
Center for Turbulen
e Resear
hPro
eedings of the Summer Program 2010 1A multi-Gaussian quadrature method of momentsfor gas-parti
le 
ows in a LES frameworkBy C. Chalonsy, R. O. Foxz AND M. MassotyThe purpose of the present 
ontribution is to introdu
e a new high-order momentformalism for parti
le/droplet traje
tory 
rossing (PTC) in the framework of large-eddysimulation (LES) of gas-parti
le 
ows. Thus far, the ability to treat PTC has re
eivedseveral investigations for dire
t numeri
al simulations (DNS) using quadrature-basedmoment methods based on a sum of Dira
 delta fun
tions (Yuan & Fox (2010), Kahet al. (2010)). However, for LES, su
h methods require too many moments in orderto 
apture both the e�e
t of subgrid-s
ale turbulen
e on the disperse phase as well asPTC due to large-s
ale eddies in a Eulerian mesos
opi
 framework. The 
hallenge is thustwo-fold: �rst, to propose a new generation of quadrature with less singular behavior aswell as asso
iated proper mathemati
al properties and related algorithms, and se
ond tolimit the number of moments used for appli
ability in multi-dimensional 
on�gurationswithout losing a

ura
y in the representation of the spatial 
uxes.1. Introdu
tionThe physi
s of parti
les and droplets in a 
arrier gaseous 
ow �eld are des
ribed inmany appli
ations (
uidized beds, spray dynami
s, alumina parti
les in ro
ket boosters,: : : ) by a number density fun
tion (NDF) satisfying a kineti
 equation. Solving su
ha kineti
 equation relies either on a sample of dis
rete numeri
al par
els of parti
lesthrough a Lagrangian{Monte-Carlo approa
h or on a moment approa
h resulting in aEulerian system of 
onservation laws on velo
ity moments eventually 
onditioned on size.In the latter 
ase investigated in the present 
ontribution, the main diÆ
ulty for parti
le
ows with high Knudsen numbers (i.e. weakly 
ollisional 
ows), where the velo
ity dis-tribution 
an be very far from equilibrium, is the 
losure of the 
onve
tive transport atthe ma
ros
opi
 level. One way to pro
eed is to use quadrature-based moment methodswhere the higher-order moments required for 
losure are evaluated from the lower-ordertransported moments using multi-dimensional quadratures in the form of a sum of Dira
delta fun
tions in velo
ity phase spa
e (see Yuan & Fox (2010) and the referen
es thereinfor a series of advan
es within this framework). Su
h an approa
h also allows for a well-behaved kineti
 numeri
al s
heme in the spirit of Bou
hut Bou
hut & al(2003) (from deChaisemartin (2009) to Kah et al. (2010), Fr�eret et al. (2010), Yuan & Fox (2010)) wherethe 
uxes in a 
ell-
entered �nite-volume formulation are dire
tly evaluated from theknowledge of the quadrature abs
issas and weights with guaranteed realizability 
ondi-tions. Su
h a quadrature approa
h and the related numeri
al methods have been shownto be able to 
apture PTC in a DNS 
ontext, where the distribution in the exa
t kineti
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2 C. Chalons, R. O. Fox & M. Massotequation remains at all times in the form of a sum of Dira
 delta fun
tions, and 
an beextended to high-order numeri
al s
hemes (Vikas et al. (2010)).In a LES framework, the e�e
t of the subgrid s
ales (SGS) of the turbulent gaseous
ow �eld 
an lead to dispersion in velo
ity phase spa
e for the parti
les, whi
h 
an bedes
ribed by Fokker-Plan
k-like models introdu
ed in Reeks (1991). Nevertheless, in aLES framework PTC still o

urs for large enough Stokes numbers in the high Knudsennumber limit be
ause the SGS dispersion is not strong enough to \randomize" the parti-
