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Abstract. The present work is devoted to the numerical approximation of the solutions of
the inviscid limit of multi-pressure Navier-Stokes (NS) equations in several space dimensions. The
nonconservative form of the Euler-like limit model makes the shock solutions to be sensitive with
respect to the underlying small scales, and then challenging their numerical approximation. In par-
ticular, classical algorithms fails in producing good numerical results. Here we are mainly concerned
with (large time stepping) implicit numerical strategies. We first exhibit a set of generalized jump
conditions satisfied by the shock solutions and well-suited to derive a time-implicit scheme. We then
devise a linearized time-implicit solver for the sake of efficiency. This solver is shown to preserve the
positivity of each internal energy εi provided that the total internal energy stays positive.
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1. Introduction. In this work, we are interested in the numerical approximation
of the solutions of the following convective-diffusive system in non-conservation form :


∂tρ+∇. ρw = 0, x ∈ Rd, t > 0,

∂tρw +∇. (ρw ⊗w +
N∑
i=1

pi(ρ, ρεi) Id) = ε ∇.
( N∑
i=1

µi(ρ, ρεi) σ
)
,

∂tρεi +∇. ρεiw + pi(ρ, ρεi)∇. w = ε µi(ρ, ρεi) σ : ∇w, i = 1, ..., N,

(1.1)

with σ = (∇w + t∇w) − 2
3∇. w Id. Here, the small parameter ε > 0 denotes the

inverse of a Reynolds number. The main emphasis is put on the solutions of (1.1) in
the inviscid regime, namely in the limit ε → 0+. With classical notations, ρ denotes
the density of a complex compressible material with velocity w ∈ Rd and modelled
by N independent internal energies {ρεi}i=1,...,N . The above system is equivalent to
the usual Navier-Stokes equations in conservation form in the case of a single internal
energy N = 1, and consists of a natural extension for larger values of N . Here,
N ≥ 2 independent pressure laws pi(ρ, ρεi) are present and the N associated internal
energies ρεi are given an independent evolution equation. We highlight right now that
the proposed model does not rewrite in general in conservation form. For i = 1, . . . , N ,
µi ≥ 0 represents the (smooth) viscosity law associated with the internal energy ρεi.
We shall assume that µ :=

∑N
i=1 µi > 0.

Several models from the physics enter the present framework. Let us quote for instance
compressible turbulence models like the k− ε model (see [5], [3]), and more generally
the multi-scale models (see [11]) for which a laminar pressure and some turbulent
pressures are involved, or even models coming from the plasma physics (see [23]).
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187, 75252 Paris Cedex 05, France (chalons@math.jussieu.fr).
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The PDE model under consideration can be given the following condensed form:

∂tVε +
d∑
k=1

Ak(Vε) ∂xk
Vε = ε B(Vε,

d∑
k,l=1

∂xk
Dlk(Vε)∂xl

Vε). (1.2)

The underlying nonlinear first-order system will be seen to be hyperbolic so that its
solutions may develop discontinuities in finite time. Due to the non-conservation form
of (1.2), the classical weak theory of distributions cannot cope with the inviscid limit
ε → 0+. Several theories have been developed over the past two decades to handle
this singular limit. We refer to the pionneering works by LeFloch [34], Dal Maso,
LeFloch and Murat [25], and also by Colombeau and Leroux [21]. Note that these
contributions specifically deal with first order nonconservative products, assuming
that the viscous perturbations stand in conservation form. In the present work, we use
a distinct mathematical framework specifically devoted to treat viscous perturbations
in non-conservation form. Let us stress at this stage that all these theories share the
same challenging issue : the discontinuous solutions of the inviscid limit equations are
regularization-dependent. Therefore, they provide relevant and complementary tools
to account for the sensitiveness of the shock solutions with respect to the underlying
viscous small scales.
The theoretical framework we consider hereafter specifically assumes the existence of
a change of variable V→ v(V) so that (1.2) rewites:

∂tvε +
d∑
k=1

∂xk
Fk(vε) = ε R(vε,

d∑
k,l=1

∂xk
Dlk(vε)∂xl

vε). (1.3)

In other words, the viscous perturbation still reads in non-conservation form but the
first order terms now stand in divergence form. Let us now consider the inviscid
limit ε → 0+ in the equivalent system (1.3). We stress that we cannot expect
the viscous perturbation to identically vanish everywhere due to its nonconservative
nature. Instead, we get a vector-valued bounded Borel measure κv concentrated in
the shocks of limit solutions:

∂tv +∇. F(v) = κv. (1.4)

This system will be given a rigorous mathematical formulation hereafter on the ground
of travelling waves solutions to (1.3). Such a strategy has already been used to prove
existence and uniqueness of Riemann solutions to the inviscid limit of (1.1) in one
space variable (see [15]). The right hand side in (1.4) naturally gives rise to general-
ized jump conditions and is refered as to kinetic relations. This terminology is taken
from other parts of the Physics of complex compressible material. Let us quote for
instance the theory of undercompressive discontinuous solutions arising in the theory
for phase transitions (see [1], [33]).
From a numerical standpoint, the sensitiveness of shock solutions with respect to the
viscous small scales makes particularly difficult the capture of the discontinuous so-
lutions in (1.4). Indeed, discrete shock solutions turn to be deeply dependent on the
numerical diffusion of the scheme and the latter does not match generally speaking
with the exact viscous mechanisms in (1.3). This leads to large errors between exact
and discrete solutions. Let us stress that even the original Godunov method fails
in producing good numerical results. This failure has been analyzed and cured in
several contributions by Berthon-Coquel [2], [4], Chalons-Coquel [12], [13], [14], [16].
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The proposed analysis suggested several correction procedures. These techniques have
been devised in the setting of fully explicit methods.
By contrast, the present work is concerned with the capture of stationary discon-
tinuous solutions of (1.4) in several space dimensions. Achieving such a goal with
efficiency requires the development of large time stepping implicit strategies. To meet
this requirement, we propose a new correction procedure well-adapted to large CFL
stabilizing techniques. The proposed method takes the form of a predictor-corrector
strategy built for efficiency from a linearized time implicit solver. This method is
shown to preserve the positivity of each internal energy εi, 1 ≤ i ≤ N , provided that
the sum of all the internal energies stays positive. Note that a complete stability the-
ory is first obtained in the usual setting for time-explicit method. The key findings in
this framework stay at the very basis of the extensions to large time stepping formula-
tions. Numerical evidences in several space dimensions highlight the relevance of the
method, assessing in particular its capability to produce perfectly stationary solutions.

To conclude the first part of the introduction, we mention that a longer version of this
paper is proposed in [18]. It contains the details of most of the proofs of the results
stated here.

1.1. Closure relations and first properties. Let us first consider the closure
equations defining the N pressure laws pi = pi(ρ, ρεi). With a little abuse in the
notations, we will also write pi = pi(τ, εi), τ = 1/ρ. According to the second principle
of thermodynamics, we shall assume that the relation

−Ti(τ, εi)dSi = dεi + pi(τ, εi)dτ (1.5)

defines a smooth and strictly convex mapping (τ, εi) → Si(τ, εi) > 0 for any given
i = 1, .., N , where the temperature Ti(τ, εi) is assumed to stay positive. As a well-
known consequence (see [27] for instance), the well-defined mapping (τ, Si)→ εi(τ, Si)
is strictly convex, and so does the mapping (ρ, ρεi) → ρSi(ρ, ρεi) := ρSi(1/ρ, ρεi/ρ)
and (ρ, ρSi)→ ρεi(ρ, ρSi) := ρεi(1/ρ, ρSi/ρ) (here again with some little abuse in the
notations).
In addition, each energy law is assumed to obey the Weyl’s assumptions (see again
[27]) and in particular the asymptotic conditions limρSi→0+ ρεi(ρ, ρSi) = +∞ and
limρSi→+∞ ρεi(ρ, ρSi) = 0. Note that all the above assumptions are quite classical in
the frame of the usual Navier-Stokes equations (N = 1).

Owing to these assumptions, one can easily prove the following statement that high-
lights the relationships with the usual setting N = 1. Let us define

Ω = {V := (ρ, ρw, {ρεi}1≤i≤N ) ∈ RN+d+1/ρ > 0, ρw ∈ Rd, ρεi > 0, 1 ≤ i ≤ N}.

Lemma 1.1. Let n = t(n1, ..., nd) be a unit vector in Rd. The first order system
extracted from (1.1) is hyperbolic over Ω, with the following eigenvalues : λ1(V) =
w.n− c ≤ λj=2,...,N+d(V) = w.n ≤ λN+d+1(V) = w.n + c, with c2(V) =

∑N
i=1 c

2
i (V)

and where each partial sound speed is such that c2i (V) := (∂ρpi)ρSi
> 0. The 1− and

(N + d+ 1)− characteristic fields are genuinely nonlinear, all the other characteristic
fields being linearly degenerate.
In other words, the intermediate fields are associated with contact discontinuities
in the n-direction and across which the eigenvalue w.n stays continuous. As a
consequence, these fields do not induce ambiguity in the nonconservative products
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pi(ρ, ρεi)∇. w if we focus on the first order system extracted from (1.1). This is al-
ready the case when N = 1.
By contrast, the two extreme characteristic fields are genuinely nonlinear and thus
responsible for the occurence of shock waves in the n-direction and where the velocity
w.n and the partial pressure laws pi(ρ, ρεi) have nontrivial jumps. Hence, ambiguities
are in order in the nonconservative products entering the first order system extracted
from (1.1). This is of course not the case when N = 1.

