the standard Lax shock
inequalities) andphysically relevant

The kinetic relation

−→ Non-uniqueness can be fixed with anadditional algebraic condition on each
nonclassical shock (σ,u−,u+)

−→ Thekinetic relation takes the form

u+ = ϕ(u−) for all nonclassical shocks, (3)

whereϕ is the kinetic function, andσ is given by the Rankine-Hugoniot relation

See LeFloch ’02 monograph
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−→ Nonclassical solutions arevery sensitive w.r.t. small scales and
numerical diffusion

u = lim
ǫ→0

uǫ with ∂tu
ǫ
+ ∂xf (uǫ ) = R(ǫ∂xxu

ǫ , ǫ2∂xxxu
ǫ )

-3

-2

-1

 0

 1

 2

 3

 4

-1  0  1  2  3  4

Exact solution at time t=0.15
Numerical solution by Godunov method

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

-1  0  1  2  3  4

Exact solution at time t=0.045
Numerical solution by Godunov method

F.: Numerical solutions obtained with the Godunov scheme
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In the literature, we can distinguish between :

−→ the diffuse interface methods :these methods areconservativebut work pretty
bad for shocks with large amplitude
Hayes and LeFLoch ’98, LeFloch and Rohde ’00...

−→ the sharp interface methods :these methods workvery well, arenot strictly
conservative(butconvergent) andpretty expensivein general
Hou, Rozakis and LeFloch ’99, Merkle and Rohde ’06...

Our objective could be...

To get a numerical scheme which :
- is not expensive
- works even for shocks with large amplitude
- provides sharp interfaces
- is conservative
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The main idea (2 steps)

−→ First, at each interface treat the nonclassical shock as a stationary discontinuity
−→ Then, propagate this discontinuity using a Glimm strategy

The method is not expensive, works very well, provides sharpinterfaces and
seems to be convergent

It is not strictly conservative as the Glimm scheme !

C. Chalons
Transport-Equilibrium Schemes for Computing Nonclassical Shocks
Numerical Methods for Partial Differential Equations (2008)

C. Chalons
Numerical approximation of a macroscopic model of pedestrian flows
SIAM Journal of Scientific Computing (2007)
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The main idea

Understandun
j asthe projection of a nonclassical discontinuityrelated to the

Riemann solution associated with initial statesul = un
j−1 andur = un

j+1

un
j,l

un
j,r

j − 1 j j + 1

(1− dn
j )∆xdn

j ∆x

F.: A general discontinuous reconstruction with conservationproperty (the general case).
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Two requirements

−→ The reconstruction should beconservativein the usual sense
−→ The reconstruction should beexact for any isolated nonclassical discontinuity

un
j,l

un
j,r

j − 1 j j + 1

(1− dn
j )∆xdn

j ∆x

F.: A general discontinuous reconstruction with conservationproperty (the general case).
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Theorem

Under a usual CFL restriction and some physical assumptionson f andϕ, the scheme

is conservative and consistentin the usual sense of finite volume schemes

is exacton each cellCj if ul andur are two initial states such thatur = ϕ(ul) :

un
j =

1
∆x

∫ xj+1/2

xj−1/2

u(x, tn)dx, j ∈ Z, n ∈ N,

In particular, the numerical discontinuityis diffused on one cellat most

The method is not expensive, works very well, provides sharpinterfaces and is
conservative in the usual sense

B. Boutin, C. Chalons, F. Lagoutière and P.-G. LeFloch
A conservative scheme for nonclassical solutions based on kinetic relations
Interfaces and Free Boundaries (2008)
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at t=0
exact solution at t=0.03

numerical solution - 100 points
numerical solution - 500 points
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Convergence

F.: Test 2 - Nonclassical and classical shocks – L1 convergence (log(EL1 ) versus log(∆x))
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We denote

ρ : car density

R : maximal density

v : car velocity

(LWR ’56)
∂tρ + ∂xρv = 0, v = v(ρ)

(Aw-Rascle ’00)
{

∂tρ + ∂x(ρv) = 0
∂tρw+ ∂xρvw= 0

w = v(ρ,w) + p(ρ), p(ρ) = Vref ln(ρ/R), Vref is a reference velocity

(Colombo ’02)
{

∂tρ + ∂x(ρv) = 0
∂tq+ ∂x(qv−Qv) = 0

v = v(ρ,q), q is a weighted momentum andQ a road parameter
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Experimental data : Kerner ’00 (Daimler Benz AG)