le velo
ities resulting from free kineti
 transport. However, 
apturing both PTC as wellas velo
ity dispersion (
aused by SGS agitation around the Dira
 delta fun
tion represen-tation of PTC) would require a large number of quadrature nodes using a delta fun
tionrepresentation. Moreover, su
h quadrature-based methods result in entropi
 weakly hy-perboli
 systems of 
onservation laws and to the formation of Æ-sho
k singularities, themathemati
al stru
ture of whi
h is studied in Kah et al. (2010). The purpose of thepresent 
ontribution is to introdu
e a novel quadrature-based moment approa
h for theresolution of the free-transport part of the �ltered kineti
 equation (i.e. PTC), whi
h alsoallows us to naturally a

ount for velo
ity dispersion. Note that sin
e the free-transportterm in the �ltered kineti
 equation has exa
tly the same form as in the original kineti
equation (Zai
hik et al. (2009)), hereinafter we will not make the distin
tion betweenthe two forms. The proposed quadrature approa
h allows us to both limit the number ofunknowns in multi-dimensional 
on�gurations, and to regularize the resulting system of
onservation equations, while still being able to 
apture PTC and velo
ity dispersion inthe LES framework.We will �rst introdu
e the new moment formalism, quadrature and numeri
al methods,using the NDF f(t; x; v) in 1-D for the free-transport kineti
 equation:�tf + v�xf = 0; t > 0; x 2 R; v 2 R; (1.1)with initial 
ondition f(0; x; v) = f0(x; v). The exa
t solution is given by f(t; x; v) =f(0; x�vt; v) = f0(x�vt; v). Then, in order to justify the advantages of su
h an approa
hin multi-dimensions, we will swit
h to the 2-D 
ase in velo
ity phase spa
e with NDFf(t; x; v) for v = (u; v)t, whi
h is homogeneous in the y dire
tion, and satis�es:�tf + u�xf = 0; t > 0; x 2 R; v 2 R2 (1.2)with initial 
ondition f(0; x; v) = f0(x; v). With a 2-D velo
ity phase spa
e, we willapproximate the solution to f using a quadrature representation found from the bivariatemoments. Finally, on
e the quadrature representation has been mathemati
ally justi�edand the algorithms have been presented for 1-D and 2-D 
ases, we will present numeri
alresults for the Riemann problem in both 
ases, thus showing the potential of the approa
has well as the smoothness of the solutions 
ompared to the standard Dira
 quadrature.2. 1-D kineti
 model, multi-Gaussian quadrature, and related algorithms2.1. 1-D moment transport equationsDe�ning the i-order moment Mi(t; x) = Rv f(t; x; v)vidv, i = 0; : : : ; N , N 2 N, theasso
iated governing equations are easily obtained from (1.1) after multipli
ation by viand integration over v: �tMi+�xMi+1 = 0, i � 0. For the sake of simpli
ity, but withoutany loss of generality, we will fo
us our attention hereinafter on the �ve-moment model



Multi-Gaussian quadrature method of moment 3and its abstra
t form:8>>>><>>>>: �tM0 + �xM1 = 0;�tM1 + �xM2 = 0;�tM2 + �xM3 = 0;�tM3 + �xM4 = 0;�tM4 + �xM5 = 0: ; �tM+ �xF(M) = 0; (2.1)with M = (M0;M1;M2;M3;M4)t and F(M) = (M1;M2;M3;M4;M5)t. This model is
losed provided that M5 is de�ned as a fun
tion of M. Here we propose to de�ne thisfun
tion by representing f as a bi-Gaussian distribution fun
tion.2.2. 1-D bi-Gaussian distributionThe starting point to de�ne the moment 
losure 
onsists in representing the velo
itydistribution f(t; x; v) by the sum of two Gaussian fun
tions:fG(t; x; v) = �1(t; x)�p2� exp � (v � v1(x; t))22�2 !+ �2(t; x)�p2� exp � (v � v2(x; t))2�2 ! ; (2.2)where the weights �1(t; x) > 0, �2(t; x) > 0, the velo