The non-conservation form of (1.1) thus rises the question of the existence of an
admissible change of variables that would recast (1.1) in full conservation form. With
this respect, the next result gives all the additional nontrivial equations satisfied by
the smooth solutions of (1.1) and having (at least) a convective part in conservation
form (see [13] or [2], [5] when N = 2) :

Theorem 1.2. Smooth solutions of (1.1) obey the following conservation law :

∂t{ρE}(Vε) +∇. {(ρE +
N∑
i=1

pi)w}(Vε) = ε ∇.
( N∑
i=1

µi(ρ, ρεi) σ.w
)ε
, (1.6)

∂t(ρSi)(Vε) +∇. (ρSiw)(Vε) = −ε 1
Ti
µεi(ρ, ρεi) σ

ε : ∇wε, i = 1, ..., N, (1.7)

where the total energy reads ρE = ||ρw||2/2ρ+
∑N
i=1 ρεi.

Then, it is clear that system (1.1) cannot be recast in full conservation form since
generally speaking only one additional conservation law exists, while (1.1) is com-
posed of N equations in non-conservation form. From a numerical point of view,
it is well-known that the lack of conservation form makes challenging the numerical
approximation of the underlying shock waves.
With this in mind, let us however use the above result to propose a suitable change
of variables for (1.1). Obviously, the variables ρ, ρw and ρE are natural candidates
since they are governed by conservation laws. Next and for completeness, we consider
without restriction the set {ρSi}1≤i≤N−1 to define v := (ρ, ρw, ρE, {ρSi}1≤i≤N−1) as
an admissible change of variables. Then, smooth solutions of (1.1) satisfy :

∂tρ
ε +∇. (ρw)ε = 0, t > 0,

∂t(ρw)ε +∇. (ρw ⊗w +
N∑
i=1

pi Id)ε = ε ∇.
( N∑
i=1

µi(ρ, ρεi) σ
)ε
,

∂t(ρE)ε +∇. {(ρE +
N∑
i=1

pi)w}ε = ε ∇.
( N∑
i=1

µi(ρ, ρεi) σ.w
)ε
,

∂t(ρSi)ε +∇. (ρSiw)ε = −ε 1
Ti
µεi(ρ, ρεi)σ

ε : ∇wε, i = 1, ..., N − 1.

(1.8)

This equivalent form of (1.1) will be useful in the forthcoming developments. Note
that the smooth solutions of (1.8) obey the additional balance law

∂tρSN (vε) +∇. (ρSN (v)w)ε = −ε 1
TN

µεN (ρ, ρεN ) σε : ∇wε. (1.9)

1.2. The asymptotic regime ε → 0+. In this work, we are concerned with
very large values of the Reynolds number, that is very small values of ε > 0. In this
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regime, the solutions of the PDE model (1.8) exhibit very stiff zones of transition, the
so-called viscous shock layers and boundary layers. We shall only focus on the viscous
shock profiles and postpone the treatment of boundary layers to a forthcoming work.
The proper resolution of the small scales taking place within the shock profiles requires
grid refinements that are out of reach till now. This means that the small scales cannot
be resolved in practice. We are thus led to consider the system (1.8) in the limit of
ε → 0. However, the non-conservation form of the viscous perturbation entering (1.8)
makes not straightforward the way to handle this singular limit. Indeed, the entropy
dissipation rates in (1.8) cannot vanish in the limit ε → 0, unlike the viscous terms
in conservation form. In other words, the limit system formally writes

∂tv +∇. F(v) = κv (1.10)

where κv = (0Rd+2 , (κiv)1≤i≤N−1) denotes a vector-valued bounded Borel measure to
be precised. This measure is concentrated on the shock discontinuities of the limit
solutions of (1.8) and vanishes elsewhere. In particular, κiv ≤ 0 with i ∈ {1, ..., N−1}
stands for the dissipation rate of the entropy Si across shock discontinuities. In the
limit ε → 0, the additional equation (1.9) reads

∂tρSN (v) +∇. ρSN (v)w = κNv. (1.11)

Let us first give a clear mathematical definition of the discontinuous plane waves of
the limit equations (1.10)-(1.11). These solutions have the special form

v(x, t) ≡ v(x.ν − σt) = v− + (v+ − v−) H(x.ν − σt), x ∈ Rd, (1.12)

where v− and v+ are two constant states, σ ∈ R denotes the speed of propagation,
ν ∈ Rd with ||ν|| = 1 is the normal direction of the plane wave and H is the Heavyside
function. Arguing about the rotational invariance of the equations, it is classical to
shift from the (arbitrary) direction ν to a fixed given direction, say e1, in order to
characterize the shock solutions in a single space variable x ∈ R:

vν(x− σt) = vν− + (vν+ − vν−) H(x− σt), (1.13)

where vν+ ≡ v(v+, ν) (respectively vν− ≡ v(v−, ν)) is built from v+ (respectively v−)
and the directions ν and e1. We refer to [27] for the details. As usual, a function
(1.13) is said to be a shock solution if it admits a viscous shock profile. In other words,
such a function must be the limit when ε → 0 of a family of smooth traveling wave
solutions of the quasi-1D form of the equations (1.8)-(1.9). The latter are solutions of
the form v(ξ), ξ = x−σt, with limξ→±∞ v(ξ) = vν±. Existence and uniqueness (up to
translation) of such solutions have been proved in [15], under the usual Lax condition.
Namely and focusing on the first characteristic field, being given any vν− and velocity
σ prescribed such that σ < w−.ν − c(vν−), existence and uniqueness is proved for
vν+. Integrating the above equations for ξ ∈ R yields the expected generalized jump
relations

−σ((ρSi)+ − (ρSi)−) + ((ρSiw.ν)+ − (ρSiw.ν)−) = κi(vν−, σ) ≡ κi(v(v−, ν);σ)

where we have set

κi(v(v−, ν);σ) = −
∫

R

µi
Ti
||dξw.ν||2 dξ. (1.14)
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At last, in order to give a clear mathematical framework for the limit equations
(1.10) and (1.11), we restrict ourselves to piecewise Lipschitz functions with bounded
discontinuities. The weak solutions of the limit equations (1.10)-(1.11) are defined as
follows. Let n = (nt,nx) with nx = (n1, ..., nd) ∈ Rd denote an unit outward vector
to a time-space smooth discontinuity surface Γ. We write v− and v+ the limit of the
function v at (t,x) ∈ Γ in the normal direction n :

v± = lim
θ→0±

v(t+ θnt,x + θ nx). (1.15)

Definition 1.3. Let κv be a vector-valued bounded Borel measure. Then, a
piecewise Lipschitz function v is a solution of (1.10) if :
1) In the zone of smoothness, v solves in the classical sense

∂tv +∇. F(v) = 0. (1.16)

2) At a point of discontinuity between v− and v+, v satisfies the generalized jump
conditions :

nt(v+ − v−) +
d∑
i=1

ni(Fi(v+)− Fi(v−)) = κ(v(v−, ν), σ), (1.17)

where κ(v(v−, ν), σ) = (0, (κi(v(v−, ν), σ))1≤i≤N−1) is obtained from (1.14) with i =
1, ..., N − 1, setting as usual ν = nx/||nx||Rd , σ = −nt/||nx||Rd .

2. Numerical motivation. The objective of this section is to explain from a
numerical point of view the motivation of the present work, namely the devise of
a robust and implicit in time numerical scheme for approximating the solutions of
(1.10)-(1.11). We begin by showing that classical methods like Godunov’s scheme fail
in providing numerical solutions in good agreement with exact ones. We proceed by
a brief review of our previous works [4], [12] and [13] in which several relevant explicit
in time numerical strategies are proposed. At last, we mention the main difficulties
related to the extension of these strategies to an implicit in time framework, and give
the basis of the developments proposed in the next section.

2.1. What is wrong with the classical methods. In this paragraph, we give
example of the failure of the classical finite volume methods for approximating the
solutions of (1.10)-(1.11). We focus ourselves on the celebrated Godunov method
in one space dimension and with constant space and time steps ∆x and ∆t. Let
us consider the computation of an isolated shock wave (v−,v+, σ) separating two
constant states v− and v+ and propagating with speed σ > 0 such that :

−σ(v+ − v−) + (f(v+)− f(v−)) = κ(v−, σ), (2.1)

and

−σ
(
(ρSN )(v+)− (ρSN )(v−)

)
+
(
(ρSNw)(v+)− (ρSNw)(v−)

)
= κN (v−, σ). (2.2)

We start from the initial data v0(x) = v− + (v+ − v−)H(x) where H denotes the
Heavyside function. After one time step, the Godunov scheme gives a piecewise
constant solution which differs from v− and v+ only in the cell ]0,∆x[ with a state
v1 given by :

v1 =
1

∆x

∫ ∆x

0

v0(x− σ∆t)dx =
∆t
∆x

σv− + (1− ∆t
∆x

σ)v+, (2.3)
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that is, setting λ = ∆t/∆x and using (2.1),

v1 = v+ − λ(f(v+)− f(v−)) + λκ(v−, σ). (2.4)

This new value v1 6= v−,v+ illustrates the numerical diffusion induced by the averag-
ing procedure of the Godunov method. As it is well-known, this numerical diffusion
is associated with an entropy dissipation rate that can be measured thanks to the
additional entropy law (1.11). Indeed, Jensen’s inequality gives :

(ρSN )(v1) ≤ 1
∆x

∫ ∆x

0

(ρSN )(v0(x− σ∆t))dx = λσ(ρSN )(v−) + (1− λσ)(ρSN )(v+),

that is using (2.2),

(ρSN )(v1) ≤ (ρSN )(v+)− λ
(
(ρSNw)(v+)− (ρSNw)(v−)

)
+ λκN (v−, σ) (2.5)

where

(ρSN )(v1)− 1
∆x

∫ ∆x

0

(ρSN )(v0(x− σ∆t)) = O(1)
1

∆x

∫ ∆x

0

||v1 − v0(x− σ∆t)||2dx

for some O(1) linked to the modulus of convexity of the function v→ (ρSN )(v).
Hence, the error between (ρSN )(v1) and the expected value λσ(ρSN )−+(1−λσ)(ρSN )+

evolves according to the square of the shock strength. This explains the unacceptable
errors generally observed between the exact and the numerical solutions after several
numerical time steps. We refer the reader to [4], [12], [13], [14] for several illustrations.
Note that by (2.4) we have

v1 − v+ + λ(f(v+)− f(v−)) ≤(
(ρSN )(v1)− (ρSN )(v+) + λ

(
(ρSNw)(v+)− (ρSNw)(v−)

)) κ(v−, σ)
κN (v−, σ)

,

whereas an equality would be hoped.

