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A multi-Gaussian quadrature method of moments
for gas-particle flows in a LES framework

By C. Chalonst, R. O. Fox{ AND M. Massot{

The purpose of the present contribution is to introduce a new high-order moment
formalism for particle/droplet trajectory crossing (PTC) in the framework of large-eddy
simulation (LES) of gas-particle flows. Thus far, the ability to treat PTC has received
several investigations for direct numerical simulations (DNS) using quadrature-based
moment methods based on a sum of Dirac delta functions (Yuan & Fox (2010), Kah
et al. (2010)). However, for LES, such methods require too many moments in order
to capture both the effect of subgrid-scale turbulence on the disperse phase as well as
PTC due to large-scale eddies in a Eulerian mesoscopic framework. The challenge is thus
two-fold: first, to propose a new generation of quadrature with less singular behavior as
well as associated proper mathematical properties and related algorithms, and second to
limit the number of moments used for applicability in multi-dimensional configurations
without losing accuracy in the representation of the spatial fluxes.

1. Introduction

The physics of particles and droplets in a carrier gaseous flow field are described in
many applications (fluidized beds, spray dynamics, alumina particles in rocket boosters,
...) by a number density function (NDF) satisfying a kinetic equation. Solving such
a kinetic equation relies either on a sample of discrete numerical parcels of particles
through a Lagrangian-Monte-Carlo approach or on a moment approach resulting in a
Eulerian system of conservation laws on velocity moments eventually conditioned on size.
In the latter case investigated in the present contribution, the main difficulty for particle
flows with high Knudsen numbers (i.e. weakly collisional flows), where the velocity dis-
tribution can be very far from equilibrium, is the closure of the convective transport at
the macroscopic level. One way to proceed is to use quadrature-based moment methods
where the higher-order moments required for closure are evaluated from the lower-order
transported moments using multi-dimensional quadratures in the form of a sum of Dirac
delta functions in velocity phase space (see Yuan & Fox (2010) and the references therein
for a series of advances within this framework). Such an approach also allows for a well-
behaved kinetic numerical scheme in the spirit of Bouchut Bouchut & al(2003) (from de
Chaisemartin (2009) to Kah et al. (2010), Fréret et al. (2010), Yuan & Fox (2010)) where
the fluxes in a cell-centered finite-volume formulation are directly evaluated from the
knowledge of the quadrature abscissas and weights with guaranteed realizability condi-
tions. Such a quadrature approach and the related numerical methods have been shown
to be able to capture PTC in a DNS context, where the distribution in the exact kinetic
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equation remains at all times in the form of a sum of Dirac delta functions, and can be
extended to high-order numerical schemes (Vikas et al. (2010)).

In a LES framework, the effect of the subgrid scales (SGS) of the turbulent gaseous
flow field can lead to dispersion in velocity phase space for the particles, which can be
described by Fokker-Planck-like models introduced in Reeks (1991). Nevertheless, in a
LES framework PTC still occurs for large enough Stokes numbers in the high Knudsen
number limit because the SGS dispersion is not strong enough to “randomize” the parti-
cle velocities resulting from free kinetic transport. However, capturing both PTC as well
as velocity dispersion (caused by SGS agitation around the Dirac delta function represen-
tation of PTC) would require a large number of quadrature nodes using a delta function
representation. Moreover, such quadrature-based methods result in entropic weakly hy-
perbolic systems of conservation laws and to the formation of d-shock singularities, the
mathematical structure of which is studied in Kah et al. (2010). The purpose of the
present, contribution is to introduce a novel quadrature-based moment approach for the
resolution of the free-transport part of the filtered kinetic equation (i.e. PTC), which also
allows us to naturally account for velocity dispersion. Note that since the free-transport
term in the filtered kinetic equation has exactly the same form as in the original kinetic
equation (Zaichik et al. (2009)), hereinafter we will not make the distinction between
the two forms. The proposed quadrature approach allows us to both limit the number of
unknowns in multi-dimensional configurations, and to regularize the resulting system of
conservation equations, while still being able to capture PTC and velocity dispersion in
the LES framework.