ity abs
issas v1(t; x), v2(t; x) andthe 
ommon spread � � 0 must be uniquely determined from the knowledge of M(x; t).Dropping the (x; t)-dependen
e to avoid 
umbersome notation, the fun
tion fG has exa
tmoments MGi of orders i = 0; :::; 5 given by8>>>>>><>>>>>>: MG0 = �1 + �2;MG1 = �1v1 + �2v2;MG2 = �1(�2 + v21) + �2(�2 + v22);MG3 = �1v1(3�2 + v21) + �2v2(3�2 + v22);MG4 = �1v21(6�2 + v21) + �2v22(6�2 + v22) + 3�4(�1 + �2);MG5 = �1v31(10�2 + v21) + �2v32(10�2 + v22) + 15�4(�1v1 + �2v2):The moment 
losure for system (2.1) then naturally 
onsists in setting M5 = MG5where the �ve unknowns �1, �2, v1, v2 and �2 are found by solving the nonlinear systemMi = MGi ; i = 0; : : : ; 4; whi
h is 
learly equivalent to solving the system8>>>><>>>>: M0 = �1 + �2;M1 = �1v1 + �2v2;M2 � �2M0 = �1v21 + �2v22 ;M3 � 3�2M1 = �1v31 + �2v32 ;M4 � 6�2M2 + 3�4M0 = �1v41 + �2v42 : (2.3)It remains to prove that this system is well-posed in the following proposition.Proposition 1. For M = (M0;M1;M2;M3;M4)t su
h that M0 > 0, let us de�nee = M0M2 �M21M20 ; q = (M3M20 �M31 )� 3M1(M0M2 �M21 )M30 ;and � = �3M41 +M4M30 � 4M20M1M3 + 6M0M21M2M40 :



4 C. Chalons, R. O. Fox & M. MassotSystem (2.3) is well-de�ned on the phase spa
e 
 given by
 = fM = (M0;M1;M2;M3;M4)t;M0 > 0; e > 0; � > e2 + q2e ; and � � 3e2 if q = 0g:Setting U = (�1; �2; �1v1; �2v2; �)t, the fun
tion U = U(M) is one-to-one and onto assoon as v1 6= v2, and for all v1 and v2 provided that we set �1 = �2 in the 
ase v1 = v2.Moreover, �2 is given by the unique real root of the third-order polynomial� P(�0) = 2�30 + (� � 3e2)�0 + q2;�0 = �2 � e:Proof. We �rst set �1 = �1M0 ; �2 = �2M0 , v1 = v1 � M1M0 , v2 = v2 � M1M0 , solving (2.3) isequivalent to solving 8>>>><>>>>: 1 = �1 + �2;0 = �1v1 + �2v2;e� �2 = �1v21 + �2v22;q = �1v31 + �2v32;� � 6�2e+ 3�4 = �1v41 + �2v42:with e = (M0M2�M21 )=M20 , q = ((M3M20�M31 )�3M1(M0M2�M21 ))=M30 , � = (�3M41+M4M30 � 4M20M1M3+6M0M21M2)=M40 . Dropping the overlines for the sake of 
larity, itis then a matter to uniquely solve the following nonlinear system in (�1; �2; v1; v2; �2):8>>>><>>>>: �1 + �2 = 1;�1v1 + �2v2 = 0;�1v21 + �2v22 = e� �2;�1v31 + �2v32 = q;�1v41 + �2v42 = � � 6�2e+ 3�4: (2.4)Provided e � �2, it is proved in Desjardins et al. (2008) that the �rst four equationsallow to �nd (�1; �2; v1; v2). We will then fo
us on the last equation to �nd �2.In the 
ase q = 0, the se
ond and fourth equations yield �1v1(v21 � v22) = 0, and�2v2(v21�v22) = 0, whi
h gives v := v1 = �v2. We then get �1 = �2 = 1=2 and �2 = e�v2,2v4 = 3e2 � �. Re
all that our obje
tive is now to uniquely determine v and � > 0 su
hthat �2 � e. A ne
essary and suÆ
ient 
ondition is then 
learly � 2℄e2; 3e2[. Note thatthe 
ase � = e2 would lead to � = 0, meaning that the Gaussian fun
tions degenerate intotwo Dira
 delta fun
tions whi
h 
orrespond to the usual quadrature. The 
ase � = 3e2gives v = 0 and both Gaussian fun
tions 
oin
ide.In the 
ase q 6= 0, from (2.4), we observe by using the usual algebra of quadraturemethods and by setting �0 = v1v2 and �1 = �(v1 + v2), that8<: e� �2 + �0 = 0;q + �1(e� �2) = 0;� � 6�2(e� �2) + 3�4 + �1q + �0(e� �2) = 0:The last equation then gives that �0 = �2 � e is a root of the third-order polynomialP(�0) = 2�30+(��3e2)�0+q2. Note that one must have �0 2℄�e; 0℄ to ful�ll the 
onditione � �2 and to be able to re
onstru
t � > 0 from �0. First, sin
e lim�0!�1 = �1,P(0) > 0 and P 00(�0) = 12�0, there exists a unique root �0 < 0 of P . It then follows that�0 > �e if and only if P(�e) < 0, that is if and only if � > e2 + q2=e.