2.2. How to correct the classical methods. In order to get a good agreement
between exact and numerical solutions, we suggest modifying the classical Godunov
scheme. The correction we propose intends to keep the discrete dissipation rates in
balance with the kinetic functions. In other words, and still for the computation of
an isolated shock wave (v−,v+, σ), we propose to substitute v1 for a constant value
v]1 solution to the following discrete equations :

v]1 − v+ + λ(f(v+)− f(v−)) = (2.6)(
(ρSN )(v]1)− (ρSN )(v+) + λ

(
(ρSNw)(v+)− (ρSNw)(v−)

) ) κ(v−, σ)
κN (v−, σ)

.

The extension of this procedure to general initial data is immediate and writes :

vn+1
j − vnj + λ(fnj+ 1

2
− fnj− 1

2
) = (2.7)

(
(ρSN )(vn+1

j )− (ρSN )(vnj ) + λ((ρSNw)nj+ 1
2
− (ρSNw)nj− 1

2
)
) < κ, Cnj >
< κN , Cnj >

where fn
j+ 1

2
and (ρSNw)n

j+ 1
2

denote the usual Godunov flux and entropy flux func-
tions, while < κ, Cnj > and < κN , Cnj > denote the mass of the kinetic functions
summed over all the shock waves propagating in the cell Cnj .
Existence and uniqueness of a solution to (2.7) is proved in [4], [12].
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2.3. Existing time-explicit correction procedures. In this paragraph, we
briefly review the works [4], [12], and [13] in order to highlight that the exact value
of the ratio of the kinetic functions involved in (2.7) can be fairly well approximated.
Actually, several robust approximations exist in a time explicit setting. Their review
will motivate the introduction of a new correction procedure devoted to large time
stepping methods.

The first approximation naturally arises from the original equations (1.8) for a
given ε > 0. We have the following identities:

T εi
µεi

(
∂t(ρSi)ε +∇. (ρSiw)ε

)
=
T εN
µεN

(
∂t(ρSN )(vε) +∇. (ρSNw)(vε)

)
(2.8)

which formally yields in the limit ε→ 0 and for all i = 1, . . . , N − 1 :

∂t(ρSi) +∇. (ρSiw) =
µ̃iTN
µNTi

(
∂t(ρSN )(v) +∇. (ρSNw)(v)

)
. (2.9)

In the smooth zones of the exact solution, the above relations reduce to

∂t(ρSi) +∇. (ρSiw) = 0, (2.10)

while at a point of discontinuity between v− and v+, they coincide with the following
generalized jump relations :

nt
(
(ρSi)+ − (ρSi)−

)
+

d∑
k=1

nk
(
(ρSiw)+ − (ρSiw)−

)
= (2.11)

κi(v−, σ)
κN (v−, σ)

(
nt
(
(ρSN )(v+)− (ρSN )(v−)

)
+

d∑
k=1

nk
(
(ρSNw)(v+)− (ρSNw)(v−)

) )
,

provided that the unspecified value of µ̃iTN

µNTi
is accordingly defined. Extensive calcula-

tions proposed in [11] and [12] strongly support that the discrete solutions stay largely
free from the local definition of the ratio µiTN

µNTi
. Thus, the latter provides a robust

approximation of the ratios of kinetic functions in (2.7).
Let us underline that the resulting method is nonlinear in each cell due to the nonlin-
earity in v→ (ρSN )(v). The well-posedness and stability properties of this nonlinear
method are investigated in [4], [12].

In [13], a variant is derived. This variant makes use of the second principle in
order to recast (2.9) when considering internal energies. Easy calculations lead for
i = 1, . . . , N − 1 to :

∂tρεi +∇. (ρεi w) + pi∇. w =
µ̃i
µN

(
∂tρεN +∇. (ρεN w) + pN (v)∇. w

)
, (2.12)

and by summation, introducing ρε =
∑
i εi, P(v) =

∑
i pi(v), to :

∂tρεi +∇. (ρεi w) + pi∇. w =
µ̃i

µN∑N
j=1

µ̃j

µN

(
∂tρε+∇. (ρε w) + P(v)∇. w

)
. (2.13)
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In [13], we show how to take advantage of (2.13) and the linearity of the total internal
energy with respect to the internal energies (ρεi)i=1,...,N to derive linear approximate
solvers extending (2.9) to (2.13) and which preserve the positiveness of all the (ρε)i,
in a time-explicit setting.
We underline that in this method, the time derivative of the total internal energy ρε is
known from the evolution in time of the density, momentum and total energy thanks
to the relation ρε = ρE − ||ρw||2/2ρ.

2.4. Towards a time-implicit correction procedure. The extension of the
latter procedure to a time-implicit setting is difficult and for this reason, we will use
in the core of the present work a new version of (2.13).
In the first hand, proposing a stable time integration of the internal energy laws (2.13)
with large time stepping is not obvious. With this in mind and invoking again the
second principle of thermodynamics, we first propose to replace the left hand side of
(2.13) by transport equations :

∂tSi + w.∇Si =
µ̃iTi

µN∑N
j=1

µ̃j

µN

(
∂tε+ w.∇ε+

P
ρ
∇. w

)
, i = 1, . . . , N − 1. (2.14)

On the second hand, forcing the positiveness of the specific entropies (Si)i=1,...,N−1

and above all of SN which is obtained by the relation

ρE − ||ρw||
2

2ρ
= ρε =

N−1∑
j=1

ρεj(ρ, Sj) + ρεN (ρ, SN ),

is pretty challenging. To immediately force the positiveness of the (N − 1) ratios Si

SN
,

we suggest

∂tXi + w.∇Xi = Ci
(
∂tρε+∇. (ρε w) + P∇. w

)
i = 1, . . . , N − 1, (2.15)

with Xi = Ln
Si
SN

and Ci =
1

ρ
∑N
j=1 µj

(
µN

TNSN
− µi
TiSi

).

Then, the N specific entropies are recovered from the knowledge of the (N − 1)
(Xi)1≤ı≤N−1 by Si = SNexp(Xi) for i = 1, ..., N − 1, and solving in SN :

ρε =
N−1∑
j=1

ρεj(ρ, SNexp(Xj)) + ρεN (ρ, SN ). (2.16)

We shall prove hereafter that from a numerical standpoint, such a formulation is
relevant to get a positive SN to this equation and thus positive values for all the other
(N − 1) entropies Si.

3. Numerical approximation. In this section, we address the numerical ap-
proximation of the solutions of (1.1). The proposed method can be understood as
a predictor-corrector strategy. In particular, one of the objectives of the correction
step will be to impose the validity of the compatibility relations (2.15) at the discrete
level.
The outline of this section is as follows. We begin by some basics and notations
(section 3.1). Then we describe our algorithm first using an explicit time integration
(section 3.2). At last, a time-implicit numerical scheme of the multi-pressure gas
dynamics equations is proposed in section 3.3.
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3.1. Basics and notations. Let tn = n∆t be a uniform discretization of R+

and, for each h > 0, let Th be a triangulation of Rd made of nonoverlapping and
nonempty polyhedra. As is customary in the finite volume framework, we assume
that if K and K ′ in Th have a nonempty intersection, say I, then I is either a face of
both K and K ′ or I has a Hausdorff dimension less than d−1. The set of the faces of
a polyhedron K is denoted by ∂K and for each face on K, ne,K ∈ Rd represents the
outward unit normal to the face e. Given a face e of K, Ke is the unique polyhedron
in Th which shares the same face e with K. The volume of K and the d− 1 measure
of e are denoted by |K| and |e| respectively. Without loss of generality, we assume
that h = supK∈Th

hK < +∞ where hK is the exterior diameter of the polyhedron K.
The perimeter of K is defined by pK =

∑
e∈∂K |e|.

The approximate solutions of (1.1) are sought under the form of a piecewise constant
function vh

vh(t,x) = vnK (t,x) ∈ [tn, tn+1[×K. (3.1)

3.2. Explicit in time numerical scheme. As already mentioned, the whole
strategy is of predictor-corrector kind. Before entering the details, we begin by a
rough description of the two steps.
In the prediction step we propose to solve approximately in the slab [0,∆t], ∆t small
enough, the following system : ∂tρ+∇. ρw = 0, t > 0,

∂tρw +∇. (ρw ⊗w + P(u) Id) = 0,
∂tρSi +∇. ρSiw = 0, i = 1, ..., N.