We will first introduce the new moment formalism, quadrature and numerical methods,
using the NDF f(¢,z,v) in 1-D for the free-transport kinetic equation:

Of+v0,f=0, t>0,z€R, veR, (1.1)

with initial condition f(0,z,v) = fo(x,v). The exact solution is given by f(t,z,v) =
f(0,z—vt,v) = fo(x—vt,v). Then, in order to justify the advantages of such an approach
in multi-dimensions, we will switch to the 2-D case in velocity phase space with NDF
f(t,z,v) for v = (u,v)?, which is homogeneous in the y direction, and satisfies:

Of +udpf=0, t>0,z€R veR? (1.2)

with initial condition f(0,z,v) = fo(z,v). With a 2-D velocity phase space, we will
approximate the solution to f using a quadrature representation found from the bivariate
moments. Finally, once the quadrature representation has been mathematically justified
and the algorithms have been presented for 1-D and 2-D cases, we will present numerical
results for the Riemann problem in both cases, thus showing the potential of the approach
as well as the smoothness of the solutions compared to the standard Dirac quadrature.

2. 1-D kinetic model, multi-Gaussian quadrature, and related algorithms
2.1. 1-D moment transport equations

Defining the i-order moment M;(t,z) = fv f(t,z,v)vidv, i = 0,...,N, N € N, the
associated governing equations are easily obtained from (1.1) after multiplication by v*
and integration over v: O; M; + 9, M;+1 = 0, 7 > 0. For the sake of simplicity, but without
any loss of generality, we will focus our attention hereinafter on the five-moment model
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and its abstract form:
OyMy + 0, M, = 0,
Oy My + 0, My = 0,
O My + 0, M5 =0, , M+ 9,F(M) =0, (2.1)
atMS + 61%4 = 07
O My + 0, M5 = 0.

with M = (MO,Ml,]\é,Mg,M4)t and F(M) = (M, Ms, M3, My, M5)*. This model is
closed provided that M3 is defined as a function of M. Here we propose to define this
function by representing f as a bi-Gaussian distribution function.

2.2. 1-D bi-Gaussian distribution

The starting point to define the moment closure consists in representing the velocity
distribution f(t,z,v) by the sum of two Gaussian functions:

) = BB (_(v—vl(x,w) Pt (_w) 22)

e
oV 2m 20?2 oV 2m P o2

where the weights pi(t,z) > 0, p2(t,2) > 0, the velocity abscissas vy (¢, z), v2(t, z) and
the common spread ¢ > 0 must be uniquely determined from the knowledge of M(z, t).
Dropping the (z,t)-dependence to avoid cumbersome notation, the function f& has exact
moments MZG of orders i =0, ..., 5 given by

M(? = p1+ p2,

Mi™ = pro1 + pave,

Mg = p1(0” +v7) + p2(0? +03),

M$ = p1v1 (302 + v2) + pav2 (302 + v3),

M = p1v7 (60 + v7) + pov3 (607 +v3) + 30* (p1 + p2),

M§ = p1v} (1002 + v?) + pav3 (1002 + v3) + 150* (p1v1 + pava).

The moment closure for system (2.1) then naturally consists in setting M5 = M
where the five unknowns p1, p2, v1, v2 and o2 are found by solving the nonlinear system

M; = MiG, 1 =0,...,4; which is clearly equivalent to solving the system
Moy = p1 + p2,
My = p1v1 + pave,
M2 — (72M0 = plvf + p2U%, (23)

M3 — 302 M,y = p1v} + pav3,
My — 602Ms + 30* My = plv‘f + pgvg.

It remains to prove that this system is well-posed in the following proposition.