Multi-Gaussian quadrature method of moment 52.3. 1-D moment-inversion algorithmThe three roots of P(�0) 
an be found analyti
ally (one is real, and two are 
omplex
onjugates). In the numeri
al algorithm for moment inversion, the three roots are foundfrom the analyti
al expressions and the real root is determined by 
he
king the magnitudeof the imaginary parts. This method was found to be rapid and robust for all realizablevalues of e and q. When M0 > 0, the 1-D moment-inversion algorithm then 
onsists ofthe following three steps:(a) Given moments M in 
, 
ompute e, q and �.(b) Find real root of P(�0), and �2 = e+ �0.(
) Solve (2.4) a

ording to Desjardins et al. (2008) to �nd �1, �2, v1, v2 (i.e. variableswithout the overlines). In the 
ase where �2 = e, we set �2 = v2 = 0 and �1 = M0,v1 =M1=M0.When M0 = 0, we set �1 = �2 = 0 and (without loss of generality) � = v1 = v2 = 0.2.4. 1-D kineti
-based 
ux algorithmThe spatial moment 
uxes F(M) are 
omputed using a kineti
-based de�nition:Fi(t; x) = Z 10 f(t; x; v)vi+1dv + Z 0�1 f(t; x; v)vi+1dv; i = 0; : : : ; 4; (2.5)where the de
omposition into positive and negative dire
tions is used to de�ne the 
uxfun
tion as originally proposed by Bou
hut (see de Chaisemartin (2009) and referen
es).The numeri
al representation of the 
ux fun
tion is a 
riti
al point in moment trans-port methods be
ause only realizable moment sets 
an be su

essfully inverted. We usehere an original strategy for the 
ux evaluation in (2.5). We use the presumed form ofthe distribution fG underlying the quadrature in order to evaluate a higher number ofeight moments and eventually use CQMOM in order to generate a 
ompa
tly supportedvelo
ity distribution using a 4-node Gaussian quadrature :f(t; x; v) =X4�=1 ���(t; x)Æ (v � v��(t; x))whi
h mat
hes the moments up to order seven of the bi-gaussian distribution (and thusthe same moments up to order �ve in system (2.1)!) An example of the 4-node quadraturerepresentation is shown in Fig. 1. The resulting algorithm for 
omputing the moment
uxes is as follows:(a) Given momentsM, 
ompute �1, �2, v1, v2, and �2 using the 1-D moment-inversionalgorithm in Se
. 2.3.(b) ComputeMG = (MG0 ;MG1 ; : : : ;MG7 )t from (2.2).(
) Apply the Gaussian quadrature algorithm with MG to 
ompute ��� and v�� for� = 1; : : : ; 4.(d) Compute spatial moment 
uxes using ��� and v�� as des
ribed in Vikas et al. (2010).In order to handle the 
ase where �2 = 0 (i.e. the true distribution is 
omposed of twodelta fun
tions), the Gaussian quadrature in step (
) is 
omputed using the adaptive 1-Dquadrature algorithm des
ribed in Yuan & Fox (2010).Note that be
ause it is straightforward to 
ompute the moments of fG starting from(2.2), the 
ompa
t representation of the 
uxes 
an be easily extended to in
lude morethan four nodes even if this would rapidly limit the CFL number and in
rease numeri-
al di�usion. With kineti
