
Center for Turbulene ResearhProeedings of the Summer Program 2010 1A multi-Gaussian quadrature method of momentsfor gas-partile ows in a LES frameworkBy C. Chalonsy, R. O. Foxz AND M. MassotyThe purpose of the present ontribution is to introdue a new high-order momentformalism for partile/droplet trajetory rossing (PTC) in the framework of large-eddysimulation (LES) of gas-partile ows. Thus far, the ability to treat PTC has reeivedseveral investigations for diret numerial simulations (DNS) using quadrature-basedmoment methods based on a sum of Dira delta funtions (Yuan & Fox (2010), Kahet al. (2010)). However, for LES, suh methods require too many moments in orderto apture both the e�et of subgrid-sale turbulene on the disperse phase as well asPTC due to large-sale eddies in a Eulerian mesosopi framework. The hallenge is thustwo-fold: �rst, to propose a new generation of quadrature with less singular behavior aswell as assoiated proper mathematial properties and related algorithms, and seond tolimit the number of moments used for appliability in multi-dimensional on�gurationswithout losing auray in the representation of the spatial uxes.1. IntrodutionThe physis of partiles and droplets in a arrier gaseous ow �eld are desribed inmany appliations (uidized beds, spray dynamis, alumina partiles in roket boosters,: : : ) by a number density funtion (NDF) satisfying a kineti equation. Solving suha kineti equation relies either on a sample of disrete numerial parels of partilesthrough a Lagrangian{Monte-Carlo approah or on a moment approah resulting in aEulerian system of onservation laws on veloity moments eventually onditioned on size.In the latter ase investigated in the present ontribution, the main diÆulty for partileows with high Knudsen numbers (i.e. weakly ollisional ows), where the veloity dis-tribution an be very far from equilibrium, is the losure of the onvetive transport atthe marosopi level. One way to proeed is to use quadrature-based moment methodswhere the higher-order moments required for losure are evaluated from the lower-ordertransported moments using multi-dimensional quadratures in the form of a sum of Diradelta funtions in veloity phase spae (see Yuan & Fox (2010) and the referenes thereinfor a series of advanes within this framework). Suh an approah also allows for a well-behaved kineti numerial sheme in the spirit of Bouhut Bouhut & al(2003) (from deChaisemartin (2009) to Kah et al. (2010), Fr�eret et al. (2010), Yuan & Fox (2010)) wherethe uxes in a ell-entered �nite-volume formulation are diretly evaluated from theknowledge of the quadrature absissas and weights with guaranteed realizability ondi-tions. Suh a quadrature approah and the related numerial methods have been shownto be able to apture PTC in a DNS ontext, where the distribution in the exat kinetiy Laboratoire EM2C - UPR CNRS 288, Eole Centrale Paris, Grande Voie des Vignes, 92295Chatenay Malabry, Franez Iowa State University, Department of Chemial and Biologial Engineering, Ames, IA50011-2230 USA



