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Abstract. This paper briefly presents the research activity of our group on the coupling
problem of different partial differential equations (PDE) at a fixed interface. Our motiva-
tion comes from the coupling of different two-phase flow codes that involve different PDE
systems for simulating the components of a nuclear reactor.

1 INTRODUCTION

We have been considering in a series of papers the coupling of PDE systems, both
from a theoretical and from a numerical point of view. For what concerns our industrial
motivation, such a coupling arises for the simulation of nuclear reactors when different
two-phase flow codes are used. In these codes, multiple modelling scales are applied to
describe the flow. For instance, different thermal-hydraulic models can be used for each
reactor component to take into account its specific behavior, or small scale models can
be used, locally, to obtain a better resolution. When these models are put side to side,
we face the problem of coupling. There is therefore a need to identify the nature of
the information to be prescribed at a coupling interface, depending on the mathematical
structure of the left and right PDE systems, to achieve a coherent description of the whole
operating device.

This note is organized as follows. We first explain how the coupling problem is set from
a mathematical point of view. We then briefly review some of the works that have been
carried out by our group. See also http://www.ann.jussieu.fr/groupes/cea/ for details.
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2 THE COUPLING PROBLEM

In this section, we present the coupling problem focusing ourselves on systems of con-
servation laws having the same size and in one space dimension. The flow is assumed to
be described by a first system (S1) in D1 = {x < 0, t > 0} and another system (S2) in
D2 = {x > 0, t > 0}. We look for a solution u : (x, t) ∈ IR × IR+ → u(x, t) ∈ Ω ∈ IRn,
n ≥ 1 of the following coupling problem

(S1) : ∂tu + ∂xf1(u) = 0, (x, t) ∈ D1, (1)

(S2) : ∂tu + ∂xf2(u) = 0, (x, t) ∈ D2, (2)

with initial condition u(x, 0) = u0(x), x ∈ IR. We assume in addition that the flux
functions f1 : Ω → IR and f2 : Ω → IR are smooth and that systems (S1) and (S2) are
hyperbolic on the set of states Ω. At interface x = 0, we add some coupling model.

Interface models can be gathered into two groups. The first one, the so-called state

coupling, aims at imposing the continuity of a set of variables v = ϕ(u). It writes

v(0−, t) = v(0+, t), (3)

with v(0−, t) = ϕ1(u(0−, t)) and v(0+, t) = ϕ2(u(0+, t)). Here, u(0−, t) (respectively
u(0+, t)) denotes the left (resp. right) trace of the solution, and ϕ1 and ϕ2 define two
admissible changes of variables u → v associated with (S1) and (S2) respectively.
The second one, the so-called flux coupling, aims at imposing the continuity of the flux
across the interface, which writes

f1(u(0−, t)) = f2(u(0+, t)). (4)

Let us first notice that the flux functions f1 and f2 are generally not invertible, so that the
flux coupling actually differs from the state coupling. Note also that for the flux coupling,
u is a conservative variable in the whole domain IR × IR+, not only in both regions D1

and D2 like in the state coupling.

The state coupling. Due to the hyperbolic nature of both systems (S1) and (S2), the
continuity property (3) is generally too restrictive and must be understood in a weak
sense. More precisely, we follow the weak boundary conditions principle proposed by
Dubois and LeFloch7 and Godlewski and Raviart8 (see also9,2). For i = 1, 2, we denote
ui(x/t;ul,ur) the solution to the Riemann problem











∂tu + ∂xfi(u) = 0, x ∈ IR, t > 0,

u(x, 0) =

{

ul if x < 0,
ur if x > 0,

(5)
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and by vi(x/t;vl,vr) the solution of this problem with respect to the v variable, i.e.

vi(x/t;vl,vr) = ϕi(ui(x/t; ϕ−1
i (vl), ϕ

−1
i (vr))). (6)

We then define the sets of admissible traces in 0− and 0+ for systems (S1) and (S2) :

O1(b) =
{

v1(0
−;v,b);v ∈ ϕ1(Ω)

}

, O2(b) =
{

v2(0
+;b,v);v ∈ ϕ2(Ω)

}

,

where b ∈ Ω is a given boundary condition. The weak formulation of (3) then writes

v(0−, t) ∈ O1(v(0+, t)), v(0+, t) ∈ O2(v(0−, t)).

This strategy allows to ensure as far as possible the continuity of the vector v but this is
not always the case. Indeed when the coupling interface becomes characteristic (i.e. when
the characteristic speeds of (S1) and (S2) equal zero), some components of the vector v

may be discontinuous across this interface.

The flux coupling. Imposing the continuity of the flux function across the coupling in-
terface is often natural from a physical point of view. In this case, the corresponding
coupling problem takes the form of a global problem that writes as follows :

∂tu + ∂xf(u, x) = 0, x ∈ IR, t > 0, (7)

with f(u, x) = (1 − H(x))f1(u) + H(x)f2(u). Here H denotes the Heaviside function.
Note that generally speaking, the flux continuity (4) does not imply the continuity of u.

It is important to notice at this stage that from a theoretical point of view, the choice
between these two families of interface models must be done according to the physics
of the underlying simulation. From a numerical point of view, the point is to design
numerical strategies that account for the chosen interface model.

3 BRIEF REVIEW OF OUR CONTRIBUTIONS

The proposed definition of the interface models leads directly to the mathematical
question of existence and uniqueness of a solution to the coupling problem.

In6, we investigate this issue for the one dimensional state coupling of two gas dynam-
ics systems in Eulerian coordinates. Several examples of solutions, either continuous or
discontinuous at the coupling interface, are constructed.

In2, the special structure of Lagrangian systems enabled us to deal with the coupling
conditions at interface, when a special set of transmitted variables is chosen, for rather
general fluid systems.

In another direction, we have used relaxation systems to achieve a conservative numer-
ical coupling of two Euler systems that avoids resonance5.
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In1, we consider the numerical coupling of two homogeneous models used for the de-
scription of non isothermal compressible two-phase flows. More precisely, we concentrate
on the numerical coupling of the homogeneous equilibrium model and the homogeneous
relaxation model. Several finite volume methods are presented to achieve, at the numerical
level, the desired coupling.

More recently, we have started to study the coupling of a two fluid-two pressure diphasic
model and its drift-flux asymptotic limit which is of primary interest for the simulation
of a global nuclear reactor. See for instance3,4 and the references therein.
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