-based 
uxes, it is possible to derive high-order numeri
al 
uxfun
tions that are guaranteed to be realizable when the distribution fun
tion is repre-sented by a �nite sum of Dira
 delta fun
tions (Vikas et al. (2010)). The important point
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Figure 1. Quadrature of the velo
ity distribution fun
tion with a bi-Gaussian distribution(left). Evaluation of a 
ompa
tly supported distribution, with the same moments up to seventhorder as the bi-Gaussian, under the form of a 4-node distribution for 
ux evaluation.to be underlined here is the fa
t that we rea
h the possibility to 
apture in the 
uxes thepre
ise dynami
s of two Gaussian distributions and thus di�erentiate between 
rossingof two 
louds of parti
les from the dispersion around the mean for ea
h 
loud with only�ve moments e�e
tively transported; besides it is easy to in
rease the a

ura
y of thenumeri
al 
ux fun
tion without in
reasing the number of transported moments.3. 2-D kineti
 model, multi-Gaussian quadrature, and related algorithmsDe�ning the bivariate momentsMi;j(t; x) = Zv f(t; x; v)uivjdv; i; j = 0; : : : ; N; N 2 N;the asso
iated governing equations are easily obtained from (1.2):�tMi;j + �xMi+1;j = 0; i; j � 0:We will 
onsider in this work a 15-moment model:8>>>><>>>>: �tM0;0 + �xM1;0 = 0;�tM1;0 + �xM2;0 = 0;�tM0;1 + �xM1;1 = 0;�tM2;0 + �xM3;0 = 0;�tM1;1 + �xM2;1 = 0; �tM0;2 + �xM1;2 = 0;�tM3;0 + �xM4;0 = 0;�tM2;1 + �xM3;1 = 0;�tM1;2 + �xM2;2 = 0;�tM0;3 + �xM1;3 = 0; �tM4;0 + �xM5;0 = 0;�tM3;1 + �xM4;1 = 0;�tM2;2 + �xM3;2 = 0;�tM1;3 + �xM2;3 = 0;�tM0;4 + �xM1;4 = 0; (3.1)whi
h requires a 
losure for the �fth-order momentsM5;0; : : : ;M1;4. We propose to de�nethis 
losure fun
tion by representing f as a multi-Gaussian distribution fun
tion. Notethat the subset of �ve bivariate moments with j = 0 is the same as those appearing inthe 1-D 
ase. Thus, in order for the 2-D 
losure to be 
onsistent with the 1-D 
losure,the �ve moments with j = 0 should be treated the same in both 
losures. A 2-D moment
losure with this property will be referred to hereinafter as 
onsistent.The 2-D multi-Gaussian distribution fun
tion is de�ned byfG(v) = 4X�=1 ��p2�j�j exp��12(v � v�)t��1(v� v�)� ; � = ��11 �12�12 �22� ; (3.2)where � is the 
ovarian
e matrix. In (3.2) there are �fteen parameters: (��; u�; v�; � =1; : : : ; 4) and (�11; �12; �22). These parameters must be found by solving the nonlinearsystem of the formM =MG 
orresponding to the �fteen bivariate moments up to fourthorder appearing in (3.1). Another advantage of using this form is related to the fa
t thatit naturally in
ludes, as a degenerate 
ase, the non-isotropi
 joint-Gaussian distributionwhen the four quadrature nodes 
oales
e.In this se
tion we provide a brief des
ription of the 2-D moment inversion algorithm.Before des
ribing the general algorithm, we should note that even in the 
