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Summary. We show how to generate infinitely sharp discrete shock profiles with
the Godunov method. This work is a first step towards the computation of nonclas-
sical solutions associated with systems having at least one non genuinely nonlinear
nor linearly degenerate characteristic field.

1 Introduction and motivations

In this paper, we consider a nonlinear hyperbolic system of N conservation
laws in one space dimension :

{

∂tv + ∂xf(v) = 0,

v(x, 0) = v0(x),
(x, t) ∈ R × R

+∗, v(x, t) ∈ R
N . (1)

It is well-known that this problem generally does not admit smooth solutions
for large times so that weak solutions in the sense of distributions are consid-
ered. Due to the presence of discontinuities, these are generally not uniquely
determined by v0 and the validity of an entropy criterion is added for the
admissibility of discontinuities. More precisely, (1) is supplemented with the
following entropy inequality

∂tU(v) + ∂xF (v) ≤ 0, (2)

to be satisfied in the sense of distributions. In (2), (U, F ) is assumed to be an
entropy-entropy flux pair (see [2]).
When (1) is strictly hyperbolic and admits only genuinely nonlinear (GNL)
or linearly degenerate (LD) characteristic fields, existence and uniqueness of
an entropy solution is proved for the Cauchy problem (1)-(2) (see for instance
[1] for a review). From a numerical point of view, the celebrated Godunov
method is an example of conservative and entropic numerical strategy that
provides good numerical approximations. In fact, the method converges (if it
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does) towards the unique entropy solution under consideration by the Lax-
Wendroff theorem (see [2] for details).
The situation becomes more complicated when one characteristic field (at
least) is neither GNL nor LD. In this context, admissible weak solutions of
(1)-(2) are no longer unique and an additional selection criterion must be
introduced for shock discontinuities. This criterion is often called kinetic cri-
terion and may take various forms (see [3]). For instance, the selection of
admissible shock waves of (1)-(2) can be determined by the travelling waves
associated with an augmented system of the following form

∂tv + ∂xf(v) = ∂xR(ε∂xv, δε2∂xxv) (3)

which incorporates the effects of small scales like viscosity and capillarity. In
(3), the rescaling parameter ε is expected to be very small, and δ represents
the strength of the capillarity. This definition of admissible shock turns out to
be very sensitive with respect to δ when one characteristic field fails to be ei-
ther GNL or LD : two distinct values of δ generically give birth to two different
families of admissible discontinuities in the limit system (1)-(2). The conse-
quence of this sensitiveness is that the numerical approximation of the weak
solutions of (1)-(2) becomes a particularly challenging issue. For instance, the
Godunov method itself fails in providing good numerical approximations. The
reason of this failure is that the artificial diffusion terms induced by most of
the numerical methods generally disagree with the regularization operator R
(that is with the prescribed value of δ) and eventually corrupt the discrete
shocks. By contrast, the Glimm random choice method stays free from arti-
ficial numerical diffusion and converges to the correct solution. In particular,
it provides sharp discrete shock profiles.
The difficulty in approximating the solutions of such systems being related to
the artificial numerical diffusion, our main purpose in this paper is to propose
a numerical strategy based on the Godunov method which is free of numer-
ical diffusion across the shock waves, in the classical framework of GNL or
LD fields. From now on, we then assume that (1)-(2) is strictly hyperbolic
with either GNL or LD characteristic fields. We claim that with such an algo-
rithm providing infinitely sharp discrete shock profiles, we will be in a better
position to tackle the general case in a forthcoming study.

2 The numerical approximation

Let us first introduce a time step ∆t and a space step ∆x that we assume to
be constant for simplicity in the forthcoming developments. We set λ = ∆t

∆x
and define the mesh interfaces xj+1/2 = j∆x for j ∈ Z, and the intermediate
times tn = n∆t for n ∈ N. In the sequel, vn

j denotes the approximated value
at time tn and on the cell Cj = [xj−1/2, xj+1/2[ of the solution of (1)-(2).
Therefore, a piecewise constant approximated solution x → vλ(x, tn) at time
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tn is given by vλ(x, tn) = vn
j for all x ∈ Cj , j ∈ Z, n ∈ N. When n = 0, we

set for instance

v0
j =

1

∆x

∫ xj+1/2

xj−1/2

v0(x)dx, ∀j ∈ Z.