(3.2)

To shorten the notations, we introduce u = (ρ, ρw, (ρSi)i=1,...,N ). The weak solutions
of system (3.2) are selected by the entropy-like inequality :

∂t(ρE)(u) +∇. (ρHw)(u) ≤ 0, (ρHw)(u) =
(
(ρE)(u) + P(u)

)
w. (3.3)

We notice that system (3.2) considers the last entropy ρSN as a main unknown.
Meanwhile, the total energy ρE becomes a function of u =

(
ρ, ρw, (ρSi)1≤i≤N

)t and
(3.3) an additional evolution law acting as a selection principle. Let us indeed observe
that the thermodynamic assumptions made in the introduction actually ensures that
the mapping u → (ρE)(u) is strictly convex and may then serve as a natural Lax
entropy for (3.2). We refer the reader to [13] for more details.
It will be useful hereafter to notice that each specific entropy Si of (3.3) satisfies the
following transport equation :

∂tSi + w.∇Si = 0, D′ (3.4)

for each piecewise Lipschitz continuous weak solutions of (3.2)-(3.3), see [13].
System (3.2) is given the following short form with clear definition for G :

∂tu +∇. G(u) = 0. (3.5)

Then, a correction step is compulsory. It aims at simultaneously restoring the con-
servation of the total energy ρE

∂tρE +∇.
(
ρE + P(u)

)
w = 0, (3.6)



Time-implicit approximation of the multi-pressure gas dynamics equations 11

and imposing the validity of the compatibility relations

∂tXi + w.∇Xi = Ci(∂tε+ w.∇ε+
P(u)
ρ
∇. w), i = 1, ..., N − 1. (3.7)

Let us now go into details.

Prediction step (tn → tn+1−). Within a fully time-explicit setting, the states
unK are advanced in time according to a finite volume approximation of (3.2) which
general form is

un+1−
K = unK −

∆t
|K|

∑
e∈∂K

Gne,K |e|, (3.8)

where the numerical flux Gne,K = G(unK ,u
n
Ke

; ne,K) is built from a two-point Lipschitz-
continuous flux function G at each face e of each polyhedron K. This flux function is
expected to satisfy the following two properties : G(uK ,uKe

; ne,K) + G(uKe
,uK ; ne,Ke

) = 0, (conservation)

∀ u ∈ Ω, u = uK = uKe
=⇒ G(u,u; ne,K) = G(u).ne,K . (consistency)

(3.9)
Arguing about the rotational invariance of the equations, the definition of G classically
follows from the following quasi-1D form of (3.2) :

∂tu + ∂xGi1(u) = 0, (3.10)

with the exact flux function Gi1 given by

Gi1 =
(
ρw1, ρw

2
1 + P(u), (ρw1wi)2≤i≤d, (ρSjw1)1≤j≤N )

)
(3.11)

(here i1 denotes the first unit vector of the canonical basis of Rd), and supplemented
with the validity of the entropy inequality

∂t(ρE)(u) + ∂x(ρHw1)(u) ≤ 0, (ρHw1)(u) = ((ρE)(u) + P(u))w1. (3.12)

More precisely, given a two-point numerical flux function G(., .; i1) : Ωu × Ωu →
Rd+N+1 consistent with Gi1 , one sets

Gne,K = G(unK ,u
n
Ke

; ne,K) = T−1
e,K G(Te,KunK , Te,KunKe

; i1) (3.13)

where Te,K is classically built from a rotation operator in Rd mapping i1 to ne,K .
Let us just recall that Te,K only acts on the velocity w and keeps unchanged all the
other components of u, with the property that (ρE)(Te,Ku) = (ρE)(u) for all u (the
kinetic energy ||ρw||2/2ρ is the same). By definition, Te,K verifies

G(u).ne,K = T−1
e,KGi1(Te,Ku) (3.14)

for any given constant state u ∈ Ωu so that the consistency property in (3.9) is met
as soon as G(u,u; i1) = Gi1(u). The latter and the conservation property in (3.9)
will be satisfied by the definition of G(., .; i1) that we give right now.
For simplicity in the notations and without any restriction (see remark below), we
propose to use the Godunov numerical flux function associated with (3.10)-(3.12)
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in order to define G(., .; i1). More precisely, denoting W(xt ; uL,uR) the self-similar
solution of the Cauchy problem for (3.10)-(3.12) with initial data

u0(x) = uL if x < 0, uR if x > 0, (3.15)

the numerical flux function G(., .; i1) then reads :

G(uL,uR; i1) = Gi1

(
W(0+; uL,uR)

)
. (3.16)

Here uL and uR are two constant states in Ω. Note that in the following, we always
assume that the uL and uR never give birth to vacuum in W(.; uL,uR) so that the
density ρ stays strictly positive hereafter.
It is then clear that G(u,u; i1) = Gi1(u) whereas as far as the conservation property
in (3.9) is concerned we have

G(uK ,uKe
; ne,K) + G(uKe

,uK ; ne,Ke
) =

T−1
e,K G(Te,KuK , Te,KuKe

; i1) + T−1
e,Ke

G(Te,Ke
uKe

, Te,Ke
uK ; i1) =

T−1
e,K Gi1

(
W(0+;Te,KuK , Te,KuKe

)
)

+ T−1
e,Ke

Gi1

(
W(0+;Te,Ke

uKe
, Te,Ke

uK)
)
.

But by the rotational invariance we have T−1
e,KW(0+;Te,KuK , Te,KuKe

) =
T−1
e,Ke
W(0+;Te,KeuKe , Te,KeuK) so that by (3.14)

G(uK ,uKe
; ne,K) + G(uKe

,uK ; ne,Ke
) =

G
(
T−1
e,KW(0+;Te,KuK , Te,KuKe

)
)
.ne,K + G

(
T−1
e,KW(0+;Te,KuK , Te,KuKe

)
)
.ne,Ke

.

This quantity obviously equals 0 since ne,K + ne,Ke = 0.

The main stability estimates associated with this prediction step are gathered in
the next statement, the proof being detailed in [18].

Proposition 3.1. Under the CFL condition

max
u

max
K∈Th

{∆t pK
|K|

max
e∈∂K

(|w.ne,K − c(u)|, |w.ne,K + c(u)|)
}
≤ 1

2
, (3.17)

for all the u under consideration, the finite volume method (3.8)-(3.13)-(3.16) obeys
the following discrete entropy like inequality :

(ρE)(un+1−
K )− (ρE)(unK) +

∆t
|K|

∑
e∈∂K

(ρHw)ne,K ≤ 0 (3.18)

where with clear notations

(ρHw)ne,K =
(
(ρE + P)w1

)(
W(0+;Te,KunK , Te,KunKe

)
)
. (3.19)

In addition, the following maximum principle holds true :

min
K∈Th

(Si)nK ≤ (Si)n+1−
K ≤ max

K∈Th

(Si)nK , i = 1, ..., N. (3.20)

Remark. From Harten, Lax and van Leer [28], it is well-known that we may use in-
stead of the Godunov flux function (3.16) any suitable approximate Riemann solvers
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to preserve the stability properties given in proposition 3.1.

Correction step (tn+1− → tn+1). This step aims at restoring the conservation
of the total energy (3.6) and the validity of the generalized jump conditions (3.7). Let
us first show how to derive a consistant finite volume formula for the right hand side
of (3.7) which we rewrite for convenience as

N∑
i=1

(
∂tεi(ρ, Si) + ∂ρεi(ρ, Si) w.∇ρ+ ∂Si

εi(ρ, Si) w.∇Si +
Pi(u)
ρ
∇. w

)
. (3.21)

This term worths indeed a particular attention since it is written in non-conservation
form. The final statement in that direction is the proposition 3.3 below which provide
us with a natural time-explicit finite volume approximation for

∂ρεi(ρ, Si) w.∇ρ+ ∂Si
εi(ρ, Si) w.∇Si +

Pi(u)
ρ
∇. w, i = 1, ..., N. (3.22)

To begin with, we state an easy lemma.
Lemma 3.2. At each edge e of each cell K, let us decompose the components

of Godunov numerical flux function Gne,K for the density and for each entropy ρSi
according to :

(ρw1)ne,K = ρne,K (w1)ne,K (3.23)
(ρSiw1)ne,K = (ρw1)ne,K (Si)ne,K (3.24)

where by construction

ρne,K = ρ
(
W(0+;Te,KunK , Te,KunKe

)
)
, (3.25)

(w1)ne,K = w1

(
W(0+;Te,KunK , Te,KunKe

)
)
, (3.26)

and

(Si)ne,K = Si
(
W(0+;Te,K unK , Te,K unKe

)
)

=
{

(Si)nK if (ρw1)ne,K > 0,
(Si)nKe

otherwise. (3.27)

Then the discrete density ρn+1−
K updates equivalently according to

ρn+1−
K = ρnK −

∆t
|K|

∑
e∈∂K

(w1)ne,K(ρne,K − ρnK)|e| − ∆t
|K|

ρnK
∑
e∈∂K

(w1)ne,K |e|, (3.28)

and each specific entropy Si verifies

(Si)n+1−
K = (Si)nK −

∆t
|K|

∑
e∈∂K

(ρw1)ne,K
ρn+1−
K

(
(Si)ne,K − (Si)nK

)
|e|, i = 1, ..., N. (3.29)

Proof. The proposed identities (3.28) and (3.29) readily follow from (3.8) and the
definitions (3.23) and (3.24).
Let us briefly comment the equivalent formula (3.28). It is first clear that

1
|K|

ρnK
∑
e∈∂K

(w1)ne,K |e| (3.30)
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is a relevant finite volume approximation of 1
|K|
∫
K
ρ∇. w dK. Henceforth, the quan-

tity 1
|K|
∑
e∈∂K(w1)ne,K(ρne,K−ρnK)|e| may be understood as a consistant finite volume

formula of

1
|K|∆t

∫ ∆t

0

∫
K

w.∇ρ dK dt, (3.31)

since first ∇. ρw = ρ∇. w + w.∇ρ and then the time derivative (ρn+1−
K − ρnK)/∆t is

by construction a consistant finite volume approximation of
− 1
|K|∆t

∫∆t

0

∫
K
∇. (ρw) dK dt. Recall indeed that ∂tρ+∇. ρw = 0.