ase where



Multi-Gaussian quadrature method of moment 7� = 0 (i.e. Dira
 delta fun
tions), 2-D moment inversion is non-trivial (Yuan & Fox(2010)). Thus, we 
annot expe
t the moment-inversion algorithm for the multi-Gaussiandistribution to be any easier. The algorithm developed in this work makes use of the2-D 
onditional quadrature method of moments (CQMOM) des
ribed in Yuan & Fox(2010). Be
ause the kineti
 equation in (1.2) has non-zero 
uxes only in the x dire
tion,it is natural to 
onstru
t a CQMOM quadrature wherein the v-velo
ity moments are
onditioned on u-velo
ity. For a 4-node quadrature, the CQMOM algorithm will thenuse the following subset of ten moments (shown in bold):266664M0;0 M0;1 M0;2 M0;3 M0;4M1;0 M1;1 M1;2 M1;3M2;0 M2;1 M2;2M3;0 M3;1M4;0 377775 :The twomomentsM2;1 andM3;1 would be used in CQMOMwhen the u-velo
ity momentsare 
onditioned on v-velo
ity (i.e. when the physi
al spa
e has two dimensions), and aretherefore transported for 
onsisten
y. As in the 1-D moment-inversion algorithm, M4;0is used to �nd �11 and M0;4 to �nd �22. Finally, M2;2 is used to �nd �12.yThe 2-D moment-inversion algorithm is more 
ompli
ated than in the 1-D 
ase due tothe 
oupling between the nonlinear equations, and thus will not be des
ribed in detailhere. However, the basi
 steps are as follows:(a) Given moments M, 
ompute eu and qu.(b) Find real root of P(�0), and �211 = eu + �0.(
) Given momentsM, 
ompute ev and qv.(d) Find real root of P(�0), and initial guess �222 = ev + �0.(e) UsingM, �11, and �22, 
ompute �12.(f) Using CQMOM, 
onstru
t a 2-D quadrature 
onditioned on u.(g) Che
k whether M0;4 = MG0;4. If not, update guess for �22 and return to step (e)until 
onvergen
e is a
hieved.The iterations are 
arried out using a bounded se
ant method. For the example appli-
ation 
onsidered in this work, �12 = 0 and the unused moments M2;1 and M3;1 areidenti
ally zero. The 2-D moment-inversion algorithm is thus able to re
over all �fteentransported moments for this example, and hen
e we 
an expe
t that the 2-D moment
losure will be 
onsistent.The spatial moment 
uxes are again 
omputed using a kineti
-based de�nition:Fi;j = Zv Z 10 f(t; x; v)ui+1vjdudv + Zv Z 0�1 f(t; x; v)ui+1vjdudv;where we approximate f using a 16-node CQMOM quadrature:f(t; x; v) = 4X�=1 4X�=1 ����(t; x)Æ �u� u���(t; x)� Æ �v � v���(t; x)�de�ned using 48 moments found from the multi-Gaussian fun
tion in (3.2). (See Yuan &y The extension to a 3-D velo
ity phase spa
e would use the same multi-Gaussian form for fGas in (3.2), but with a 
ovarian
e matrix 
ontaining six parameters. The number of additionalfourth-order moments in 3-D not used by CQMOM is three, and these are analogous to thoseused in 2-D for determining � (i.e. M0;0;4, M2;0;2, M0;2;2). Thus, it would appear that themulti-Gaussian distribution should also be well de�ned in 3-D using a 38-moment quadrature.