We follow by briefly recalling the two steps of the celebrated Godunov method.
Step 1 : Evolution in time
In this first step, one solves the following Cauchy problem

{

∂tv + ∂xf(v) = 0, x ∈ R,

v(x, 0) = vλ(x, tn),
(4)

for times t ∈ [0, ∆t]. Recall that x → vλ(x, tn) is piecewise constant. Then,
under the following usual CFL restriction involving the characteristic speeds
λi, i = 1, ..., N of (1) :

∆t

∆x
max

v

{|λi(v)|, i = 1, ..., N} ≤
1

2
, (5)

for all the v under consideration, the solution of (4) is known by glueing
together the solutions of the Riemann problems set at each interface (see
figure 1). More precisely

xj−1/2 xj+1/2xj xj+1 xj+3/2

∆t

0

Fig. 1. An example of Riemann solutions at each interface

v(x, t) = vr(
x − xj+1/2

t
;vn

j ,vn
j+1) for all (x, t) ∈ [xj , xj+1] × [0, ∆t], (6)

where (x, t) → vr(
x
t ;vl,vr) denotes the self-similar solution of the Riemann

problem






∂tv + ∂xf(v) = 0, x ∈ R, t ∈ R
+,?

v(x, 0) =

{

vl if x < 0,

vr if x > 0,

(7)

whatever vl and vr are in the phase space.
Step 2 : Projection
In this second step, we get back a piecewise constant approximated solution
on each cell Cj at time tn+1 by averaging the solution x → v(x, ∆t) :

vn+1

j =
1

∆x

∫ xj+1/2

xj−1/2

v(x, ∆t)dx, j ∈ Z. (8)
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Using Green’s formula, we get the usual conservative update formula

vn+1

j = vn
j − λ(gj+1/2

− gj−1/2
) with gj+1/2

= f(vr(0
±;vn

j ,vn
j+1)). (9)

As already stated in the introduction, this method is shown to be entropic
(by Jensen’s inequality) and generally gives numerical solutions in good agree-
ment with exact ones. However, the associated discontinuities are generally
smeared at the discrete level and even if this point is natural, it is not sat-
isfactory with respect to our objective in this paper. Actually, there exists
a very particular situation for which the Godunov method does not produce
smeared shock profiles, namely when considering an isolated stationary dis-
continuity. Indeed, if we consider a Riemann problem (7) such that vl and vr

can be joined by an admissible stationary discontinuity, Godunov’s method is
by construction exact and then keeps sharp the discontinuity. This property is
in fact the starting point in the design of our numerical strategy for obtaining
sharp discrete shock (moving or not) profiles. We are going to make artificially
stationary in a first step all the shocks arising in the Riemann solutions set at
interfaces xj+1/2, the dynamics being taken into account in a second step. We
hope in this way to get back sharp numerical shocks provided that a relevant
method is used in the second step.

Before describing our numerical strategy in details, let us first be more precise
on the proposed two-step decomposition. For that, let be given vn

j and vn
j+1

such that the corresponding Riemann solution (x, t) → vr(
x−xj+1/2

t ;vn
j ,vn

j+1)
contains an admissible shock. We denote σj+1/2 its speed of propagation and

vn−
j+1/2

and vn+

j+1/2
its left and right states, see figure 2.

xj−1/2 xj+1/2xj xj+1 xj+3/2

σj+1/2t
n+1−

t
n

Fig. 2. An example of Riemann solution containing a shock wave

On the interval [xj , xj+1], we first rewrite equivalently ∂tv + ∂xf(v) = 0 as
∂tv + ∂xf(v) −σj+1/2∂xv + σj+1/2∂xv = 0 and we then propose to solve it
using a splitting strategy :
First step (tn → tn+1−) This step consists in solving