In the same way, the identity (3.29) expresses that

1
|K|

∑
e∈∂K

(ρw1)ne,K
ρn+1−
K

(
(Si)ne,K − (Si)nK

)
|e| (3.32)

may serve as a natural finite volume formula for

1
|K|∆t

∫ ∆t

0

∫
K

w.∇Si dK dt, (3.33)

reflecting that each specific entropy Si satisfies the transport equation (3.4).
On the ground of formulae (3.30), (3.31) and (3.33), we are now in position to propose
a natural finite volume approximation of (3.22).

Proposition 3.3. Let us define from the prediction step the following finite
formula for approximating (3.22)

∆t
|K|

∂ρεi(ρ, Si)
n,n+1−
K

∑
e∈∂K

(w1)ne,K(ρne,K − ρnK)|e|

+
∆t
|K|

∂Si
εi(ρ, Si)

n,n+1−
K

∑
e∈∂K

(ρw1)ne,K
ρn+1−
K

(
(Si)ne,K − (Si)nK

)
|e|

+
∆t
|K|

ρnK∂ρεi(ρ, Si)
n,n+1−
K

∑
e∈∂K

(w1)ne,K |e| ≡ −(ξi)
n,n+1−
K (3.34)

where we have set

∂ρεi(ρ, Si)
n,n+1−
K =

εi(ρn+1−
K , (Si)n+1−

K )− εi(ρnK , (Si)
n+1−
K )

ρn+1−
K − ρnK

(3.35)

∂Siεi(ρ, Si)
n,n+1−
K =

εi(ρnK , (Si)
n+1−
K )− εi(ρnK , (Si)nK)

(Si)n+1−
K − (Si)nK

. (3.36)

Then, the following identity holds true :

(ξi)
n,n+1−
K = (εi)n+1−

K − (εi)nK (3.37)

when defining from the prediction step

(εi)n+1−
K = εi(ρn+1−

K , (Si)n+1−
K ). (3.38)
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Let us stress that (∂ρεi)Si
= Pi

ρ2 so that the weight ρnK ∂ρεi(ρ, Si)
n,n+1−
K is indeed

consistant with the required factor Pi

ρ in (3.22).
Proof. Starting from the definitions (3.35), (3.36) and (3.38), we first observe that

(εi)n+1−
K −(εi)nK = ∂ρεi(ρ, Si)

n,n+1−
K (ρn+1−

K −ρnK)+∂Si
εi(ρ, Si)

n,n+1−
K

(
(Si)n+1−

K −(Si)nK
)
.

Then plugging (3.28) and (3.29) yields (3.37) with definition (3.34).
Equipped with the natural approximation (3.34) of (3.22) (and its equivalent form
(3.37)), we now describe precisely the correction step we have briefly sketched in
subsection 2.4. First, we propose in each cell K to keep unchanged the updated
values of the conservative variables ρ and ρw :

ρn+1
K = ρn+1−

K , (ρw)n+1
K = (ρw)n+1−

K , (3.39)

and to restore the conservation of the total energy when defining from (3.18)

(ρE)n+1
K = (ρE)nK −

∆t
|K|

∑
e∈∂K

(ρHw)ne,K |e|. (3.40)

This allows to update the total internal energy thanks to

(ρε)n+1
K = (ρE)n+1

K −
||(ρw)n+1

K ||2

2ρn+1
K

. (3.41)

Next, in order to enforce the validity of the generalized jump conditions (3.7) at the
discrete level, we propose to define (Si)n+1

K from the solutions (Xi)n+1
K of

(Xi)n+1
K − (Xi)nK +

∆t
|K|

∑
e∈∂K

(ρw1)ne,K
ρn+1−
K

(
(Xi)ne,K − (Xi)nK

)
|e|

= Ci(εn+1
K − εnK + ξn,n+1−

K ), i = 1, ..., N − 1, (3.42)

where we have set

ξn,n+1−
K =

N∑
i=1

(ξi)
n,n+1−
K (3.43)

and in agreement with (3.33),

(Xi)ne,K =
{

(Xi)nK if (ρw1)ne,K > 0,
(Xi)nKe

otherwise. (3.44)

Observe from (3.43) and the proposition 3.3, that (3.42) actually provides us with
a natural finite volume approximation of (3.7). Next, invoking (3.37) for each i =
1, ..., N , (3.42) just recasts equivalently as

(Xi)n+1
K − (Xi)nK +

∆t
|K|

∑
e∈∂K

(ρw1)ne,K
ρn+1−
K

(
(Xi)ne,K − (Xi)nK

)
|e|

= Ci(εn+1
K − εn+1−

K ) i = 1, ..., N − 1, (3.45)
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where by definition

εn+1−
K =

N∑
i=1

(εi)n+1−
K . (3.46)

The formulae (3.45) and (3.46) will be useful in the next section devoted to the
time-implicit extension of the present procedure. To conclude the presentation of
the explicit in time algorithm, let us observe from (3.41) that the right hand side of
the generalized jump relations (3.45) is explicitly known so that the updated values
(Xi)n+1

K are explicitly known as well.
The following statement will prove that the N entropies (Si)n+1

K can be uniquely
rebuilt from the knowledge of the (N − 1) values (Xi)n+1

K provided that the discrete
solution has been kept in the physical space in the prediction step.

Lemma 3.4. Let be given (ρ, ρw, ρE, (Xi)1≤i≤N−1) ∈ Rd+N+1 such that

ρ > 0, ρε = ρE − ||ρw||
2

2ρ
> 0. (3.47)

Let ψ : SN ∈ R∗+ → R the nonlinear function defined by

ψ(SN ) =
(
ρE − ||ρw||

2

2ρ
)
−
N−1∑
i=1

ρεi
(
ρ, SN exp(Xi)

)
− ρεN (ρ, SN )

= ρε−
N−1∑
i=1

ρεi
(
ρ, SN exp(Xi)

)
− ρεN (ρ, SN ).

(3.48)

Then, ψ admits a unique zero S∗N ∈ R∗+.
The proof of this lemma is given in [18].
Let us point out right now that the unique zero S∗N ∈ R∗+ of (3.48) allows to define
the (N − 1)-uple (S∗i )1≤i≤N−1 ∈ (R∗+)N−1 setting

S∗i = S∗N exp(Xi), 1 ≤ i ≤ N − 1. (3.49)

So that by construction, the following consistency identity holds true :

ρε = ρE − ||ρw||
2

2ρ
=

N∑
i=1

ρεi(ρ, S∗i ). (3.50)

Remark. It is worth noticing that the case of N polytropic pressure laws pi =
(γi − 1)ρεi, γi > 1 being N given adiabatic coefficients, may lead to an explicit
solution to ψ(SN ) = 0. Indeed, the particular choice

Si =
pi
ργi

, i = 1, ..., N, (3.51)

gives

ψ(SN ) = 0⇐⇒ ρε = ρE − ||ρw||
2

2ρ
= SN

N∑
i=1

ργi

γi − 1
exp(Xi),

so that an explicit formula follows for SN . Of course, the particular choice (3.51)
does not imply the strict convexity property of the corresponding internal energies
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εi(ρ, Si) = ργiSi/(γi − 1) but is however relevant in the sense that it leads to well-
defined (i.e. positive) entropies (Si)1≤i≤N provided that (3.47) holds true.

The last result of this section proves that the nonlinear correction procedure (3.39)-
(3.40)-(3.45) is well-defined under the CFL condition (3.17) and defines an unique
updated value un+1

K in the phase space Ωu.
Theorem 3.5. Under the CFL condition (3.17), the total energy obeys in each

cell K

(ρε)n+1
K = (ρE)n+1

K −
||(ρw)n+1

K ||2

2ρn+1
K

> 0. (3.52)

Therefore, there exists an unique N-uple {(Si)n+1
K }1≤i≤N with

(Si)n+1
K > 0 for all i = 1, ..., N, (3.53)

and
N∑
i=1

ρn+1
K εi(ρn+1

K , (Si)n+1
K ) = (ρε)n+1

K . (3.54)

The proof of this theorem is given in [18].

