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Robust numerical schemes for Eulerian spray
DNS and LES in two-phase turbulent flows

By M. Boileau†, C. Chalons†, F. Laurent†, S. de Chaisemartin‡
and M. Massot†

Large Eddy Simulation (LES) and Direct numerical Simulation (DNS) of polydisperse
evaporating sprays with Eulerian models are very promising tools for high performance
computing of combustion applications. However, the spray system of conservation equa-
tions has a convective part which is either similar to general gas dynamics (GGD) Euler
equations with a real gas type state law or to the pressureless gas dynamics (PGD),
depending on the local flow regime and droplet Stokes number; henceforth, it usually
features singularities due to model closure assumptions and requires dedicated numerical
schemes. Here, we introduce a new generation of numerical methods based on relaxation
schemes which are able to treat both PGD and GGD, as well as to cope in a robust
manner with droplet vacuum zones and natural singularities of the resulting system of
conservation equations. The proposed hybrid relaxation scheme and algorithms are val-
idated through comparisons with analytical solutions and other numerical strategies in
1D and 2D configurations. They exhibit a very robust behavior and are a promising
candidate for more complex applications since they provide solutions to key numerical
issues of the actual Eulerian spray DNS and LES models.

1. Introduction

Many industrial devices involve turbulent combustion of a liquid fuel. The transporta-
tion sector, rocket, aircraft or car engines are almost exclusively based on storage and
injection of a liquid phase, which is sprayed into a combustion chamber. To optimize such
devices, it is of primary importance to understand and control the physical process as
a whole, from the injection into the chamber up to the combustion phenomena. Dealing
with the description of the polydisperse spray dynamics, some promising advances have
been performed in the field of spray combustion in real devices (Boileau et al. (2008);
Vié et al. (2010)). However, the reliable prediction of such complex two-phase reacting
flows requires further work in the modeling of the triple spray/turbulence/combustion
interaction, in particular to describe the turbulent spray dispersion. Spray models have
a common basis at the mesoscopic level under the form of a number density function
(NDF) satisfying a Boltzmann type equation, the so-called Williams equation. Such a
transport equation describes the evolution of the NDF of the spray due to convection,
heating, evaporation and drag force from the gaseous phase and droplet-droplet interac-
tions. A Lagrangian approach using Direct Simulation Monte-Carlo method is generally
considered to be the most accurate for solving Williams equation. However, this method
requires a delicate coupling between the disperse and gaseous phase, dedicated algorithms
to be efficient in massively parallel calculations as well as high memory and CPU costs
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to describe the spray polydispersion. An Eulerian formulation for the disperse phase is
thus more attractive for massively parallel simulations of industrial configurations.

Kaufmann et al. (2008) have proposed a formalism that accounts for the random-
uncorrelated motion due to trajectory crossing of inertial particles in the context of DNS
and that has been extended to LES by Riber et al. (2005). The LES filtering introduces
stress, and more specifically a pressure-like term, in the spray conservation equations so
that the resulting Eulerian equations for inertial particles dynamics are similar to the
GGD equations. In particular, they include a real gas type state law which can eventu-
ally degenerate in some parts of the flow to a zero pressure term leading to the peculiar
PGD. The main difficulty of the resulting system of conservation equations is related to
transport in physical space, that is the convective part of the system, which is either
hyperbolic or weakly hyperbolic, and thus leads to singularity formation. In the frame-
work of the PGD system, de Chaisemartin (2009) has solved the problem by using a
numerical strategy based on the kinetic scheme of Bouchut which leads to a second order
method in space and time with very limited diffusion Freret et al. (2011). This numerical
scheme captures delta-shocks in density and vacuum states which naturally emerge from
the weakly hyperbolic system (by vacuum states, we denote voids of droplets, that is
flow locations where only gas is to be found and the droplet number density is zero).
However, this strategy cannot be naturally extended to GGD with arbitrary state laws.

Therefore, the numerical method we are looking for must have the ability 1) to handle
an Euler-type system of equations in regions of high Stokes number or in regions where
sub-grid scales induce significant pressure effects, 2) to degenerate to the PGD system in
regions of Stokes number below the critical value for trajectory crossing and in regions
where the subgrid scales do not play any role in particle velocity dispersion, 3) to treat
exact vacuum regions for both PGD and GGD systems. Moreover, this method must fea-
ture the same properties of robustness with singularities and vacuum treatment as the
Bouchut’s kinetic scheme for PGD proposed in de Chaisemartin (2009). Finally, since
the pressure law can bear some real gas effects, the numerical method has to handle such
cases while keeping a high level of accuracy as required by the DNS/LES approach.