2 C. Chalons, R. O. Fox & M. Massotequation remains at all times in the form of a sum of Dira delta funtions, and an beextended to high-order numerial shemes (Vikas et al. (2010)).In a LES framework, the e�et of the subgrid sales (SGS) of the turbulent gaseousow �eld an lead to dispersion in veloity phase spae for the partiles, whih an bedesribed by Fokker-Plank-like models introdued in Reeks (1991). Nevertheless, in aLES framework PTC still ours for large enough Stokes numbers in the high Knudsennumber limit beause the SGS dispersion is not strong enough to \randomize" the parti-le veloities resulting from free kineti transport. However, apturing both PTC as wellas veloity dispersion (aused by SGS agitation around the Dira delta funtion represen-tation of PTC) would require a large number of quadrature nodes using a delta funtionrepresentation. Moreover, suh quadrature-based methods result in entropi weakly hy-perboli systems of onservation laws and to the formation of Æ-shok singularities, themathematial struture of whih is studied in Kah et al. (2010). The purpose of thepresent ontribution is to introdue a novel quadrature-based moment approah for theresolution of the free-transport part of the �ltered kineti equation (i.e. PTC), whih alsoallows us to naturally aount for veloity dispersion. Note that sine the free-transportterm in the �ltered kineti equation has exatly the same form as in the original kinetiequation (Zaihik et al. (2009)), hereinafter we will not make the distintion betweenthe two forms. The proposed quadrature approah allows us to both limit the number ofunknowns in multi-dimensional on�gurations, and to regularize the resulting system ofonservation equations, while still being able to apture PTC and veloity dispersion inthe LES framework.We will �rst introdue the new moment formalism, quadrature and numerial methods,using the NDF f(t; x; v) in 1-D for the free-transport kineti equation:�tf + v�xf = 0; t > 0; x 2 R; v 2 R; (1.1)with initial ondition f(0; x; v) = f0(x; v). The exat solution is given by f(t; x; v) =f(0; x�vt; v) = f0(x�vt; v). Then, in order to justify the advantages of suh an approahin multi-dimensions, we will swith to the 2-D ase in veloity phase spae with NDFf(t; x; v) for v = (u; v)t, whih is homogeneous in the y diretion, and satis�es:�tf + u�xf = 0; t > 0; x 2 R; v 2 R2 (1.2)with initial ondition f(0; x; v) = f0(x; v). With a 2-D veloity phase spae, we willapproximate the solution to f using a quadrature representation found from the bivariatemoments. Finally, one the quadrature representation has been mathematially justi�edand the algorithms have been presented for 1-D and 2-D ases, we will present numerialresults for the Riemann problem in both ases, thus showing the potential of the approahas well as the smoothness of the solutions ompared to the standard Dira quadrature.2. 1-D kineti model, multi-Gaussian quadrature, and related algorithms2.1. 1-D moment transport equationsDe�ning the i-order moment Mi(t; x) = Rv f(t; x; v)vidv, i = 0; : : : ; N , N 2 N, theassoiated governing equations are easily obtained from (1.1) after multipliation by viand integration over v: �tMi+�xMi+1 = 0, i � 0. For the sake of simpliity, but withoutany loss of generality, we will fous our attention hereinafter on the �ve-moment model



Multi-Gaussian quadrature method of moment 3and its abstrat form:8>>>><>>>>: �tM0 + �xM1 = 0;�tM1 + �xM2 = 0;�tM2 + �xM3 = 0;�tM3 + �xM4 = 0;�tM4 + �xM5 = 0: ; �tM+ �xF(M) = 0; (2.1)with M = (M0;M1;M2;M3;M4)t and F(M) = (M1;M2;M3;M4;M5)t. This model islosed provided that M5 is de�ned as a funtion of M. Here we propose to de�ne thisfuntion by representing f as a bi-Gaussian distribution funtion.2.2. 1-D bi-Gaussian distributionThe starting point to de�ne the moment losure onsists in representing the veloitydistribution f(t; x; v) by the sum of two Gaussian funtions:fG(t; x; v) = �1(t; x)�p2� exp � (v � v1(x; t))22�2 !