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Summary. A new version of Godunov’s scheme is proposed in order to compute
the solutions of a traffic flow model with phase transitions. The scheme is based on
a modified averaging strategy and a sampling procedure.

1 Introduction

We propose a numerical scheme in order to compute the solutions of a traf-
fic flow model with phase transitions. The model has been introduced by
Colombo [7] in order to explain empirical flow-density relations. For low den-
sities, the flow is free and is described by a scalar conservation law (Lighthill-
Whitham [9] and Richards [10] (LWR) model). At high densities the flow is
congested and is described by a 2 × 2 system. We get

Free flow: Congested flow:
(ρ, q) ∈ Ωf , (ρ, q) ∈ Ωc,
∂tρ + ∂x(ρv) = 0,
q = ρV,

{

∂tρ + ∂x(ρv) = 0,
∂tq + ∂x ((q − Q)v) = 0,

v = vf (ρ) = V
(

1 − ρ
R

)

, v = vc(ρ, q) =
(

1 − ρ
R

)

q
ρ .

(1)

The conserved quantity ρ ∈ [0, R] is the mean traffic density, and v is the
mean traffic velocity. The parameter R is the positive maximal density, V
the maximal speed and Q is a parameter of the road under consideration.
The weighted linear momentum q is originally motivated by gas dynamics. It
approximates the real flux ρv for ρ small compared to R.
The coupling is achieved by introducing a transition dynamics from free to
congested flow.
The 2 × 2 system describing the congested flow turns out to be hyperbolic,
the second characteristic field being linearly degenerate, while the first has an
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inflection point along the curve q = Q. Moreover, shock and rarefaction curves
coincide, hence system (1), right, belongs to Temple class [11]. A detailed
description of the Riemann solver, and analogies between solutions to (1) and
real traffic features are given in [7] (see [8] for the well posedness of the Cauchy
problem).
The domain Ωf (resp. Ωc) is taken to be an invariant set for (1), left (resp.,
right). The resulting domain is given by

Ωf = {(ρ, q) ∈ [0, R] × [0,+∞[ : vf (ρ) ≥ Vf , q = ρ · V } ,

Ωc =
{

(ρ, q) ∈ [0, R] × [0,+∞[ : vc(ρ, q) ≤ Vc,
q−Q

ρ ∈
[

Q
−
−Q

R , Q+−Q
R

]}

,

where Vf > Vc are the threshold speeds, i.e. above Vf the flow is free and below
Vc the flow is congested. The parameters Q− ∈]0, Q[ and Q+ ∈]Q,+∞[ depend
on the environmental conditions and determine the width of the congested
region.
The domain Ω = Ωf ∪ Ωc turns out to be a disconnected set in R

2, its
two connected components representing the free and the congested phases.
Due to the lack of convexity of the domain, the classical Godunov method
is not applicable. In fact, in the presence of phase transitions, the projection
step of the algorithm can give values which are not in the domain. Then the
procedure is stopped. We are thus led to present a new version of the Godunov
scheme, based on a modified averaging strategy and a sampling procedure.
More precisely, we modify the mesh cells following the phase boundaries, so
that the projection involves only values belonging to the same phase. In order
to come back to the original cells, we complete the projection step with a
Glimm-type sampling technique. The averaging procedure on modified cells
has first been used (up to our knowledge) in [12] but in a different context and
a slightly different form. However, the idea of going back to the initial cells
by means of a sampling procedure is new and allows us to avoid dealing with
moving meshes (as in [12]). Similar numerical techniques have recently been
proposed by the first author for approximating nonclassical solutions arising in
certain nonlinear hyperbolic equations (see [2], [1] and the references therein),
and very recently by Chalons and Coquel in [3] for computing sharp discrete
shock profiles.

Of course, the random choice method (Glimm’s scheme) could be applied
successfully in this case. Nevertheless, our method doesn’t need to compute
all the values in the Riemann solution, but only the values on both sides of
the phase transition, and is then cheaper. Moreover, our algorithm coincides
with the classical Godunov scheme, and hence it is conservative, away from
phase transitions.