PROPOSITION 1. For M = (My, My, Mo, M3, My)! such that My > 0, let us define

_ MoMs — M} (M3MZ — M3) — 3M; (Mo M, — M2)

€ Mg ) q M03 )

and
—3M} + MyM@ — AMZM; Ms + 6 MoM?2 M,
n= Mé .
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System (2.3) is well-defined on the phase space Q given by

2
Q = {M = (Mo, My, Mo, M3, My)", My >0,e>0,n>62+%, and n < 3e* if ¢ =0}.

Setting U = (p1, pa, p1v1, pav2,0)t, the function U = U(M) is one-to-one and onto as
soon as vy # v, and for all vy and ve provided that we set py = p2 in the case vy = vo.
Moreover, o2 is given by the unique real root of the third-order polynomial

P(00) = 205 + (11 = 3e*)oo + ¢°,
oo =02 —e.

5 — P15 P2 o My = _ M,y ; H
Proof. We first set py = {7=, o = §£, V1 = v1 — 31, D2 = v2 — 77+, solving (2.3) is

equivalent to solving

1= ﬁl + ﬁ27

0= 7,71 + yT,

e — 0> =P1T; + P75,

q=D\T} + poT3,

n —602e + 30t = p, v} + Py0s3.
with e = (MoMz—M7) /Mg, g = (M3 Mg —M7) =3My (Mo Mz — M7)) [M§, 1 = (=3M; +
MyM§ — AMZM; M3 + 6 MoMEMs) /Mg . Dropping the overlines for the sake of clarity, it
is then a matter to uniquely solve the following nonlinear system in (p1, p2, v1,v2,02):

p1L+ p2 = ]-a
p1v1 + pav2 = 0,
p1vi + pav3 = e — o2, (2.4)

p1v} + pavi = q,
p1v} + pavs = n — 602e + 30

Provided e > o2, it is proved in Desjardins et al. (2008) that the first four equations
allow to find (p1, p2,v1,v2). We will then focus on the last equation to find o2.

In the case ¢ = 0, the second and fourth equations yield pjvi(v? — v3) = 0, and
pav2 (v} —v3) = 0, which gives v := v; = —vy. We then get p; = p» = 1/2 and 02 = e—v?,
20* = 3e? — 1. Recall that our objective is now to uniquely determine v and ¢ > 0 such
that 02 < e. A necessary and sufficient condition is then clearly n €]e?, 3e?[. Note that
the case n = €2 would lead to o = 0, meaning that the Gaussian functions degenerate into
two Dirac delta functions which correspond to the usual quadrature. The case n = 3e?
gives v = 0 and both Gaussian functions coincide.

In the case ¢ # 0, from (2.4), we observe by using the usual algebra of quadrature
methods and by setting o9 = v1v2 and o1 = —(v; + vs), that

e—0?+05=0,
q+oi(e—0%) =0,
n —60%(e — 02) + 30" + 01¢ + oo(e — 0?) = 0.

The last equation then gives that o9 = 0> — e is a root of the third-order polynomial

P(0o) = 205+ (n—3e%)o9+¢>. Note that one must have oy €]—e, 0] to fulfill the condition
e > o2 and to be able to reconstruct ¢ > 0 from og. First, since limgyy—s—0o = —00,
P(0) > 0 and 2 (00) = 1209, there exists a unique root oy < 0 of P. It then follows that
oo > —e if and only if P(—e) < 0, that is if and only if n > e + ¢*/e. ]
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2.3. 1-D moment-inversion algorithm

The three roots of P(og) can be found analytically (one is real, and two are complex
conjugates). In the numerical algorithm for moment inversion, the three roots are found
from the analytical expressions and the real root is determined by checking the magnitude
of the imaginary parts. This method was found to be rapid and robust for all realizable
values of e and q. When My > 0, the 1-D moment-inversion algorithm then consists of
the following three steps:

(a) Given moments M in 2, compute e, ¢ and 7.

(b) Find real root of P(a¢), and 0 = e + 0y.

(¢) Solve (2.4) according to Desjardins et al. (2008) to find p1, p2, v1, v2 (i-e. variables
without the overlines). In the case where 02 = e, we set po = vo = 0 and p; = My,
v = M1 /MO
When My =0, we set p; = p» = 0 and (without loss of generality) o = v; = vy = 0.