3.3. Implicit in time numerical scheme. This section is motivated by the
numerical approximation of the stationary solutions of the multi-pressure Euler equa-
tions in several space dimensions. Following the standard time-marching strategy
(see [29] for instance), the stationary solutions are sought as the limit of unsteady
solutions as time goes to infinity. For the sake of efficiency, one obviously needs to
get rid of a CFL restriction to reach the steady state with the minimal CPU effort.
Achieving this goal in practice requires a proper balance between the numerical cost
of evaluation and the absence of CFL restriction. Such a balance is the main issue
of this section devoted to the derivation of an efficient time-implicit formulation of
the predictor-corrector procedure developed in the previous section. It will be seen
hereafter that the correction step can receive minor and satisfactory modifications
while the prediction step must be paid a particular attention.
According to a widely used procedure, the prediction step would be given a linearized
time-implicit formulation of the finite volume scheme (3.8) :

un+1−
K = unK −

∆t
|K|

∑
e∈∂K

Gn,n+1−
e,K |e|, (3.55)

Gn,n+1−
e,K = G(unK ,u

n
Ke

; ne,K) + Lne,K(un+1−
K − unK) + Lne,Ke

(un+1−
Ke

− unKe
) (3.56)

for some matrices Lne,K , Lne,Ke
in Mat(RN+d+1). The flux formula (3.56) can be un-

derstood as some first order Taylor expansion in time of fully time-implicit numerical
flux G(un+1−

K ,un+1−
Ke

; ne,K). The mathematical justification of (3.55)-(3.56) seems to
be out of reach but extensive applications in the classical Euler setting have grounded
the efficiency of the procedure (see again [29]).
In the frame of the multi-pressure Euler equations, this standard strategy has however
at least one important drawback. This drawback is related to the CPU effort asso-
ciated with the resolution of the linear system (3.55) in the unknown (un+1−

K )K∈Th
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for large values of N . In presence of many specific entropies, this system can indeed
become costly. In addition, it is important to keep in mind that by construction, the
updates of the specific entropies (Si)n+1−

K , i = 1, ..., N, provided by the prediction
step have to be recomputed in the correction step. Then, the more N is large, the
more this important (extra) computational cost may appear superfluous.
To circumvent this drawback, we propose hereafter a far more efficient procedure
based on a relaxation approach. At each time step, the procedure only requires to
solve small size linear problems, namely N linear problems invoking the same scalar
matrix for updating the specific entropies and a linear problem with elementary block
matrices inMat(Rd+2) (i.e. independent of N) for the remaining unknowns. In addi-
tion, we will prove that the positivity of both the density ρn+1−

K and the total energy∑N
i=1 ρ

n+1−
K εi(ρn+1−

K , (Si)n+1−
K ) is a sufficient (and necessary) condition for the cor-

rection procedure to take place. It turns convenient to first give a rough description
of the proposed procedure to make easier its precise derivation.

3.3.1. A rough presentation of the time-implicit prediction step. We
propose to derive at the prediction step an efficient linearized time-implicit finite
volume method for approximating the solutions of

∂tρ+∇. (ρw) = 0,

∂t(ρw) +∇. (ρw ⊗w +
N∑
i=1

pi(ρ, Si) Id) = 0,

∂t(ρSi) +∇. (ρSiw) = 0, i = 1, ..., N.

(3.57)

The efficiency of the method will be achieved when suitably modifying the nonlin-
earities in the PDEs (3.57) by means of a relaxation approximation. The relaxation
strategy under consideration in this paper is motivated by the works of Suliciu [39],
Bouchut [9], Chalons and Coquel [13], Coquel et al. [22] and Chalons et al. [17].
The idea is to modify only the total pressure law which concentrates the main non-
linearities in the original equations. More precisely, the pressure

∑N
i=1 pi(ρ, Si) is no

longer understood as a nonlinear function of the unknowns ρ, ρw and (Si)1≤i≤N but is
now handled with a new unknown Π evolving according to its own partial differential
equation. This new unknown is subject to a relaxation procedure which purpose is
to restore the original pressure law in the regime of an infinite relaxation rate λ > 0.
The relaxation PDE model reads :

∂tρ
λ +∇. (ρw)λ = 0,

∂t(ρw)λ +∇. (ρw ⊗w + Π Id)λ = 0,

∂t(ρΠ)λ +∇.
(
(ρΠ + a2)w

)λ = λρλ(
N∑
i=1

pi(ρλ, Sλi )−Πλ),

∂t(ρSi)λ +∇. (ρSiw)λ = 0, i = 1, ..., N.

(3.58)

Here a is a given positive real number to be precised later on. Clearly when λ goes
to +∞, Πλ formally coincides with the original pressure law :

lim
λ→+∞

Πλ =
N∑
i=1

pi(ρ, Si). (3.59)

In order to prevent some instabilities in the asymptotic regime λ → +∞, it is well-
known that the so-called subcharacteristic conditions (or Whitham condition) are
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expected to be satisfied. We refer to the work by Liu [36] and Chen, Levermore
and Liu [24]. These subcharacteristic conditions are satisfied provided that the free
coefficient a > 0 in (3.58) upper-bounds the exact Lagrangian sound speed ρc, namely :

a > ρ× c(ρ, (Si)1≤i≤N ) with c2(ρ, (Si)1≤i≤N ) =
N∑
i=1

∂ρpi(ρ, Si), (3.60)

for all the states under consideration. Again, the reader is referred to the works [9],
[13], [22], [17] for a detailed discussion of (3.60) and its relationship with the validity
of entropy inequalities.
Let us now highlight the interest of the relaxation PDE model (3.58) in the derivation
of an efficient time-implicit method. To that purpose, it is convenient to set (right
temporarily) the relaxation parameter λ to zero to observe that the d + 2 govern-
ing equations associated with the density ρ, the momentum ρw and the relaxation
pressure ρΠ are decoupled from the N remaining ones. In other words, the nonlinear
coupling of the d + 2 equations with the N specific entropies (Si)1≤i≤N solely takes
place via the relaxation source term λρλ(

∑N
i=1 pi(ρ

λ, Sλi )−Πλ).
We propose to take advantage of this weak coupling by splitting the evolution in time
of the specific entropies (Si)1≤i≤N and of (ρ, ρw, ρΠ). More precisely, let be given uh
a discrete approximate solution of the equilibrium system (3.57). To update this ap-
proximate solution, we propose to solve the relaxation model (3.58) in the asymptotic
regime λ→ +∞ with an initial data built at equilibrium from uh(x, tn) by setting

(ρΠ)h(x, tn) = ρh(x, tn)
N∑
i=1

pi
(
ρh(x, tn), (Si)h(x, tn)

)
.

The proposed splitting strategy operates as follows:

First step
Solve in the slab [0,∆t] the N advection equations{

∂tSi + w.∇Si = 0, i = 1, ..., N,
Si(x, 0) = (Si)h(x, tn), (3.61)

and denote (Si)h(x, tn+1−) the resulting prediction at time tn + ∆t.

Second step
Solve in the slab [0,∆t] the Cauchy problem

∂tρ
λ +∇. (ρw)λ = 0,

∂t(ρw)λ +∇. (ρw ⊗w + Π Id)λ = 0,

∂t(ρΠ)λ +∇. ((ρΠ + a2)w)λ = λ
(
ρλ

N∑
i=1

pi
(
ρλ, (Si)h(x, tn+1−)

)
− (ρΠ)λ

)
(3.62)

with initial data
(
ρh(x, tn), (ρw)h(x, tn), (ρΠ)h(x, tn)

)
in the regime λ → +∞. In

agreement with (3.60), the constant a is chosen so that

a > ρ× c(ρ, ((Si)n+1−
h )1≤i≤N ). (3.63)
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3.3.2. The advection problem (3.61) in details. In order to predict the evo-
lution of the N specific entropies (Sj)j=1,...,N , we propose the following time-implicit
update formula directly motivated by the time-explicit analogous (3.27)-(3.29) :

(Sj)n+1−
K = (Sj)nK − ∆t

|K|
∑
e∈∂K |e|

{
(w · ne,K)ne,+

(
(Sj)n+1−

e,K − (Sj)n+1−
K

)
+

(w · ne,K)ne,−
(
(Sj)n+1−

e,K − (Sj)n+1−
K

)}
(3.64)

with (Sj)n+1−
e,K =

{
(Sj)n+1−

K if (w · ne,K)ne ≥ 0,
(Sj)n+1−

Ke
otherwise.

(3.65)

Here, (w ·ne,K)ne denotes a given consistent approximation of the velocity w ·ne,K at
each time tn and on each face e of each polyhedron K, say for instance

(w · ne,K)ne =
1
2

(wn
K + wn

Ke
) · ne,K , (3.66)

and (w ·ne,K)ne,± the corresponding nonpositive and nonnegative parts. An equivalent
formulation of (3.64)-(3.65) is

(Sj)nK =
(

1− ∆t
|K|

∑
e∈∂K

(w · ne,K)ne,− |e|
)

(Sj)n+1−
K

+
∆t
|K|

∑
e∈∂K

(w · ne,K)ne,− |e| (Sj)n+1−
Ke

, j = 1, ..., N, (3.67)

which shows that the N linear systems to be solved to find the set of entropies(
(Sj)n+1−

K

)
K∈Th

involve the same linear operator (say the same matrix) for each
j = 1, ..., N . Of course, this property is very pleasant and give rise to well-designed
procedures in order to solve (3.64) (or (3.67)) efficiently. We refer for instance the
reader to [32] for more details on this point.
In addition, the following stability result holds true :

Lemma 3.6. For each time step ∆t, the time-implicit update formula (3.64) (or
equivalently (3.67)) of the unknowns

(
(Sj)n+1−

K

)
K∈Th

admits for each j = 1, ..., N an
unique solution satisfying the following maximum principle :

min
K∈Th

(Sj)nK ≤ (Sj)n+1−
K ≤ max

K∈Th

(Sj)nK , j = 1, ..., N, K ∈ Th.

Proof. The common matrix involved in (3.67) clearly is strictly diagonal domi-
nent whereas the diagonal (respectively extra-diagonal) terms are all positive (resp.
nonpositive). Then, this matrix is invertible which ensures existence and uniqueness
on the one hand, and importantly, the inverse matrix has only nonnegative terms
on the other hand (see for instance [32]). In order to derive the maximum principle
property, let us observe that for any given constant C the following equality holds

(Sj)nK − C =
(
1− ∆t
|K|

∑
e∈∂K

(w · ne,K)ne,− |e|
){

(Sj)n+1−
K − C

}
+

∆t
|K|

∑
e∈∂K

(w · ne,K)ne,− |e|
{

(Sj)n+1−
Ke

− C
}
, j = 1, ..., N. (3.68)

Then, it suffices to choose respectively C = maxK∈Th
(Sj)nK and C = minK∈Th

(Sj)nK ,
arguing about the nonnegativity of the inverse matrix coefficients.
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3.3.3. The hydrodynamic subsystem (3.62) in details. System (3.62) is
first given the condensed notation

∂tvλ +∇. F(vλ) = λR(vλ,
(
(Sj)h(x, tn+1−)

)
1≤j≤N ), (3.69)

with v = (ρ, ρw, ρΠ), R(v) =
(

0, 0Rd , ρ
∑N
i=1 pi(ρ, (Si)h(x, tn+1−))− ρΠ

)
, and clear

definitions for the vector-valued function F(v) = (Fxj
(v))1≤j≤d.