Numerical tests are showed to prove the validity of the method.

2 A new version of the Godunov scheme

We will use the following shorten form
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∂tu + ∂xf(u) = 0 , u ∈ Ω = Ωf ∪ Ωc , (2)

for the model (1), where

{

u = (ρ, q) and f(u) = (ρvf (ρ), qvf (ρ)) , if (ρ, q) ∈ Ωf ,
u = (ρ, q) and f(u) = (ρvc(ρ, q), (q − Q)vc(ρ, q)) , if (ρ, q) ∈ Ωc.

From now on, (2) will be supplemented with an initial datum, setting

u(., t = 0) = u0 ∈ Ω. (3)

We introduce a space step ∆x and a time step ∆t, both assumed to be con-
stant for simplicity. We set ν = ∆t/∆x. Then, we define the mesh interfaces
xj+1/2 = j∆x for j ∈ Z and the intermediate times tn = n∆t for n ∈ N, and
we seek at each time tn an approximation un

j of the solution of (2)-(3) on the
interval [xj−1/2, xj+1/2), j ∈ Z. Therefore, a piecewise constant approximated
solution x → uν(x, tn) of the solution u is given by

uν(x, tn) = un
j for all x ∈ Cj = [xj−1/2;xj+1/2), j ∈ Z, n ∈ N.

When n = 0, we set xj = 0.5 · (xj−1/2 + xj+1/2) and u0
j = u0(xj), for all j ∈

Z. Note that the usual L2-projection is not adapted in the present context
since, depending on the proposed initial data, it could artificially introduce
unphysical states which are not in the phase space at time t = 0 (recall that
Ω = Ωf ∪ Ωc is not convex).

Like the classical Godunov scheme, our method is composed of two steps : a
first step in which the solution evolves in time according to the PDE model
under consideration, and a second step of projection onto piecewise constant
functions.

Step 1 : Evolution in time
In this first step, one solves the following Cauchy problem

{

∂tv + ∂xf(v) = 0, x ∈ R,
v(x, 0) = uν(x, tn),

(4)

for times t ∈ [0,∆t]. Recall that x → uν(x, tn) is piecewise constant. Then,
under the usual CFL restriction

∆t

∆x
max

v

{|λi(v)|, i = 1 if v ∈ Ωf , i = 1, 2 if v ∈ Ωc} ≤
1

2
, (5)

for all the v under consideration, the solution of (4) is known by gluing to-
gether the solutions of the Riemann problems set at each interface :

v(x, t) = vr(
x − xj+1/2

t
;un

j ,un
j+1) for all (x, t) ∈ [xj , xj+1] × [0,∆t], (6)
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where (x, t) → vr(
x
t ;vl,vr) denotes the self-similar solution of the Riemann

problem






∂tv + ∂xf(v) = 0, x ∈ R, t ∈ R
+,⋆

v(x, 0) =

{

vl if x < 0,
vr if x > 0,

whatever vl and vr are in the phase space Ωf ∪ Ωc.

Step 2 (Modified) : Projection (tn → tn+1)
In the usual Godunov method and to get a piecewise constant approximated
solution on each cell Cj at time tn+1, the solution x → v(x,∆t) given by (6)
is simply averaged, as expressed by the following update formula:

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v(x,∆t)dt, j ∈ Z. (7)