2.4. 1-D kinetic-based fluz algorithm

The spatial moment fluxes F(M) are computed using a kinetic-based definition:

00 0
Fi(t,z) = / ft,z, o)™ dv +/ f(t,z, v dv, i=0,...,4; (2.5)
0 —00

where the decomposition into positive and negative directions is used to define the flux
function as originally proposed by Bouchut (see de Chaisemartin (2009) and references).
The numerical representation of the flux function is a critical point in moment trans-
port methods because only realizable moment sets can be successfully inverted. We use
here an original strategy for the flux evaluation in (2.5). We use the presumed form of
the distribution f& underlying the quadrature in order to evaluate a higher number of
eight moments and eventually use CQMOM in order to generate a compactly supported
velocity distribution using a 4-node Gaussian quadrature :

Ftm0) =30 pa(ta)8 (0 = 03(1,2))

which matches the moments up to order seven of the bi-gaussian distribution (and thus
the same moments up to order five in system (2.1)!) An example of the 4-node quadrature
representation is shown in Fig. 1. The resulting algorithm for computing the moment
fluxes is as follows:

(a) Given moments M, compute p;, p2, v1, v2, and o2 using the 1-D moment-inversion
algorithm in Sec. 2.3.

(b) Compute MY = (M§, ME, ... M&)t from (2.2).

(¢) Apply the Gaussian quadrature algorithm with MY to compute pZ and v for
a=1,...,4.

(d) Compute spatial moment fluxes using p% and v’ as described in Vikas et al. (2010).
In order to handle the case where 02 = 0 (i.e. the true distribution is composed of two
delta functions), the Gaussian quadrature in step (c¢) is computed using the adaptive 1-D
quadrature algorithm described in Yuan & Fox (2010).

Note that because it is straightforward to compute the moments of f& starting from
(2.2), the compact representation of the fluxes can be easily extended to include more
than four nodes even if this would rapidly limit the CFL number and increase numeri-
cal diffusion. With kinetic-based fluxes, it is possible to derive high-order numerical flux
functions that are guaranteed to be realizable when the distribution function is repre-
sented by a finite sum of Dirac delta functions (Vikas et al. (2010)). The important point
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J\J\ i

FIGURE 1. Quadrature of the velocity distribution function with a bi-Gaussian distribution
(left). Evaluation of a compactly supported distribution, with the same moments up to seventh
order as the bi-Gaussian, under the form of a 4-node distribution for flux evaluation.

to be underlined here is the fact that we reach the possibility to capture in the fluxes the
precise dynamics of two Gaussian distributions and thus differentiate between crossing
of two clouds of particles from the dispersion around the mean for each cloud with only
five moments effectively transported; besides it is easy to increase the accuracy of the
numerical flux function without increasing the number of transported moments.

3. 2-D kinetic model, multi-Gaussian quadrature, and related algorithms
Defining the bivariate moments

Mm(t,:ﬂ)=/f(t,:n,v)uivjdv, ,j=0,...,N, Ne€N,

the associated governing equations are easily obtained from (1.2):
OeM; ;4 0xMiyq,; =0, i,5>0.

We will consider in this work a 15-moment model:

OeMo,o+ 0y M1 =0,
OeMi,o+ 0y Mo =0,
OrMoq + 0z M11 =0,
OrMs o + 0 M3z o =0,
OrMiq + 0y Moy =0,

0:eMp 2+ 0 My 2 =0,
O0eMs o+ 0 My =0,
OtMsq + 0:Ms 1 =0,
OtMi o+ 0 M2 =0,
O0:tMoy3 + 0:M13 =0,

O My + OIMB,O =0,
O4Mz 1 + 0, My =0,
OrMs 5 + amM3,2 =0,
OMi 3+ 0, Ms3 =0,
OMo.4 + 0, My 4 = 0;

(3.1)

which requires a closure for the fifth-order moments My g, ..., M1 4. We propose to define
this closure function by representing f as a multi-Gaussian distribution function. Note
that the subset of five bivariate moments with j = 0 is the same as those appearing in
the 1-D case. Thus, in order for the 2-D closure to be consistent with the 1-D closure,
the five moments with j = 0 should be treated the same in both closures. A 2-D moment
closure with this property will be referred to hereinafter as consistent.