+ �2(t; x)�p2� exp � (v � v2(x; t))2�2 ! ; (2.2)where the weights �1(t; x) > 0, �2(t; x) > 0, the veloity absissas v1(t; x), v2(t; x) andthe ommon spread � � 0 must be uniquely determined from the knowledge of M(x; t).Dropping the (x; t)-dependene to avoid umbersome notation, the funtion fG has exatmoments MGi of orders i = 0; :::; 5 given by8>>>>>><>>>>>>: MG0 = �1 + �2;MG1 = �1v1 + �2v2;MG2 = �1(�2 + v21) + �2(�2 + v22);MG3 = �1v1(3�2 + v21) + �2v2(3�2 + v22);MG4 = �1v21(6�2 + v21) + �2v22(6�2 + v22) + 3�4(�1 + �2);MG5 = �1v31(10�2 + v21) + �2v32(10�2 + v22) + 15�4(�1v1 + �2v2):The moment losure for system (2.1) then naturally onsists in setting M5 = MG5where the �ve unknowns �1, �2, v1, v2 and �2 are found by solving the nonlinear systemMi = MGi ; i = 0; : : : ; 4; whih is learly equivalent to solving the system8>>>><>>>>: M0 = �1 + �2;M1 = �1v1 + �2v2;M2 � �2M0 = �1v21 + �2v22 ;M3 � 3�2M1 = �1v31 + �2v32 ;M4 � 6�2M2 + 3�4M0 = �1v41 + �2v42 : (2.3)It remains to prove that this system is well-posed in the following proposition.Proposition 1. For M = (M0;M1;M2;M3;M4)t suh that M0 > 0, let us de�nee = M0M2 �M21M20 ; q = (M3M20 �M31 )� 3M1(M0M2 �M21 )M30 ;and � = �3M41 +M4M30 � 4M20M1M3 + 6M0M21M2M40 :



4 C. Chalons, R. O. Fox & M. MassotSystem (2.3) is well-de�ned on the phase spae 
 given by
 = fM = (M0;M1;M2;M3;M4)t;M0 > 0; e > 0; � > e2 + q2e ; and � � 3e2 if q = 0g:Setting U = (�1; �2; �1v1; �2v2; �)t, the funtion U = U(M) is one-to-one and onto assoon as v1 6= v2, and for all v1 and v2 provided that we set �1 = �2 in the ase v1 = v2.Moreover, �2 is given by the unique real root of the third-order polynomial� P(�0) = 2�30 + (� � 3e2)�0 + q2;�0 = �2 � e:Proof. We �rst set �1 = �1M0 ; �2 = �2M0 , v1 = v1 � M1M0 , v2 = v2 � M1M0 , solving (2.3) isequivalent to solving 8>>>><>>>>: 1 = �1 + �2;0 = �1v1 + �2v2;e� �2 = �1v21 + �2v22;q = �1v31 + �2v32;� � 6�2e+ 3�4 = �1v41 + �2v42:with e = (M0M2�M21 )=M20 , q = ((M3M20�M31 )�3M1(M0M2�M21 ))=M30 , � = (�3M41+M4M30 � 4M20M1M3+6M0M21M2)=M40 . Dropping the overlines for the sake of larity, itis then a matter to uniquely solve the following nonlinear system in (�1; �2; v1; v2; �2):8>>>><>>>>: �1 + �2 = 1;�1v1 + �2v2 = 0;�1v21 + �2v22 = e� �2;�1v31 + �2v32 = q;�1v41 + �2v42 = � � 6�2e+ 3�4: (2.4)Provided e � �2, it is proved in Desjardins et al. (2008) that the �rst four equationsallow to �nd (�1; �2; v1; v2). We will then fous on the last equation to �nd �2.In the ase q = 0, the seond and fourth equations yield �1v1(v21 � v22) = 0, and�2v2(v21�v22) = 0, whih gives v := v1 = �v2. We then get �1 = �2 = 1=2 and �2 = e�v2,2v4 = 3e2 � �. Reall that our objetive is now to uniquely determine v and � > 0 suhthat �2 � e. A neessary and suÆient ondition is then learly � 2℄e2; 3e2[. Note thatthe ase � = e2 would lead to � = 0, meaning that the Gaussian funtions degenerate intotwo Dira delta funtions whih orrespond to the usual quadrature. The ase � = 3e2gives v = 0 and both Gaussian funtions oinide.In the ase q 6= 0, from (2.4), we observe by using the usual algebra of quadraturemethods and by setting �0 = v1v2 and �1 = �(v1 + v2), that8<: e� �2 + �0 = 0;q + �1(e� �2) = 0;� � 6�2(e� �2) + 3�4 + �1q + �0(e� �2) = 0:The last equation then gives that �0 = �2 � e is a root of the third-order polynomialP(�0) = 2�30+(��3e2)�0+q2. Note that one must have �0 2℄�e; 0℄ to ful�ll the onditione � �2 and to be able to reonstrut � > 0 from �0. First, sine lim�0!�1 = �1,P(0) > 0 and P 00(�0) = 12�0, there exists a unique root �0 < 0 of P . It then follows that�0 > �e if and only if P(�e) < 0, that is if and only if � > e2 + q2=e.