In the present context, this strategy may fail due to the lack of convexity of
the domain Ωf ∪ Ωc in the (ρ, q)-plane and to the possible presence of phase
transitions in the Riemann solutions. In this case, the state un+1

j resulting
from the averaging procedure (7) can be outside Ωf ∪Ωc for some j ∈ Z (even
if the solution uν(., tn) belongs to the domain), so that the classical Godunov
method stops. We then propose to average the solution x → v(x,∆t) on
(possibly) modified and non uniform cells C

n

j = [xn
j−1/2, x

n
j+1/2) constructed as

follows. Let (σn
j+1/2 = σ(un

j ,un
j+1))j∈Z be a sequence of characteristic speeds

of propagation at interfaces (xj+1/2)j∈Z such that:
- if un

j and un
j+1 are not in the same phase (free or congested), then σn

j+1/2

coincides with the speed of propagation of the phase transition in the Riemann
solution (x, t) → vr(

x
t ;un

j ,un
j+1);

- if un
j and un

j+1 belong to the same phase, then σn
j+1/2 = 0.

Then we define the new interfaces xn
j+1/2 at time tn+1 setting

xn
j+1/2 = xj+1/2 + σn

j+1/2 ∆t, j ∈ Z. (8)

We also introduce

∆x
n

j = xn
j+1/2 − xn

j−1/2, j ∈ Z.

In particular, on each modified cell C
n

j = [xn
j−1/2, x

n
j+1/2), the solution x →

v(x,∆t) given by (6) is fully either in the free phase or in the congested phase.
Then, averaging this solution on cells C

n

j provide us with a piecewise constant
approximated solution uν(x, tn+1) on a non uniform mesh defined by

uν(x, tn+1) = un+1
j for all x ∈ C

n

j , j ∈ Z, n ∈ N,

with

un+1
j =

1

∆x
n

j

∫ xn
j+1/2

xn
j−1/2

v(x,∆t)dt, j ∈ Z.
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Let us underline that by the definition of the modified cells, we actually know
to which phase each constant state of the solution uν(x, tn+1) belongs. In fact,
note that both Ωf and Ωc are convex domains and then are stable under the
process of an L2-projection.

da

b c

xj−3/2 xj−1/2 xj+1/2

xn
j−1/2xn

j+1/2

xj+3/2

tn+1

tn

Fig. 1. An example of averaging element in the modified Godunov method

We can apply Green’s formula on the domain E = (abcd) defined by :

E = {(x, t): t ∈ [0,∆t], xj−1/2 + σn
j−1/2 t ≤ x ≤ xj+1/2 + σn

j+1/2 t}

(see Figure 1). We get

un+1
j =

∆x

∆x
n

j

un
j −

∆t

∆x
n

j

(f
n,−

j+1/2 − f
n,+

j−1/2) for all j ∈ Z, (9)

where the numerical fluxes are defined by

f
n,±

j+1/2 = f(vr(σ
n,±
j+1/2;u

n
j ,un

j+1)) − σn
j+1/2vr(σ

n,±
j+1/2;u

n
j ,un

j+1) for all j ∈ Z,

(10)
using classical notations for the traces of the Riemann solutions at given
points.
In order to go back to the (uniform) cells Cj , j ∈ Z, we now propose to pick up
randomly on the cell Cj a value between un+1

j−1 , un+1
j and un+1

j+1 , in agreement
with their rate of presence in the cell. More precisely, given a well distributed
random sequence (an) within interval (0, 1), it amounts to set :

un+1
j =











un+1
j−1 if an+1 ∈ (0, ∆t

∆x max(σn
j−1/2, 0)),

un+1
j if an+1 ∈ [ ∆t

∆x max(σn
j−1/2, 0), 1 + ∆t

∆x min(σn
j+1/2, 0)),

un+1
j+1 if an+1 ∈ [1 + ∆t

∆x min(σn
j+1/2, 0), 1),

(11)

for all j ∈ Z. Following Collela [6], we consider the van der Corput random
sequence (an) defined by an =

∑m
k=0 ik2−(k+1), where n =

∑m
k=0 ik2k, ik =

0, 1, denotes the binary expansion of the integers n = 1, 2, .... This well-known
sequence is often favorite since, when used in the context of Glimm’s scheme,
it leads to very good results in the smooth parts of the solutions (see for
instance [6] and [5] for some illustrations).