The 2-D multi-Gaussian distribution function is defined by

4
G _ Z 1 — _ |01 012
f = P 2 |Z <—§(V — Va)tz 1(\/ — Va)> 5 Y= |:0_12 022:| 5 (32)

where ¥ is the covariance matrix. In (3.2) there are fifteen parameters: (pq, Uq, Vo, @ =
1,...,4) and (o11,012,092). These parameters must be found by solving the nonlinear
system of the form M = M corresponding to the fifteen bivariate moments up to fourth
order appearing in (3.1). Another advantage of using this form is related to the fact that
it naturally includes, as a degenerate case, the non-isotropic joint-Gaussian distribution
when the four quadrature nodes coalesce.

In this section we provide a brief description of the 2-D moment inversion algorithm.
Before describing the general algorithm, we should note that even in the case where
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¥ = 0 (i.e. Dirac delta functions), 2-D moment inversion is non-trivial (Yuan & Fox
(2010)). Thus, we cannot expect the moment-inversion algorithm for the multi-Gaussian
distribution to be any easier. The algorithm developed in this work makes use of the
2-D conditional quadrature method of moments (CQMOM) described in Yuan & Fox
(2010). Because the kinetic equation in (1.2) has non-zero fluxes only in the z direction,
it is natural to construct a CQMOM quadrature wherein the v-velocity moments are
conditioned on wu-velocity. For a 4-node quadrature, the CQMOM algorithm will then
use the following subset of ten moments (shown in bold):

The two moments M, ; and M3 ; would be used in CQMOM when the u-velocity moments
are conditioned on v-velocity (i.e. when the physical space has two dimensions), and are
therefore transported for consistency. As in the 1-D moment-inversion algorithm, My o
is used to find 011 and My 4 to find g92. Finally, My » is used to find oy5.1

The 2-D moment-inversion algorithm is more complicated than in the 1-D case due to
the coupling between the nonlinear equations, and thus will not be described in detail
here. However, the basic steps are as follows:

(a¢) Given moments M, compute e, and g,,.
b) Find real root of P(0y), and 03, = e, + 0.
¢) Given moments M, compute e, and g,.
d) Find real root of P(00), and initial guess 035 = e, + 0y.
e) Using M, 011, and 092, compute o12.
f) Using CQMOM, construct a 2-D quadrature conditioned on u.

(9) Check whether My 4 = Mg If not, update guess for o35 and return to step (e)
until convergence is achieved.
The iterations are carried out using a bounded secant method. For the example appli-
cation considered in this work, 012 = 0 and the unused moments M>; and M3 ; are
identically zero. The 2-D moment-inversion algorithm is thus able to recover all fifteen
transported moments for this example, and hence we can expect that the 2-D moment
closure will be consistent.

The spatial moment fluxes are again computed using a kinetic-based definition:

00 0
F;; =// f(t,a:,v)ui+1vjdudv+// ft,z,v)u v dud,
vJO v J—o00

where we approximate f using a 16-node CQMOM quadrature:

(
(
(
(
(

ft,z,v)= Z Z Prp(t @) (u—uls(t,x)) 6 (v—vig(t, z))
a=1 =1

defined using 48 moments found from the multi-Gaussian function in (3.2). (See Yuan &

 The extension to a 3-D velocity phase space would use the same multi-Gaussian form for f¢
as in (3.2), but with a covariance matrix containing six parameters. The number of additional
fourth-order moments in 3-D not used by CQMOM is three, and these are analogous to those
used in 2-D for determining X (i.e. Mo, 0,4, M2,0,2, Mo,2,2). Thus, it would appear that the
multi-Gaussian distribution should also be well defined in 3-D using a 38-moment quadrature.
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FIGURE 2. Quadrature of the multi-Gaussian velocity distribution function using CQMOM (left)
and further evaluation of the flux through a 16-node Dirac delta distribution with the same 48
moments as the multi-Gaussian distribution (right).