Multi-Gaussian quadrature method of moment 52.3. 1-D moment-inversion algorithmThe three roots of P(�0) an be found analytially (one is real, and two are omplexonjugates). In the numerial algorithm for moment inversion, the three roots are foundfrom the analytial expressions and the real root is determined by heking the magnitudeof the imaginary parts. This method was found to be rapid and robust for all realizablevalues of e and q. When M0 > 0, the 1-D moment-inversion algorithm then onsists ofthe following three steps:(a) Given moments M in 
, ompute e, q and �.(b) Find real root of P(�0), and �2 = e+ �0.() Solve (2.4) aording to Desjardins et al. (2008) to �nd �1, �2, v1, v2 (i.e. variableswithout the overlines). In the ase where �2 = e, we set �2 = v2 = 0 and �1 = M0,v1 =M1=M0.When M0 = 0, we set �1 = �2 = 0 and (without loss of generality) � = v1 = v2 = 0.2.4. 1-D kineti-based ux algorithmThe spatial moment uxes F(M) are omputed using a kineti-based de�nition:Fi(t; x) = Z 10 f(t; x; v)vi+1dv + Z 0�1 f(t; x; v)vi+1dv; i = 0; : : : ; 4; (2.5)where the deomposition into positive and negative diretions is used to de�ne the uxfuntion as originally proposed by Bouhut (see de Chaisemartin (2009) and referenes).The numerial representation of the ux funtion is a ritial point in moment trans-port methods beause only realizable moment sets an be suessfully inverted. We usehere an original strategy for the ux evaluation in (2.5). We use the presumed form ofthe distribution fG underlying the quadrature in order to evaluate a higher number ofeight moments and eventually use CQMOM in order to generate a ompatly supportedveloity distribution using a 4-node Gaussian quadrature :f(t; x; v) =X4�=1 ���(t; x)Æ (v � v��(t; x))whih mathes the moments up to order seven of the bi-gaussian distribution (and thusthe same moments up to order �ve in system (2.1)!) An example of the 4-node quadraturerepresentation is shown in Fig. 1. The resulting algorithm for omputing the momentuxes is as follows:(a) Given momentsM, ompute �1, �2, v1, v2, and �2 using the 1-D moment-inversionalgorithm in Se. 2.3.(b) ComputeMG = (MG0 ;MG1 ; : : : ;MG7 )t from (2.2).() Apply the Gaussian quadrature algorithm with MG to ompute ��� and v�� for� = 1; : : : ; 4.(d) Compute spatial moment uxes using ��� and v�� as desribed in Vikas et al. (2010).In order to handle the ase where �2 = 0 (i.e. the true distribution is omposed of twodelta funtions), the Gaussian quadrature in step () is omputed using the adaptive 1-Dquadrature algorithm desribed in Yuan & Fox (2010).Note that beause it is straightforward to ompute the moments of fG starting from(2.2), the ompat representation of the uxes an be easily extended to inlude morethan four nodes even if this would rapidly limit the CFL number and inrease numeri-al di�usion. With kineti-based uxes, it is possible to derive high-order numerial uxfuntions that are guaranteed to be realizable when the distribution funtion is repre-sented by a �nite sum of Dira delta funtions (Vikas et al. (2010)). The important point
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Figure 1. Quadrature of the veloity distribution funtion with a bi-Gaussian distribution(left). Evaluation of a ompatly supported distribution, with the same moments up to seventhorder as the bi-Gaussian, under the form of a 4-node distribution for ux evaluation.to be underlined here is the fat that we reah the possibility to apture in the uxes thepreise dynamis of two Gaussian distributions and thus di�erentiate between rossingof two louds of partiles from the dispersion around the mean for eah loud with only�ve moments e�etively transported; besides it is easy to inrease the auray of thenumerial ux funtion without inreasing the number of transported moments.3. 