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x
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Figure 2. Quadrature of the multi-Gaussian velo
ity distribution fun
tion using CQMOM (left)and further evaluation of the 
ux through a 16-node Dira
 delta distribution with the same 48moments as the multi-Gaussian distribution (right).Fox (2010) for details.) An example of the 16-node quadrature representation is shownin Fig. 2. The algorithm for 
omputing the moment 
uxes is essentially the same as theone des
ribed in Se
. 2.4 for 1-D quadrature.4. Riemann problemAs an example appli
ation, we will use a Riemann problem with either a 1-D or 2-Dvelo
ity phase spa
e. The initial 
onditions are de�ned on the real line with a step in themean u velo
ity at x = 0 : U1 = M1=M0 = M1;0=M0;0 = f1; ifx < 0; and � 1; ifx > 0g.For all x, the initial density is unity and the velo
ity distribution fun
tion is Maxwellianwith energy �2 = 2=(3(1 + St)) where St is the parti
le Stokes number based on thesubgrid-s
ale (SGS) 
uid RMS velo
ity (Reeks (1991)) (assumed to be uniform andequal to one). Note that with these initial 
onditions the velo
ity distribution is assumedinitially to be in equilibrium with the SGS 
uid velo
ity �eld (i.e. e0 = �2). However, thedis
ontinuous nature of the mean parti
le velo
ity will qui
kly lead to parti
le traje
tory
rossing and a strongly non-equilibrium velo
ity distribution fun
tion.For 1-D phase spa
e, a measure of the degree of non-equilibrium is the ratio �2=e,whi
h is unity for an equilibrium distribution and zero when the distribution is 
om-posed entirely of Dira
 delta fun
tions. For a 2-D phase spa
e, the ratios �11=e and �22=emeasure the non-equilibrium behavior in ea
h dire
tion separately. In the Riemann prob-lem des
ribed above, the mean v velo
ity is null so that the velo
ity distribution shouldremain in equilibrium in the v dire
tion for all t. In order to identify 
learly deviationsof the higher-order moments from their equilibrium values, we will use the following nor-malized moments e� = e=e0 energy, q� = q=e3=2 skewness, �� = �=e2 kurtosis, whoseequilibrium values are e� = 1, q� = 0, and �� = 3.In order to solve the moment equations numeri
ally, the 1-D 
omputational domain�2 < x < 2 is dis
retized into 402 �nite-volume 
ells. The spatial 
uxes are treatedusing the �rst-order kineti
-based approa
h. The time step is 
hosen based on the largestmagnitude of the abs
issas u�� used to de�ne the spatial 
uxes with a CFL number of0.5.5. Results and dis
ussionSimulation results for the 1-D Riemann problem are presented in Figs. 3 and 4 for timet = 0:5. Note that due to the equilibrium initial 
onditions, only one velo
ity abs
issa
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Figure 3. Solution to 1-D Riemann problem with St = 1 at t = 0:5. Top left: Weights �1 (blue),�2 (green). Top 
enter: Abs
issas v1 (blue), v2 (green). Top right: Gaussian 
ontribution to energy�2=e. Bottom left: Density �. Bottom 
enter: Mean velo
ity U1. Bottom right: Normalized energye� � 1 (blue), skewness q� (green), kurtosis �� � 3 (red).
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Figure 4. Five transported moments and �2 for 1-D Riemann problem with St = 1 at t = 0:5.is used when �2=e = 1 (i.e. v1) and the other (v2) is set to zero automati
ally usingthe adaptive 1-D quadrature algorithm des
ribed in Yuan & Fox (2010). At t = 0:5, one
an observe that the equilibrium 
ondition is still present on the left and right sides ofthe 
omputational domain. In the 
enter of the domain, �2=e � 0:2 indi
ating that theoverall distribution is 
omposed of two Gaussian distributions with very little overlap.Also, note that unlike in a pure PTC problem where the velo
ity abs
issas remain attheir initial values (i.e. 1 and -1), in Fig. 3 the abs
issas have their largest magnitudesjust behind the \sho
k" in density at the edge of the equilibrium domain. This behavioris a dire
t result of the de�nition of the spatial 
uxes in terms of the underlying bi-
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Figure 5. Solution to 2-D Riemann problem, St = 1 at t = 0:5. Top left: Weights �1 (blue),�2 (green), �3 (red), �4 (
yan). Top 
enter-left: u abs
issas u1 (blue), u2 (green), u3 (red),u4 (
yan). Top 
enter-right: v abs
issas v1 (blue), v2 (green), v3 (red), v4 (
yan). Top right:Gaussian 
ontribution to energy �11=e (blue), �12=e (green), �22=e (red). Bottom left: Density�. Bottom 