Fox (2010) for details.) An example of the 16-node quadrature representation is shown
in Fig. 2. The algorithm for computing the moment fluxes is essentially the same as the
one described in Sec. 2.4 for 1-D quadrature.

4. Riemann problem

As an example application, we will use a Riemann problem with either a 1-D or 2-D
velocity phase space. The initial conditions are defined on the real line with a step in the
mean u velocity at =0 : Uy = My /Mo = My0/Moo = {1, ifz <0, and — 1, ifz > 0}.
For all z, the initial density is unity and the velocity distribution function is Maxwellian
with energy 02 = 2/(3(1 + St)) where St is the particle Stokes number based on the
subgrid-scale (SGS) fluid RMS velocity (Reeks (1991)) (assumed to be uniform and
equal to one). Note that with these initial conditions the velocity distribution is assumed
initially to be in equilibrium with the SGS fluid velocity field (i.e. eg = o?). However, the
discontinuous nature of the mean particle velocity will quickly lead to particle trajectory
crossing and a strongly non-equilibrium velocity distribution function.

For 1-D phase space, a measure of the degree of non-equilibrium is the ratio o2 /e,
which is unity for an equilibrium distribution and zero when the distribution is com-
posed entirely of Dirac delta functions. For a 2-D phase space, the ratios 011 /e and a2 /€
measure the non-equilibrium behavior in each direction separately. In the Riemann prob-
lem described above, the mean v velocity is null so that the velocity distribution should
remain in equilibrium in the v direction for all ¢. In order to identify clearly deviations
of the higher-order moments from their equilibrium values, we will use the following nor-
malized moments e* = e/eg energy, ¢* = q/e*/? skewness, n* = n/e? kurtosis, whose
equilibrium values are e* =1, ¢* =0, and n* = 3.

In order to solve the moment equations numerically, the 1-D computational domain
—2 < x < 2 is discretized into 402 finite-volume cells. The spatial fluxes are treated
using the first-order kinetic-based approach. The time step is chosen based on the largest
magnitude of the abscissas v}, used to define the spatial fluxes with a CFL number of
0.5.

5. Results and discussion

Simulation results for the 1-D Riemann problem are presented in Figs. 3 and 4 for time
t = 0.5. Note that due to the equilibrium initial conditions, only one velocity abscissa
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FIGURE 3. Solution to 1-D Riemann problem with St =1 at ¢ = 0.5. Top left: Weights p1 (blue),
p2 (green). Top center: Abscissas vi (blue), v2 (green). Top right: Gaussian contribution to energy
o /e. Bottom left: Density p. Bottom center: Mean velocity U . Bottom right: Normalized energy
e* — 1 (blue), skewness ¢* (green), kurtosis n* — 3 (red).
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FIGURE 4. Five transported moments and 2 for 1-D Riemann problem with St =1 at ¢ = 0.5.

is used when ¢%/e = 1 (i.e. v1) and the other (v2) is set to zero automatically using
the adaptive 1-D quadrature algorithm described in Yuan & Fox (2010). At ¢t = 0.5, one
can observe that the equilibrium condition is still present on the left and right sides of
the computational domain. In the center of the domain, 02 /e ~ 0.2 indicating that the
overall distribution is composed of two Gaussian distributions with very little overlap.
Also, note that unlike in a pure PTC problem where the velocity abscissas remain at
their initial values (i.e. 1 and -1), in Fig. 3 the abscissas have their largest magnitudes
just behind the “shock” in density at the edge of the equilibrium domain. This behavior
is a direct result of the definition of the spatial fluxes in terms of the underlying bi-
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=2 -1 0 1 2 -2 -1 o 1 2 =2 -1 o 1 2 -2 -1 o 1 2

FIGURE 5. Solution to 2-D Riemann problem, St = 1 at ¢t = 0.5. Top left: Weights p1 (blue),
p2 (green), ps (red), pa (cyan). Top center-left: u abscissas u1 (blue), us (green), us (red),
u4 (cyan). Top center-right: v abscissas v (blue), v2 (green), vs (red), vs (cyan). Top right:
Gaussian contribution to energy o11/e (blue), o12/e (green), o22/e (red). Bottom left: Density
p. Bottom center-left: Normalized energy e; — 1 (blue), skewness ¢; (green), kurtosis n; — 3
(red). Bottom right: Normalized energy e; — 1 (blue), skewness g, (green), kurtosis 7, — 3 (red).