2-D kineti model, multi-Gaussian quadrature, and related algorithmsDe�ning the bivariate momentsMi;j(t; x) = Zv f(t; x; v)uivjdv; i; j = 0; : : : ; N; N 2 N;the assoiated governing equations are easily obtained from (1.2):�tMi;j + �xMi+1;j = 0; i; j � 0:We will onsider in this work a 15-moment model:8>>>><>>>>: �tM0;0 + �xM1;0 = 0;�tM1;0 + �xM2;0 = 0;�tM0;1 + �xM1;1 = 0;�tM2;0 + �xM3;0 = 0;�tM1;1 + �xM2;1 = 0; �tM0;2 + �xM1;2 = 0;�tM3;0 + �xM4;0 = 0;�tM2;1 + �xM3;1 = 0;�tM1;2 + �xM2;2 = 0;�tM0;3 + �xM1;3 = 0; �tM4;0 + �xM5;0 = 0;�tM3;1 + �xM4;1 = 0;�tM2;2 + �xM3;2 = 0;�tM1;3 + �xM2;3 = 0;�tM0;4 + �xM1;4 = 0; (3.1)whih requires a losure for the �fth-order momentsM5;0; : : : ;M1;4. We propose to de�nethis losure funtion by representing f as a multi-Gaussian distribution funtion. Notethat the subset of �ve bivariate moments with j = 0 is the same as those appearing inthe 1-D ase. Thus, in order for the 2-D losure to be onsistent with the 1-D losure,the �ve moments with j = 0 should be treated the same in both losures. A 2-D momentlosure with this property will be referred to hereinafter as onsistent.The 2-D multi-Gaussian distribution funtion is de�ned byfG(v) = 4X�=1 ��p2�j�j exp��12(v � v�)t��1(v� v�)� ; � = ��11 �12�12 �22� ; (3.2)where � is the ovariane matrix. In (3.2) there are �fteen parameters: (��; u�; v�; � =1; : : : ; 4) and (�11; �12; �22). These parameters must be found by solving the nonlinearsystem of the formM =MG orresponding to the �fteen bivariate moments up to fourthorder appearing in (3.1). Another advantage of using this form is related to the fat thatit naturally inludes, as a degenerate ase, the non-isotropi joint-Gaussian distributionwhen the four quadrature nodes oalese.In this setion we provide a brief desription of the 2-D moment inversion algorithm.Before desribing the general algorithm, we should note that even in the ase where



Multi-Gaussian quadrature method of moment 7� = 0 (i.e. Dira delta funtions), 2-D moment inversion is non-trivial (Yuan & Fox(2010)). Thus, we annot expet the moment-inversion algorithm for the multi-Gaussiandistribution to be any easier. The algorithm developed in this work makes use of the2-D onditional quadrature method of moments (CQMOM) desribed in Yuan & Fox(2010). Beause the kineti equation in (1.2) has non-zero uxes only in the x diretion,it is natural to onstrut a CQMOM quadrature wherein the v-veloity moments areonditioned on u-veloity. For a 4-node quadrature, the CQMOM algorithm will thenuse the following subset of ten moments (shown in bold):266664M0;0 M0;1 M0;2 M0;3 M0;4M1;0 M1;1 M1;2 M1;3M2;0 M2;1 M2;2M3;0 M3;1M4;0 377775 :The twomomentsM2;1 andM3;1 would be used in CQMOMwhen the u-veloity momentsare onditioned on v-veloity (i.e. when the physial spae has two dimensions), and aretherefore transported for onsisteny. As in the 1-D moment-inversion algorithm, M4;0is used to �nd �11 and M0;4 to �nd �22. Finally, M2;2 is used to �nd �12.yThe 2-D moment-inversion algorithm is more ompliated than in the 1-D ase due tothe oupling between the nonlinear equations, and thus will not be desribed in detailhere. However, the basi steps are as follows:(a) Given moments M, ompute eu and qu.(b) Find real root of P(�0), and �211 = eu + �0.() Given momentsM, ompute ev and qv.(d) Find real root of P(�0), and initial guess �222 = ev + �0.(e) UsingM, �11, and �22, ompute �12.(f) Using CQMOM, onstrut a 2-D quadrature onditioned on u.(g) Chek whether M0;4 = MG0;4. If not, update guess for �22 and return to step (e)until onvergene is ahieved.The iterations are arried out using a bounded seant method. For the example appli-ation onsidered in this work, �12 = 0 and the unused moments M2;1 and M3;1 areidentially zero. The 2-D moment-inversion algorithm is thus able to reover all �fteentransported moments for this example, and hene we an expet that the 2-D momentlosure will be onsistent.The spatial moment uxes are again omputed using a kineti-based de�nition:Fi;j = Zv Z 10 f(t; x; v)ui+1vjdudv + Zv Z 0�1 f(t; x; v)ui+1vjdudv;where we approximate f using a 16-node CQMOM quadrature:f(t; x; v) = 4X�=1 4X�=1 ����(t; x)Æ �u� u���(t; x)� Æ �v � v���(t; x)�de�ned using 48 moments found from the multi-Gaussian funtion in (3.2). (See Yuan &y The extension to a 3-D veloity phase spae would use the same multi-Gaussian form for fGas in (3.2), but with a ovariane matrix ontaining six parameters. The number of additionalfourth-order moments in 3-D not used by CQMOM is three, and these are analogous to thoseused in 2-D for determining � (i.e. M0;0;4, M2;0;2, M0;2;2). Thus, it would appear that themulti-Gaussian distribution should also be well de�ned in 3-D using a 38-moment quadrature.