In that context, the purpose of the present paper is to introduce a novel numerical
method based on relaxation schemes which has the ability to match all the previous re-
quirements. Relaxation methods, introduced in Jin & Xin (1995), and further developed
in Suliciu (1998) and Coquel & Perthame (1998), have a common basis: they introduce
auxiliary variables in the framework of Godunov schemes in order to treat more easily
the strong non-linearity due to the treatment of pressure and state law. They avoid to
use complex non-linear Riemann solvers or their approximated versions which can have a
very high computational cost with non-standard pressure laws. The non-linearity treat-
ment is replaced by a splitting like strategy in the framework of a linearly degenerate
version of the transport step, along with a relaxation step.

In this contribution, we conduct three new steps : 1) extending the work of Berthon
et al. (2006), we propose a scheme for PGD based on successive energy and pressure
relaxation which can deal with vacuum, 2) based on this new scheme, we introduce a
hybrid numerical method which can treat both regions with and without pressure and
still remain accurate and robust, 3) we finally prove the potential of these schemes by
comparing them to standard approaches on 1D and 2D test-cases. Since relaxation meth-
ods are able to treat arbitrary state law, we only provide the schemes in the framework of
ideal gas law; besides we focus on the purely convective part of the system of conservation
laws and do not treat the stress tensors which can be handled by standard schemes.
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2. Eulerian modeling of turbulent spray dynamics

At the mesoscopic level, spray models have a common basis called the kinetic model
by analogy with kinetic theory of gases. The spray is described as a statistical cloud of
point particles experimenting exchanges of mass, momentum and heat with the carrier
phase using a Boltzmann type equation (the Williams equation) for the number density
function (NDF) f of the spray, where f(t,x,u)dxdu denotes the probable number of
particles at time t, in a volume of size dx around x, with a velocity in a du-neighbourhood
of u. For sake of simplicity, constant particle size (monodisperse spray) and temperature
are considered here so these variables will not appear in the equations. A way to solve
the Williams equation is to write conservation equations for the zero and first order
moments of the f with respect to the velocity variable at a given time t and position
x. These two moments corresponds to the particle density number n and the particle
mean velocity u respectively. There are two different ways of deriving the conservation
equations for these two moments according to the value of the particle Stokes number
St, defined by: St = τp/τK , where τK is the Kolmogorov time microscale and τp is the
particle relaxation time. For low Stokes numbers, particles have a low inertia and do not
experience trajectory crossing. Accordingly, the velocity dispersion around the averaged
velocity u(t,x) is assumed to be zero in each direction – the spray is called mono-kinetic
– and the NDF writes f(t,x,u) = n(t,x)δ(u−u(t,x)). Such an assumption leads to the
following closed system of conservation equations

{

∂tn + ∂x · (nu) = 0,

∂t(nu) + ∂x · (nu⊗ u) = nF,
(2.1)

where F is the mean drag force given by the Stokes law F(t,x,u) = (U(t,x) − u)/τp, where
U is the gas velocity at the particle location. Equation (2.1) is similar to the PGD system
with an additional velocity relaxation source term.

A way to account for the uncorrelated motion of inertial particles is to use the meso-
scopic formalism proposed by Fevrier et al. (2005), starting from the following decompo-
sition: u = u(t,x) + δu, where δu is called the random uncorrelated component of the
particle velocity. System (2.1), obtained for a mono-kinetic spray, now becomes (see Kauf-
mann et al. (2008)):















∂tn + ∂x · (nu) = 0

∂t(nu) + ∂x · (nu ⊗ u + P) = nF + ∂xδτ

∂t(nE) + ∂x · (nE u + P u) = nF · u− 2n
τ δθ + A

(2.2)

where the total energy reads E = u · u/2 + δθ, with δθ the random uncorrelated energy
(RUE) — defined as half the trace of the random uncorrelated stress tensor — and where
δτ is the deviatoric part of the random uncorrelated motion tensor (usually modeled by
a viscosity assumption), P is called the random uncorrelated pressure which is linked to
the RUE through the equation of state P = 2/3n δθ and A contains additional terms
described in Kaufmann et al. (2008). These equations correspond to the case where
the gas flow is entirely resolved and no modeling of the gas turbulence is used (DNS
approach). In the context of statistical (RANS) or LES filtering, the pressure law becomes
more complicated, involving contributions from turbulent or subgrid motion respectively.

The simplified general form of the system of conservation equation finally considered
in the following is then system (2.2) with δτ = 0, without the additional terms A but
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with a potential source term, that is 2n/τ δθ is replaced by 2n/τ(δθ−εt), where εt is the
energy source term due to subgrid turbulence agitation. From a numerical point of view,
we thus isolate the difficulties of solving system (2.2) which requires numerical method
for highly compressible flows. The additional source terms and second order derivatives
usually do not lead to numerical difficulties and can be treated through operator splitting.
Therefore, we will focus on the convective and pressure effects in order to build the
numerical schemes, keeping in mind that the method can be extended to arbitrary state
laws and treat cases where the RUE can be zero and the previous system degenerates
toward the PGD.