Gaussian distribution. Indeed, the outer tails of the Gaussian distribution have higher
velocity than the value at the peak density and thus penetrate faster into the equilibrium
domain, resulting in a higher local flux velocity. The strong deviations from equilibrium
are also clearly observed in the normalized energy, skewness, and kurtosis in Fig. 3.
Except at the edges of the equilibrium domain, we see from Fig. 4 that the transported
moments and o2 are smoothly varying functions of 2; more importantly, the singularities
appearing in the solution do not belong to the class of §-shocks but to the less singular
class of shocks encountered with hyperbolic systems of conservations laws, thus revealing
a potential well-behaved system. Moreover, due to the kinetic-based definition of the
spatial fluxes, the moments are always realizable, and the moment-inversion algorithm
always computes a well-defined quadrature from the updated moments. Overall, the pro-
posed bi-Gaussian reconstruction of the velocity distribution yields a robust numerical
algorithm using a minimum number of moments. In comparison to the high-order delta
function reconstruction described in Fox (2009), the bi-Gaussian quadrature provided a
higher fidelity flux representation for a fixed number of transported moments. Moreover,
because the moments of the bi-Gaussian distribution can be computed to any desired or-
der, the flux representation described in Sec. 2.4 can be systematically improved without
increasing the number of transported moments. This advantage becomes even more sig-
nificant for 2-D and 3-D phase spaces where the number of transported moments needed
for the delta-function reconstruction increases rapidly with the order (Fox (2009)).
Results for the 2-D Riemann problem at ¢ = 0.4 are shown in Figs. 5 and 6. Com-
paring first the five moments in Fig. 4 to the corresponding moments in Fig. 6, we can
immediately see that they are identical and thus that the 2-D quadrature algorithm is
consistent. Next we can observe that six of the bivariate moments in Fig. 6 are null, as is
expected from the symmetry of velocity distribution with respect to the v velocity. The
moments My > and My 4 have the same spatial profile as My 9, which is a result of the
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FIGURE 6. Fifteen transported moments for 2-D Riemann problem with St =1 at ¢ = 0.5.

v velocity always remaining in equilibrium. This fact can be observed most easily from
the plots of the normalized moments in Fig. 5. Indeed, only the normalized moments
for the u velocity differ from the equilibrium values. Finally, by comparing Fig. 3 to
the corresponding plots in Fig. 5 it is obvious that the 2-D quadrature algorithm agrees
exactly with 1-D version. Furthermore, it is especially encouraging to see that the 2-D
quadrature can successfully handle degenerate cases where the abscissas coincide without
any numerical difficulties (e.g. in the equilibrium region).

6. Conclusions

The proposed quadrature algorithm and related numerical schemes should eventually
lead to a very promising solution for solving the filtered NDF for LES of gas-particle flows.
The approach combines stability and a lower level of singularity compared to standard
quadrature-based moment methods (Kah et al. (2010)), and is able to capture both PTC
caused by the free-transport term and the effects of SGS agitation. It is noteworthy
that the multi-Gaussian quadrature naturally degenerates toward the correct velocity
distribution with the associated spatial fluxes in both the PTC and dispersion limits.
Moreover, by relying on the recent advances in CQMOM (Yuan & Fox (2010)), the
quadrature naturally adapts to the required number of nodes in even highly degenerate
cases (e.g. in the absense of particles).

In order to be generally applicable for approximating solutions to the filtered kinetic
equation in complex gas-particle flows, the proposed multi-Gaussian quadrature approach
will need to rely on a firmer mathematical background. For example, it will be necessary
to prove that it provides a hyperbolic structure (as is suggested by the numerical simula-
tions), and to extend the moment-inversion algorithm to more realistic multi-dimensional
configurations. This is the subject of our current research.
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