8 C. Chalons, R. O. Fox & M. Massot
x

y

x

y

Figure 2. Quadrature of the multi-Gaussian veloity distribution funtion using CQMOM (left)and further evaluation of the ux through a 16-node Dira delta distribution with the same 48moments as the multi-Gaussian distribution (right).Fox (2010) for details.) An example of the 16-node quadrature representation is shownin Fig. 2. The algorithm for omputing the moment uxes is essentially the same as theone desribed in Se. 2.4 for 1-D quadrature.4. Riemann problemAs an example appliation, we will use a Riemann problem with either a 1-D or 2-Dveloity phase spae. The initial onditions are de�ned on the real line with a step in themean u veloity at x = 0 : U1 = M1=M0 = M1;0=M0;0 = f1; ifx < 0; and � 1; ifx > 0g.For all x, the initial density is unity and the veloity distribution funtion is Maxwellianwith energy �2 = 2=(3(1 + St)) where St is the partile Stokes number based on thesubgrid-sale (SGS) uid RMS veloity (Reeks (1991)) (assumed to be uniform andequal to one). Note that with these initial onditions the veloity distribution is assumedinitially to be in equilibrium with the SGS uid veloity �eld (i.e. e0 = �2). However, thedisontinuous nature of the mean partile veloity will quikly lead to partile trajetoryrossing and a strongly non-equilibrium veloity distribution funtion.For 1-D phase spae, a measure of the degree of non-equilibrium is the ratio �2=e,whih is unity for an equilibrium distribution and zero when the distribution is om-posed entirely of Dira delta funtions. For a 2-D phase spae, the ratios �11=e and �22=emeasure the non-equilibrium behavior in eah diretion separately. In the Riemann prob-lem desribed above, the mean v veloity is null so that the veloity distribution shouldremain in equilibrium in the v diretion for all t. In order to identify learly deviationsof the higher-order moments from their equilibrium values, we will use the following nor-malized moments e� = e=e0 energy, q� = q=e3=2 skewness, �� = �=e2 kurtosis, whoseequilibrium values are e� = 1, q� = 0, and �� = 3.In order to solve the moment equations numerially, the 1-D omputational domain�2 < x < 2 is disretized into 402 �nite-volume ells. The spatial uxes are treatedusing the �rst-order kineti-based approah. The time step is hosen based on the largestmagnitude of the absissas u�� used to de�ne the spatial uxes with a CFL number of0.5.5. Results and disussionSimulation results for the 1-D Riemann problem are presented in Figs. 3 and 4 for timet = 0:5. Note that due to the equilibrium initial onditions, only one veloity absissa
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Figure 4. Five transported moments and �2 for 1-D Riemann problem with St = 1 at t = 0:5.is used when �2=e = 1 (i.e. v1) and the other (v2) is set to zero automatially usingthe adaptive 1-D quadrature algorithm desribed in Yuan & Fox (2010). At t = 0:5, onean observe that the equilibrium ondition is still present on the left and right sides ofthe omputational domain. In the enter of the domain, �2=e � 0:2 indiating that theoverall distribution is omposed of two Gaussian distributions with very little overlap.Also, note that unlike in a pure PTC problem where the veloity absissas remain attheir initial values (i.e. 1 and -1), in Fig. 3 the absissas have their largest magnitudesjust behind the \shok" in density at the edge of the equilibrium domain. This behavioris a diret result of the de�nition of the spatial uxes in terms of the underlying bi-
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Figure 5. Solution to 2-D Riemann problem, St = 1 at t = 0:5. Top left: Weights �1 (blue),�2 (green), �3 (red), �4 (yan). Top enter-left: u absissas u1 (blue), u2 (green), u3 (red),u4 (yan). Top enter-right: v absissas v1 (blue), v2 (green), v3 (red), v4 (yan). Top right:Gaussian ontribution to energy �11=e (blue), �12=e (green), �22=e (red). Bottom left: Density�. Bottom enter-left: Normalized energy e�u � 1 (blue), skewness q�u (green), kurtosis ��u � 3(red). Bottom right: Normalized energy e�v�1 (blue), skewness q�v (green), kurtosis ��v �3 (red).Gaussian distribution. Indeed, the