∂tv + ∂xf(v) − σj+1/2∂xv = 0

v(x, 0) =

{

vn
j if x < 0,

vn
j+1 if x > 0,

(10)
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still supplemented with the entropy inequality (2). It is clear at this stage that

the Riemann solution (x, t) → ṽr(
x−xj+1/2

t ;vn
j ,vn

j+1) of (10) is obtained by

simply shifting (x, t) → vr(
x−xj+1/2

t ;vn
j ,vn

j+1) so as to get

ṽr(
x − xj+1/2

t
;vn

j ,vn
j+1) = vr(

x − xj+1/2 + σj+1/2t

t
;vn

j ,vn
j+1),

see figure 3. Observe that the discontinuity associated with the shock wave

xj−1/2 xj+1/2xj xj+1 xj+3/2

σj+1/2t
n+1−

t
n

xj−1/2 xj+1/2xj xj+1 xj+3/2

σj+1/2

Jump relations

t
n+1−

t
n

Fig. 3. Illustration of the rotation on a Riemann solution containing a shock wave

under consideration is now located along the x = xj+1/2-axis. In other words,
the shock has been made artificially stationary. When using the Godunov
method in this first step, the generated discrete shock profiles are thus ex-
pected to be sharp.
Second step (tn+1− → tn+1) This step takes into account the dynamics of the
shock wave left stationary in the first step. It amounts to solve the following
transport equation :

∂tv + σj+1/2∂xv = 0, (11)

see figure 4. The solution obtained at the end of the first step will serve as a
natural initial data for (11). In order to keep sharp the numerical profiles that
are expected to be generated by the first step, we will make use of a random
sampling strategy.

xj−1/2 xj+1/2xj xj+1 xj+3/2

σj+1/2t
n+1

t
n+1−

Fig. 4. Accounts for the dynamics of the shock wave in the splitting strategy

Let us now describe the full strategy with details.
First step (tn → tn+1−): the Godunov method
At each interface xj+1/2, let us define σj+1/2 and vn±

j+1/2
as follows :

- if there is at least one shock wave in the Riemann solution (x, t) →
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vr(
x−xj+1/2

t ;vn
j ,vn

j+1), then σj+1/2, vn−
j+1/2

and vn+

j+1/2
are respectively the

speed of propagation and the corresponding left and right states of the shock
with the larger amplitude for a given norm,
- otherwise, we set σj+1/2 = 0 and vn±

j+1/2
= vr(0

±;vn
j ,vn

j+1).

Then, under the CFL restriction

∆t

∆x
max

v

{|λi(v)|, i = 1, ..., N} ≤
1

4
, (12)

for all the v under consideration, which is more restrictive than (5) due to the
shift, we can define the function (x, t) → ṽ(x, t) for all x ∈ R and t ∈ [0, ∆t]

as the juxtaposition of the Riemann solutions (x, t) → ṽr(
x−xj+1/2

t ;vn
j ,vn

j+1)
defined on each interval [xj , xj+1]. By averaging on each cell Cj this solution at
time ∆t as in the usual Godunov method, we arrive at the following definition
:

vn+1−

j =
1

∆x

∫ xj+1/2

xj−1/2

ṽ(x, ∆t)dx, j ∈ Z.

Invoking again the Green formula, a straightforward calculation leads now to

vn+1−

j = vn
j − λ(g̃j+1/2 − g̃j−1/2) − λ(σj+1/2 − σj−1/2)v

n
j

with g̃j+1/2 = f(vn±
j+1/2

)−σj+1/2v
n±
j+1/2

. Note that f(vn−
j+1/2

)−σj+1/2v
n−
j+1/2

=

f(vn+

j+1/2
) − σj+1/2v

n+

j+1/2
by the jump relations across the shock wave, while

if σj+1/2 = 0 these numerical fluxes coincide with those of the usual Godunov
method.
Second step (tn+1− → tn+1) : a sampling strategy
In this step, we solve locally at each interface xj+1/2 the transport equation
(11) whose speed is σj+1/2. As an initial data, we consider the piecewise
constant solution provided at time tn+1− by the first step. In order to define
the new approximation vn+1

j at time tn+1 = tn + ∆t, we then propose to
pick up randomly on the cell Cj a value at time ∆t in the juxtaposition of
the solutions of the transport equations. This choice is natural in order to
avoid the appearance of new values in the shock profiles generated by the first
step. More precisely, given a well distributed random sequence (an) in (0, 1),
it amounts to set :

vn+1

j =











vn+1−

j−1
if an+1 ∈ [0, λσ+

j−1/2
[,

vn+1−

j if an+1 ∈ [λσ+

j−1/2
, 1 + λσ−

j+1/2
[,

vn+1−

j+1
if an+1 ∈ [1 + λσ−

j+1/2
, 1[,

(13)

with σ+

j+1/2
= max(σj+1/2, 0) and σ−

j+1/2
= min(σj+1/2, 0). See also figure 5.