Let us begin by briefly reporting some useful properties of (3.69). First, these
equations have the rotational invariance property. Then, for any given unit vec-
tor n = t(n1, ..., nd) of Rd, the matrix ∇v

(∑d
j=1 Fxj (v)nj

)
is R−diagonalizable over

the natural phase space

Ωv =
{

(ρ, ρw, ρΠ) ∈ Rd+2/ρ > 0, ρw ∈ Rd, ρΠ ∈ R
}
, (3.70)

with eigenvalues

λ1(v,n) = w.n− a

ρ
< λj=2,...,d+1(v,n) = w.n < λd+2(v,n) = w.n +

a

ρ
.

The first order system extracted from (3.69) is then hyperbolic. Importantly, all the
associated characteristic fields are linearly degenerate, meaning poorly speaking that
all the propagating waves behave as linear waves.
Let us now turn to the numerical approximation of the solutions of (3.69) in the
asymptotic regime λ→∞. Before addressing the time-implicit issue, it is worthy to
briefly review the time-explicit approach.
A time-explicit numerical scheme is usually obtained by applying a splitting strategy
to (3.69). It consists in solving (3.69) with λ = 0 in a first step, and the ODE problem

∂tvλ = λR(vλ,
(
(Sj)h(x, tn+1−)

1≤j≤N )

in the limit λ → ∞ in a second step. According to (3.8) and arguing about the
rotational invariance of the equations, the first step amounts to set

vn+1−
K = vnK −

∆t
|K|

∑
e∈∂K

Fne,K |e|

where the definition of Fne,K follows from the following quasi-1D homogeneous form
of (3.69) :

∂tv + ∂xFi1(v) = 0, (3.71)

with

Fi1(v) =
(
ρw1, ρw

2
1 + Π, (ρw1wj)2≤j≤d, (ρΠ + a2)w1

)
. (3.72)

Here again i1 denotes the first unit vector of the canonical basis of Rd and Fi1 = Fx1 .
More precisely, using the same notations as in section 3.2 we have

Fne,K = F(vnK ,v
n
Ke

; ne,K) = T−1
e,K F(Te,KvnK , Te,KvnKe

; i1). (3.73)

The linear degeneracy property of (3.71) makes easy the calculation of the Riemann
solution W(xt ; vL,vR) associated with the initial data

v0(x) = vL if x < 0, vR if x > 0, (3.74)
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with vL and vR in Ωv (see Proposition 3.7). This suggests to set

F(vL,vR; i1) = Fi1
(
W(0+; vL,vR)

)
. (3.75)

Proposition 3.7. Let be given two N -uples of specific entropies (SiL)1≤i≤N and
(SiR)1≤i≤N and two states vL and vR in Ωv that we assume to be at equilibrium, that
is such that ΠL = PL and ΠR = PR. Let us define the constant a in (3.72) according
to (3.63), namely

a(vL,vR) > max
(
ρLc(ρL, (SiL)1≤i≤N ), ρRc(ρR, (SiR)1≤i≤N )

)
, (3.76)

with

σ1(vL,vR) = w1,L −
a(vL,vR)

ρL
< σ2(vL,vR) = w?1(vL,vR)

σ2(vL,vR) < σ3(vL,vR) = w1,R +
a(vL,vR)

ρR
,

(3.77)

and

w?1(vL,vR) =
1
2

(w1,R + w1,L)− 1
2a(vL,vR)

(PR − PL). (3.78)

The self-similar solution W(.; vL,vR) of the Cauchy problem (3.71) with initial data
(3.74) is made of four constant states vL,v1(vL,vR),v2(vL,vR),vR separated by
three contact discontinuities propagating with speeds σi(vL,vR), i = 1, 2, 3 respec-
tively :

W(x/t; vL,vR) =


vL if x

t < σ1(vL,vR),
v1(vL,vR) if σ1(vL,vR) < x

t < σ2(vL,vR),
v2(vL,vR) if σ2(vL,vR) < x

t < σ3(vL,vR),
vR if σ3(vL,vR) < x

t .

(3.79)

The intermediate states v1(vL,vR) and v2(vL,vR) belong to the phase space Ωv (i.e.
ρ1(vL,vR) > 0, ρ2(vL,vR) > 0) and are recovered from the next formulas with
a = a(vL,vR):

Π? = Π1 = Π2 =
1
2

(PL + PR)− a

2
(w1,R − w1,L),

w1,1 = w1,2 = w?1 ,
wj,1 = wj,L, wj,2 = wj,R, 2 ≤ j ≤ d
1
ρ1

=
1
ρL
− 1
a

(w1,L − w?1),

1
ρ2

=
1
ρR
− 1
a

(w?1 − w1,R),

(3.80)

where w?1 = w?1(vL,vR) is given in (3.78). The derivation of a time-implicit nu-
merical scheme is much more challenging. The proposed discretization here strongly
relies on the previous work [17] devoted to the time-implicit formulations of relax-
ation schemes for the usual Euler equations. It is first shown in [17] that splitting
the relaxation source term λR(vλ, ((Sj)h(x, tn+1−)1≤j≤N ) and the flux divergence
∇. F(vλ) cannot result in a well-balanced approximation of the stationary solutions
of (3.69), namely satisfying ∇. F(vλ) = λR(vλ,

(
(Sj)h(x, tn+1−)

)
1≤j≤N ). On the
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contrary, a relevant time-implicit procedure requires to handle simultaneously the re-
laxation source term and the flux divergence. We are thus led to consider an update
formula of the form

vn+1−
K = vnK −

∆t
|K|

∑
e∈∂K

Fn,n+1−
e,K |e|+ λ∆tRn+1−

K (3.81)

in the limit λ → ∞. The rest of this section aims at defining the numerical fluxes
Fn,n+1−
e,K and the discrete relaxation source term Rn+1−

K .
For the sake of efficiency, the definition of Fn+1−

e,K is classically based on a linearization
operation. The key point in this process is the existence of a Roe-matrix for equiva-
lently re-expressing the Godunov numerical flux (3.75). More precisely, we have the
following result whose proof is postponed in the next subsection. Note from now on
that this proof will be of crucial interest in the forthcoming correction step.

Theorem 3.8. For any given pair of states (vL,vR) ∈ Ω2
v, there exists a Roe-

matrix Ai1(vL,vR) for the quasi-1D relaxation system (3.71), namely satisfying

(i) Ai1(v,v) = ∇vFi1(v),
(ii) Ai1(vL,vR) (vR − vL) = Fi1(vR)− Fi1(vL),
(iii) Ai1(vL,vR) is R-diagonalizable,

(3.82)

and such that the Godunov numerical flux function (3.75) is algebraically equivalent
to the following Roe numerical flux function :

Fi1(W(0+; vL,vR)) =
1
2

(
Fi1(vL) + Fi1(vR)− |Ai1(vL,vR)|(vR − vL)

)
. (3.83)

According to (3.73), (3.75) and (3.83) we then classically set

Fn,n+1−
e,K = T−1

e,KFi1(W(0+;Te,KvnK , Te,KvnKe
))

+
1
2
T−1
e,K(∇v Fi1(Te,KvnK) + |Ai1(Te,KvnK , Te,KvnKe

)|)Te,K δ(vnK) (3.84)

+
1
2
T−1
e,K(∇v Fi1(Te,KvnKe

)− |Ai1(Te,KvnK , Te,KvnKe
)|)Te,K δ(vnKe

),

where the time increments are defined by δ(vn) = vn+1− − vn. Regarding now the
discrete relaxation source term Rn+1−

K we propose here again to linearize the fully
implicit expected expression

R(vn+1−
K ,

(
(Sj)n+1−

K

)
1≤j≤N ) (3.85)

in order to soften the computational complexity. More precisely, we set

Rn+1−
K = R(vnK ,

(
(Sj)n+1−

K

)
1≤j≤N )+

(
0,0,

N∑
i=1

∂

∂ρ
(ρpi)

(
ρnK , (Si)

n+1−
K

)
×δ(ρnK)−δ(ρΠ)nK

)t
where δ(ρnK) = ρn+1−

K − ρnK and δ(ρΠ)nK = (ρΠ)n+1−
K − (ρΠ)nK . This is nothing but

a first-order Taylor expansion of the last component of (3.85), based on its definition
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provided by (3.62).
With such a definition, letting λ go to +∞ in the last component of (3.81) yields

N∑
i=1

∂

∂ρ
(ρpi)

(
ρnK , (Si)

n+1−
K

)
×δ(ρnK)−δ(ρΠ)nK = −

( N∑
i=1

ρnKpi
(
ρnK , (Si)

n+1−
K

)
−(ρΠ)nK

)
,

(3.86)
that is a linear equation to define the increment δ(ρΠ)nK with respect to δ(ρnK).
To sum up, solving (3.81) in the limit λ→ +∞ classically amounts to find (vn+1−

K )K∈Th

as the solution of a linear problem in the time increment δ(vnK) = (vn+1−
K − vnK) of

the following form

(vK)n+1− = (vK) n − ∆t
|K|

∑
e∈∂K

Fn,n+1−
e,K |e| − Sn, n+1−

K , (3.87)

with Fn, n+1−
e,K = F(vnK ,v

n
Ke

; ne,K) + Lne,Kδ(vnK) + Lne,Ke
δ(vnKe

), where the matrices
Lne,K , L

n

e,Ke
∈ Mat(Rd+2) and the source term Sn, n+1−

K are respectively inferred
from the formulas (3.81), (3.84) and when modifying the last component of (3.81) so
as to obey the ”equilibrium” relation (3.86). The details are left to the reader (see
also [17]).