We now propose to test our algorithm on three Riemann problems leading to
solutions involving phase transitions. The parameters of the model are taken
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to be R = 1, V = 2, Vf = 1, Vc = 0.85, Q = 0.5, Q− = 0.25, Q+ = 1.5. The
numerical solutions will be represented by the density and velocity profiles,
and will be compared to the exact solutions. Solutions computed by means of
a second-order extension of the method (see [4] for a full description) are also
proposed.
For Test A, we consider ρl = 0.7, ρlvl = 0.3 in the congested phase and
ρr = 0.3 in the free phase, leading to a solution made of a rarefaction in the
congested phase, followed by a phase transition to a free state, itself followed
by a rarefaction wave in the free phase. The solutions are plotted on Figure
2 at time Tf = 0.5. For this test case, we have used a mesh containing 500
points (∆x = 0.002).
We now address the case of phase transitions from a free state to a congested
state. For Test B, we choose ρl = 0.35 in the free phase and ρr = 0.6,
ρrvr = 0.25, in the congested phase. The corresponding solution is a shock-
like phase transition followed by a contact discontinuity. Figure 3 plots the
solution at time Tf = 0.6 with ∆x = 0.002.
For Test C, we take ρl = 0.215 in the free phase and ρr = 0.7, ρrvr = 0.2,
in the congested phase, leading a solution composed of a phase transition
followed by a rarefaction wave, and a contact discontinuity propagating with
a positive speed. In this case the congested state of the phase transition is
very difficult to capture properly, due to the numerical diffusion of the scheme
which is present in the rarefaction wave. Note that this state is always over-
estimated from the proposed averaging strategy. However we observe a good
agreement between the numerical solution and the exact solution, and the
numerical solution becomes better when the order of accuracy of the method
is higher, as it is illustrated on Figure 4 where we have taken ∆x = 0.01,
∆x = 0.002 and ∆x = 0.001, Tf = 0.8.

3 Conservation error

Due to the random sampling present in Step 2 (Modified), our method does
not strictly conserve the mass ρ. We then propose to measure the conservation
errors on piecewise constant numerical solution ρν defined as

ρν(x, t) = ρn
j if (x, t) ∈ [xj−1/2, xj+1/2) × [tn, tn+1),

between times t = 0 and t = T , for some T > 0. We denote [x0, x1] the
computational domain and we proceed exactly as in [2] : we compare with 0
the function E : T ∈ R

+ → E(T ) ∈ R with E(T ) defined by

∫ x1

x0

ρν(x, T )dx × E(T ) =

∫ x1

x0

ρν(x, T )dx −

∫ x1

x0

ρν(x, 0)dx (12)

+

∫ T

0

{ρvc(ρ, q)}ν(x1, t)dt −

∫ T

0

{ρvc(ρ, q)}ν(x0, t)dt.
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Recall that q = ρV in the free phase. E(T ) represents the relative conservation
error of ρ at time T on the interval [x0, x1]. In the next table, we give for the
Tests A, B, C the values of the L1-norm 1

Tf
||E||L1(0,Tf ) of E, namely

1

Tf
||E||L1(0,Tf ) =

1

Tf

∫ Tf

0

|E(T )|dT =

tn+1=Tf
∑

tn=0

(tn+1 − tn)

Tf
|E(tn)|,

where Tf is the final time of the corresponding simulations. We observe that
the conservation errors are very small and decrease with the mesh size.

# of points
Test A

(x0 = −0.5,
x1 = 0.5)

Test B

(x0 = −0.3,
x1 = 0.3)

Test C

(x0 = −0.35,
x1 = 0.25)

50 1.58% 2.02% 2.23%
100 0.81% 1.01% 1.11%
500 0.18% 0.17% 0.22%
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Fig. 2. Test A : ρ (Left) and v (Right)
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Fig. 3. Test B : ρ (Left) and v (Right)
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Fig. 4. Test C : ρ (Left) and v (Right)