Free flow : (ρ,q) ∈ Ωf

{

∂tρ + ∂xρv = 0
q = ρV

vf (ρ) = (1−
ρ

R
)V

Congested flow :(ρ,q) ∈ Ωc

{

∂tρ + ∂xρv = 0
∂tq+ ∂x(q−Q)v = 0

vc(ρ,q) = (1−
ρ

R
)
q
ρ

(Colombo ’02)
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Model

vρ

0

ΩC

ΩF

ρR

Experimental data

Ωf =

{

(ρ,q) ∈ [0,R] × R+ : vf (ρ) ≥ Vf , q = ρ · V
}

Ωc =

{

(ρ,q) ∈ [0,R] × R+ : vc(ρ,q) ≤ Vc,
q−Q
ρ
∈

[

Q− −Q
R
,
Q+ −Q

R

]}

(Colombo ’02)
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The Riemann problem (Colombo ’02) has been solveduniquely under some
consistency conditions and usingphase transitions(u−,u+, σ) such that

ρvc(u+) − ρvf (u−) = σ (ρ(u+) − ρ(u−))

(see Colombo, Goatin and Priuli ’06 for the Cauchy problem)

Ωf ∪ Ωc is not convex=⇒ the Godunov method fails in general

vρ

0

ΩC

ΩF

ρR
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da

b c

xj−3/2 xj−1/2 xj+1/2

Ωf Ωc Ωf

xj+3/2

tn+1

tn

Instead of setting

un+1
j =

1
∆x

∫ xj+1/2

xj−1/2

v(x,∆t)dt

we propose

un+1
j =

1

∆xj

∫ xj+1/2

xj−1/2

v(x,∆t)dt

followed bysampling procedureto recover the initial mesh and defineun+1
j
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da

b c

xj−3/2 xj−1/2 xj+1/2

un+1
j−1 un+1

j un+1
j+1

xj+3/2

tn+1

tn

Let be given (an)n a well-distributed random sequencewithin ]0,∆x[
(e.g.van der Corput sequence)

Random choice procedure gives

un+1
j =























un+1
j−1 if an+1 ∈ (0, ∆t

∆xσ
+

j−1/2)
un+1

j if an+1 ∈ [ ∆t
∆xσ

+

j−1/2,1+
∆t
∆xσ

−
j+1/2)

un+1
j+1 if an+1 ∈ [1 + ∆t

∆xσ
−
j+1/2,1)

σj+1/2 is the speed of the possible phase transition coming fromxj+1/2

σ+j+1/2 = max(σj+1/2,0),σ−j+1/2 = min(σj+1/2, 0)
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The algorithm coincides with Godunov’s scheme in absence ofphase transitions

The algorithm coincides with Glimm’s scheme for an isolatedphase transition

Extension toL1-stable second-order scheme (MUSCL and RK approaches)

 0.3
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 0.5

 0.6

 0.7

-0.4 -0.2  0  0.2  0.4

exact
first order

second order

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

-0.4 -0.2  0  0.2  0.4

exact
first order

second order

C. Chalons and P. Goatin
Godunov scheme and sampling technique for phase transitions in traffic flows
Interfaces and Free Boundaries (2008)
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The model
{

∂tρ + ∂x(ρv) = 0
∂tρ(v+ p) + ∂xρv(v+ p) = 0

Maximum principle

Under an usual CFL condition, the proposed Transport-Equilibrium scheme satisfies
the following maximum principles























inf
j∈Z

v0
j ≤ vn

j ≤ sup
j∈Z

v0
j ,

inf
j∈Z

(v0
j + p(ρ0

j )) ≤ vn
j + p(ρn

j ) ≤ sup
j∈Z

(v0
j + p(ρ0

j )) .

Remark : these maximum principles are satisfied by a Riemann solution
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Solution exacte
Schema de Godunov

Notre schema
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Solution exacte
Schema de Godunov

Notre schema

C. Chalons and P. Goatin
Transport-Equilibrium schemes for contact discontinuities in traffic flows
Communications in Mathematical Sciences (2007)
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Numerical problems for hyperbolic systems

Motivated by real applications in fluid mechanics for instance (ONERA, CEA,
IFP)

Construction of new numerical schemes that are handy and able to treat non
standard situations

Which raises sometimes theoretical and scientific computing questions...

ONERA : French Center for Aerospace Research
CEA : French Center for Nuclear Research
IFP : French Center for Oil Research
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