outer tails of the Gaussian distribution have higherveloity than the value at the peak density and thus penetrate faster into the equilibriumdomain, resulting in a higher loal ux veloity. The strong deviations from equilibriumare also learly observed in the normalized energy, skewness, and kurtosis in Fig. 3.Exept at the edges of the equilibrium domain, we see from Fig. 4 that the transportedmoments and �2 are smoothly varying funtions of x; more importantly, the singularitiesappearing in the solution do not belong to the lass of Æ-shoks but to the less singularlass of shoks enountered with hyperboli systems of onservations laws, thus revealinga potential well-behaved system. Moreover, due to the kineti-based de�nition of thespatial uxes, the moments are always realizable, and the moment-inversion algorithmalways omputes a well-de�ned quadrature from the updated moments. Overall, the pro-posed bi-Gaussian reonstrution of the veloity distribution yields a robust numerialalgorithm using a minimum number of moments. In omparison to the high-order deltafuntion reonstrution desribed in Fox (2009), the bi-Gaussian quadrature provided ahigher �delity ux representation for a �xed number of transported moments. Moreover,beause the moments of the bi-Gaussian distribution an be omputed to any desired or-der, the ux representation desribed in Se. 2.4 an be systematially improved withoutinreasing the number of transported moments. This advantage beomes even more sig-ni�ant for 2-D and 3-D phase spaes where the number of transported moments neededfor the delta-funtion reonstrution inreases rapidly with the order (Fox (2009)).Results for the 2-D Riemann problem at t = 0:4 are shown in Figs. 5 and 6. Com-paring �rst the �ve moments in Fig. 4 to the orresponding moments in Fig. 6, we animmediately see that they are idential and thus that the 2-D quadrature algorithm isonsistent. Next we an observe that six of the bivariate moments in Fig. 6 are null, as isexpeted from the symmetry of veloity distribution with respet to the v veloity. Themoments M0;2 and M0;4 have the same spatial pro�le as M0;0, whih is a result of the
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Figure 6. Fifteen transported moments for 2-D Riemann problem with St = 1 at t = 0:5.v veloity always remaining in equilibrium. This fat an be observed most easily fromthe plots of the normalized moments in Fig. 5. Indeed, only the normalized momentsfor the u veloity di�er from the equilibrium values. Finally, by omparing Fig. 3 tothe orresponding plots in Fig. 5 it is obvious that the 2-D quadrature algorithm agreesexatly with 1-D version. Furthermore, it is espeially enouraging to see that the 2-Dquadrature an suessfully handle degenerate ases where the absissas oinide withoutany numerial diÆulties (e.g. in the equilibrium region).6. ConlusionsThe proposed quadrature algorithm and related numerial shemes should eventuallylead to a very promising solution for solving the �ltered NDF for LES of gas-partile ows.The approah ombines stability and a lower level of singularity ompared to standardquadrature-based moment methods (Kah et al. (2010)), and is able to apture both PTCaused by the free-transport term and the e�ets of SGS agitation. It is noteworthythat the multi-Gaussian quadrature naturally degenerates toward the orret veloitydistribution with the assoiated spatial uxes in both the PTC and dispersion limits.Moreover, by relying on the reent advanes in CQMOM (Yuan & Fox (2010)), thequadrature naturally adapts to the required number of nodes in even highly degenerateases (e.g. in the absense of partiles).In order to be generally appliable for approximating solutions to the �ltered kinetiequation in omplex gas-partile ows, the proposed multi-Gaussian quadrature approahwill need to rely on a �rmer mathematial bakground. For example, it will be neessaryto prove that it provides a hyperboli struture (as is suggested by the numerial simula-tions), and to extend the moment-inversion algorithm to more realisti multi-dimensionalon�gurations. This is the subjet of our urrent researh.
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