enter-left: Normalized energy e�u � 1 (blue), skewness q�u (green), kurtosis ��u � 3(red). Bottom right: Normalized energy e�v�1 (blue), skewness q�v (green), kurtosis ��v �3 (red).Gaussian distribution. Indeed, the outer tails of the Gaussian distribution have highervelo
ity than the value at the peak density and thus penetrate faster into the equilibriumdomain, resulting in a higher lo
al 
ux velo
ity. The strong deviations from equilibriumare also 
learly observed in the normalized energy, skewness, and kurtosis in Fig. 3.Ex
ept at the edges of the equilibrium domain, we see from Fig. 4 that the transportedmoments and �2 are smoothly varying fun
tions of x; more importantly, the singularitiesappearing in the solution do not belong to the 
lass of Æ-sho
ks but to the less singular
lass of sho
ks en
ountered with hyperboli
 systems of 
onservations laws, thus revealinga potential well-behaved system. Moreover, due to the kineti
-based de�nition of thespatial 
uxes, the moments are always realizable, and the moment-inversion algorithmalways 
omputes a well-de�ned quadrature from the updated moments. Overall, the pro-posed bi-Gaussian re
onstru
tion of the velo
ity distribution yields a robust numeri
alalgorithm using a minimum number of moments. In 
omparison to the high-order deltafun
tion re
onstru
tion des
ribed in Fox (2009), the bi-Gaussian quadrature provided ahigher �delity 
ux representation for a �xed number of transported moments. Moreover,be
ause the moments of the bi-Gaussian distribution 
an be 
omputed to any desired or-der, the 
ux representation des
ribed in Se
. 2.4 
an be systemati
ally improved withoutin
reasing the number of transported moments. This advantage be
omes even more sig-ni�
ant for 2-D and 3-D phase spa
es where the number of transported moments neededfor the delta-fun
tion re
onstru
tion in
reases rapidly with the order (Fox (2009)).Results for the 2-D Riemann problem at t = 0:4 are shown in Figs. 5 and 6. Com-paring �rst the �ve moments in Fig. 4 to the 
orresponding moments in Fig. 6, we 
animmediately see that they are identi
al and thus that the 2-D quadrature algorithm is
onsistent. Next we 
an observe that six of the bivariate moments in Fig. 6 are null, as isexpe
ted from the symmetry of velo
ity distribution with respe
t to the v velo
ity. Themoments M0;2 and M0;4 have the same spatial pro�le as M0;0, whi
h is a result of the
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Figure 6. Fifteen transported moments for 2-D Riemann problem with St = 1 at t = 0:5.v velo
ity always remaining in equilibrium. This fa
t 
an be observed most easily fromthe plots of the normalized moments in Fig. 5. Indeed, only the normalized momentsfor the u velo
ity di�er from the equilibrium values. Finally, by 
omparing Fig. 3 tothe 
orresponding plots in Fig. 5 it is obvious that the 2-D quadrature algorithm agreesexa
tly with 1-D version. Furthermore, it is espe
ially en
ouraging to see that the 2-Dquadrature 
an su

essfully handle degenerate 
ases where the abs
issas 
oin
ide withoutany numeri
al diÆ
ulties (e.g. in the equilibrium region).6. Con
lusionsThe proposed quadrature algorithm and related numeri
al s
hemes should eventuallylead to a very promising solution for solving the �ltered NDF for LES of gas-parti
le 
ows.The approa
h 
ombines stability and a lower level of singularity 
ompared to standardquadrature-based moment methods (Kah et al. (2010)), and is able to 
apture both PTC
aused by the free-transport term and the e�e
ts of SGS agitation. It is noteworthythat the multi-Gaussian quadrature naturally degenerates toward the 
orre
t velo
itydistribution with the asso
iated spatial 
uxes in both the PTC and dispersion limits.Moreover, by relying on the re
ent advan
es in CQMOM (Yuan & Fox (2010)), thequadrature naturally adapts to the required number of nodes in even highly degenerate
ases (e.g. in the absense of parti
les).In order to be generally appli
able for approximating solutions to the �ltered kineti
equation in 
omplex gas-parti
le 
ows, the proposed multi-Gaussian quadrature approa
hwill need to rely on a �rmer mathemati
al ba
kground. For example, it will be ne
essaryto prove that it provides a hyperboli
 stru
ture (as is suggested by the numeri
al simula-tions), and to extend the moment-inversion algorithm to more realisti
 multi-dimensional
on�gurations. This is the subje
t of our 
urrent resear
h.
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