3.3.4. Proof of Theorem 3.8. The proof is detailed in [18]. We just mention
here that it does use a similar result already established in [17] and recalled here.
This result is concerned with the following system

∂tρ+ ∂x(ρw1) = 0,
∂t(ρw1) + ∂x(ρw2

1 + Π) = 0,
∂t(ρwj) + ∂x(ρw1wj) = 0, j = 2, ..., d,
∂t(ρΠ) + ∂x(ρΠ + a2)w1 = 0,
∂t(ρE) + ∂x(ρE + Π)w1 = 0,

(3.88)

which turns out to be very close to (3.71). Actually, the only difference comes from
the addition of a new equation that mimics the classical evolution of the total energy
ρE. Observe however that the latter is utterly decoupled from the first (d+ 2) equa-
tions (ρE does not appear in these equations). We will use the following condensed
notations for (3.88) :

∂tv + ∂xFi1(v) = 0 (3.89)

with Fi1(v) =
(
ρw1, ρw

2
1 + Π, (ρw1wj)2≤j≤d, (ρΠ + a2)w1, (ρE + Π)w1

)
.

In [17], the Riemann solutionW(xt ; vL,vR) associated with (3.89) and the initial data

v0(x) = vL if x < 0, vR if x > 0, (3.90)

for two constant states vL and vR is given, and the following equivalence between a
Godunov and Roe numerical flux function is proved.

Theorem 3.9. There exists a Roe-matrix Ai1(vL,vR) for the quasi-1D relaxation
system (3.89), namely satisfying

(i) Ai1(v,v) = ∇vFi1(v),
(ii) Ai1(vL,vR) (vR − vL) = Fi1(vR)− Fi1(vL),
(iii) Ai1(vL,vR) is R-diagonalizable,

(3.91)
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and such that the Godunov numerical flux function Fi1
(
W(0+; vL,vR)

)
is algebraically

equivalent to the following Roe numerical flux function :

Fi1(W(0+; vL,vR)) =
1
2

(
Fi1(vL) + Fi1(vR)− |Ai1(vL,vR)|(vR − vL)

)
. (3.92)

The existence of the Roe-matrix Ai1(vL,vR) such that (3.82) and (3.83) hold true
follows from the existence of Ai1(vL,vR) (see [18] for the details).

Remark. The first (d + 2) components of Fi1(v) and of W(0+; vL,vR) do not
depend on the unknown ρE (which highlights the decoupling of the total energy) so
that it is actually expected from (3.92) that |Ai1(vL,vR)|, and thus Ai1(vL,vR), has
the form 

|Ai1(vL,vR)| 0

Y Z


(3.93)

with Y = Y(vL,vR), Z = Z(vL,vR) and Ai1(vL,vR) is the Roe matrix involved in
(3.83) :

Fi1(W(0+; vL,vR)) =
1
2

(
Fi1(vL) + Fi1(vR)− |Ai1(vL,vR)|(vR − vL)

)
.

3.3.5. The implicit in time correction step in details. As already stated,
the implicit in time correction step can be defined from its explicit in time version
with only a few (natural) modifications.
First, according to (3.39), we propose to keep the density and momentum values
obtained in the prediction step (see subsection 3.3.3 above) :

ρn+1
K = ρn+1−

K , (ρw)n+1
K = (ρw)n+1−

K . (3.94)

Regarding then the total energy ρE, an implicit version of (3.40) has to be proposed,
namely a conservative update formula of the form

(ρE)n+1
K = (ρE)nK −

∆t
|K|

∑
e∈∂K

(ρHw)n+1
e,K |e| (3.95)

with (ρHw)n+1
e,K to be precised. In that aim, let us first observe that thanks to (3.92)-

(3.93), a natural definition of the explicit numerical flux (ρHw)ne,K based on the
relaxation system (3.88) (or (3.89) equivalently) is given by (see also (3.19))

(ρHw)ne,K =
(
(ρE + Π)w1

)(
W(0+;Te,KvnK , Te,KvnKe

)
)

=
1
2
(
(ρE + Π)w1

)(
Te,KvnK

)
+

1
2
(
(ρE + Π)w1

)(
Te,KvnKe

)
− 1

2
Y(Te,KvnK , Te,KvnKe

) . Te,K
(
vnKe
− vnK

)
− 1

2
Z(Te,KvnK , Te,KvnKe

)×
(
(ρE)nKe

− (ρE)nK
)
.
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In perfect agreement with (3.84), we then propose to make implicit this formula by
performing a first order Taylor expansion of the first two terms and linearizing the
other two by freezing the coefficients Z and Y at time tn :

(ρHw)n+1
e,K = (ρHw)ne,K

+
1
2
∇v

(
(ρE + Π)w1

)
Te,Kδ

(
vnK
)

+
1
2
∇v

(
(ρE + Π)w1

)
Te,Kδ

(
vnKe

)
− 1

2
Y(Te,KvnK , Te,KvnKe

) . Te,K
(
δ(vnKe

)− δ(vnK)
)

− 1
2
Z(Te,KvnK , Te,KvnKe

)×
(
δ(ρE)nKe

− δ(ρE)nK
)
,

(3.96)
where the time increments are defined by

δ(vnK) =
(

δ(vnK)
δ(ρE)nK

)
=
(

δ(vnK)
(ρE)n+1

K − (ρE)nK

)
,

with

δ(vnK) =

 ρn+1−
K − ρnK

(ρw)n+1−
K − (ρw)nK

(ρΠ)n+1−
K − (ρΠ)nK

 =

 ρn+1
K − ρnK

(ρw)n+1
K − (ρw)nK

(ρΠ)n+1−
K − (ρΠ)nK

 .

Recall that the time increments δ(vnK) are known by the prediction step so that
δ(ρE)nK is actually the only unknown in the scalar and linear system (3.95)-(3.96).
Once (ρE)n+1

K is computed, the total internal energy (ρε)n+1
K can be updated thanks

to (3.41). Next, in order to enforce the validity of the generalized jump conditions
(3.7) at the discrete level, we propose as in the explicit in time procedure to define
(Si)n+1

K from a relevant definition of (Xi)n+1
K . More precisely, we first propose the

following natural implicit version of (3.45) :

(Xi)n+1
K − (Xi)nK +

∆t
|K|

∑
e∈∂K

(w · ne,K)ne
(
(Xi)n+1

e,K − (Xi)n+1
K

)
|e|

= Ci(εn+1
K − εn+1−

K ) i = 1, ..., N − 1, (3.97)

where by definition εn+1−
K =

∑N
i=1 εi(ρ

n+1−
K , (Si)n+1−

K ), and in agreement with (3.65)-
(3.66) :

(Xi)n+1
e,K =

{
(Xi)n+1

K if (w · ne,K)ne ≥ 0,
(Xi)n+1

Ke
otherwise.

(3.98)

The linear system (3.97) to be solved for finding each (Xi)n+1
K , i = 1, ..., N−1 involves

the same linear operator as for the prediction of the entropy values (Si)n+1−
K , which

is interesting from the computational cost point of view. Thanks to lemma 3.4 and
provided that the total internal energy (ρε)n+1

K is positive, we are then able to define
the ultimate values (Si)n+1

K exactly as in the explicit algorithm :

(Si)n+1
K = (SN )n+1

K exp
(
(Xi)n+1

K

)
, 1 ≤ i ≤ N − 1,
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with (SN )n+1
K such that ψ

(
(SN )n+1

K

)
= 0, that is

(ρε)n+1
K =

N−1∑
i=1

ρn+1
K εi

(
ρn+1
K , (SN )n+1

K exp
(
(Xi)n+1

K

))
+ ρn+1

K εN
(
ρn+1
K , (SN )n+1

K

)
.

Numerical experiments attest the positivity of (ρε)n+1
K in practice.

The unknown vector u =
(
ρ, ρw, (ρSi)1≤i≤N

)t is now completely determined at time
tn+1. This completes the description of the strategy.

3.4. Numerical illustration. We investigate the performance of the proposed
time-implicit predictor-corrector procedure for the approximation of the 2D Euler
limit equations (1.10) over a reentry blunt body. Residuals are evaluated using a
nonlinear second order MUSCL technique based on the van Albada limiter (see [27],
[29] for instance). We consider N = 3 independent polytropic pressure laws with
constant adiabatic coefficients γi respectively given by γ1 = 1.4, γ2 = 1.3, γ3 = 1.2.
The ratios of the viscosity coefficients are constant with µ2

µ1
= µ3

µ1
= 1. The free-

stream conditions follow from a Mach number set to M∞ = 2 and static pressures
p1,∞ = 10 Pa, p2,∞ = 26 Pa, p3,∞ = 40 Pa and density ρ = 4.018 10−4 kgm−3.
They are responsible for the existence of a strong bow shock in the steady state
solution. The computational domain consists of a curvilinear mesh made of 32 × 88
cells, displayed in Fig. (3.1). Fig. (3.2) shows the density contours while Fig. (3.3)
depicts the pressure distributions along the stagnation line.
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