In practice, we will use the celebrated van der Corput random sequence.

3 Numerical experiments

In this section, we give some numerical evidences to illustrate the relevance
of our strategy. To that purpose, we first consider without restriction the



Capturing sharp discrete shock profiles 7

xj−1/2 xj+1/2xj xj+1 xj+3/2

σj+1/2σj−1/2t
n+1

t
n+1−

Fig. 5. Illustration of the solutions arising in the second step

p-system in Lagrangian coordinates :
{

∂tτ − ∂xu = 0 (x, t) ∈ R × R
+∗,

∂tu + ∂xp(τ) = 0,

where τ > 0 is the inverse of a density, u is the velocity and p > 0 is the
pressure of the fluid. We choose for instance p(τ) = 1

τ2 so that the system

is strictly hyperbolic with characteristic speeds λ2 = −λ1 =
√

−p′(τ). We
consider two Riemann problems (7) associated with vl = (0.4, 0),vr = (1, 0)
(test 1) and vl = (0.8, 0),vr = (1,−1) (test 2) leading to solutions respectively
made of a rarefaction wave followed by a 2-shock, and a 1-shock followed
by a 2-shock. The covolumes τ are shown on figure 6. We observe that our
strategy provides a very good approximation with in addition infinitely sharp
discrete shock profiles. We follow by considering the system of gaz dynamics
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-0.4 -0.2  0  0.2  0.4

numerical solution at time t=0.07 with 200 points
exact solution
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 0.95
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-0.4 -0.2  0  0.2  0.4

numerical solution at time t=0.1 with 200 points
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Fig. 6. τ : test 1 (Left) and test 2 (Right)

in Lagrangian coordinates






∂tτ − ∂xu = 0 (x, t) ∈ R × R
+∗,

∂tu + ∂xp = 0,

∂tE + ∂xpu = 0,

where E = 1

2
u2 + pτ

γ−1
, γ = 2 is the total energy. This system is strictly hyper-

bolic with characteristic speeds λ2 = 0 and λ3 = −λ1 =
√

γ p
τ . We consider
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two Riemann problems (7) associated with vl = (0.5, 2, 2.625),vr = (2, 1, 1)
(test 3) and vl = (0.2, 1, 0.7),vr = (0.176, 0.875, 0.67) (test 4) leading to solu-
tions respectively made of a contact discontinuity followed by a 3-shock, and
a 1-shock followed by a contact discontinuity and a rarefaction wave. Again,
we observe on figure 7 plotting the covolumes that our method generates in-
finitely sharp discrete shock profiles. With these two test cases, we also show
that making stationary a shock wave in a system that already contains a sta-
tionary discontinuity (here a contact discontinuity) does not rise difficulties.
In order to further validate the method, it is important to notice that when

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

-0.4 -0.2  0  0.2  0.4

numerical solution at time t=0.29 with 200 points
exact solution

 0.155

 0.16

 0.165

 0.17

 0.175

 0.18

 0.185

 0.19

 0.195

 0.2

 0.205

-0.4 -0.2  0  0.2  0.4

numerical solution at time t=0.05 with 200 points
exact solution

Fig. 7. τ : test 3 (Left) and test 4 (Right)

the Riemann initial data consists of two states that can be joined by an admis-
sible shock, the proposed method simply reduces to the Glimm scheme and
then converges to the expected solutions with an infinitely sharp shock profile.

As a conclusion, let us mention that it is actually possible to get rid of the
exact Riemann solver used in our method while still keeping on generating
infinitely sharp discrete shock profiles. Our approach is based on approximate
Riemann solvers and will be describe in a longer paper. We will eventually
apply the strategy for the computation of nonclassical solutions associated
with non GNL nor LD fields, which is the very motivation of this study.
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