3. A hybrid relaxation scheme for coupled GGD/PGD configurations

In this section, we provide the key ingredients in order to propose a global numerical
strategy in 1D and 2D, able to deal with both GGD and PGD at the same time, and
to handle vacuum. It is based on the concept of relaxation approximation for systems of
conservation laws and the technical details of the approach are to be found in Boileau
et al. (2010). In the following, the notations of the previous section are abandoned and
replaced by the usual notations for hyperbolic systems of conservation laws.

3.1. PGD approximated by GGD with energy relaxation and splitting

We first propose to write the PGD par of system (2.1) under the equivalent form

{

∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,

(3.1)

with p = 0. Then, following the general idea of Coquel & Perthame (1998), we propose
to approximate the solutions of this system by the ones of the energy relaxation system







∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x(ρEu + pu) = −λρε,

(3.2)

where the so-called relaxation internal and total energies are related by E = ε + 1/2 u2.
Importantly, the pressure p here no longer equals zero but obeys for instance a perfect
gas equation of state ρε = p/(γ − 1). At least formally, we observe from the last equation
in (3.2) that the relaxation internal energy ρε tends to zero as the relaxation parameter
λ > 0 goes to infinity. The solutions of the relaxation system (3.2) are thus expected to
provide a good approximation of the solutions of the PGD for large values of λ. Note
that if we define the temperature T and the mathematical entropy S according to the
second principle of thermodynamics −TdS = dε−pdτ, τ = 1/ρ, where the T denotes the
temperature, easy calculations lead to the expected entropy inequality ∂t(ρS)+∂x(ρSu) =
−λρε ≤ 0.

The numerical procedure we are going to propose in order to approximate the solutions
of the pressureless gas dynamics system (2.1) is very classical in the context of relaxation
approximations. It is based on an operator splitting for (3.2) and is made of two steps
that we now briefly describe.
1rst step: We solve the convective part of the left hand side, which is nothing but the
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GGD system, also written in its abstract form:






∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + p) = 0,
∂t(ρE) + ∂x(ρEu + pu) = 0,

⇐⇒ ∂tU + ∂xF(U) = 0. (3.3)

2nd step: In the second step, the contribution of the stiff relaxation source term is
accounted for by solving the following ODE system in the asymptotic regime λ → ∞







∂tρ = 0
∂t(ρu) = 0
∂t(ρE) = −λρε

⇐⇒







∂tρ = 0
∂t(ρu) = 0
∂tε = −λε

(3.4)

This amounts to keep ρ and ρu unchanged and to set ε = 0, i.e. ρE = 1
2ρu2 and p = 0.

3.2. A pressure relaxation model for GGD and analytical Riemann problem resolution

We have seen that the only non-trivial of the previous steps is the resolution of the GGD;
besides, we need a numerical scheme in order to solve system (2.2), the right hand side
of which is exactly the GGD. Thus we propose a pressure relaxation system as well as
the exact resolution of the corresponding Riemann problem in order to approximate the
solutions of the GGD system (3.3) and properly handle zero pressure and zero density.
Motivated by the seminal work of Jin & Xin (1995) and Suliciu (1998), we propose to
relax the nonlinearities associated with the pressure law p only, and to retain the other
ones for the sake of accuracy. With this in mind, we introduce the following non linear
first order system with singular perturbation:















∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + Π) = 0,
∂t(ρE) + ∂x(ρEu + Πu) = 0,
∂t(ρΠ) + ∂x(ρΠu + a2u) = µρ(p − Π),

⇐⇒ ∂tV + ∂xG(V) = µR(V) (3.5)

As µ goes to infinity, we observe at least formally that the relaxation pressure Π tends
to p so that the equilibrium system (3.3) is recovered in this asymptotic regime. The
additional equation associated with Π is easily seen to be equivalent to ∂tΠ + u ∂xΠ +
a2

ρ ∂xu = µ(p − Π). This equation is very similar to the one associated with the exact

pressure p given by ∂tp + u∂xp + ρc2∂xu = 0. The choice of the parameter a > 0 is
crucial for the stability of the relaxation procedure and is determined by the so-called
sub-characteristic condition a > ρc where c denotes the sound speed. The first-order
system extracted from (3.5) is hyperbolic and admits the following three eigenvalues,
λ1 = u − a/ρ, λ2 = u, λ3 = u + a/ρ, with second-order multiplicity for λ2. We note
that λ1 and λ3 approximate the characteristic speeds u−c and u+c of (3.3). Importantly,
these eigenvalues are now associated with linearly degenerate characteristic fields. This
implies that the Riemann problem associated with (3.5) (with µ = 0) can be explicitly
solved, unlike the one associated with (3.3). Riemann solutions being the key ingredient
to devise Godunov-type methods, this mathematical property justifies the introduction of
the relaxation model (3.5). Here again, the proposed numerical procedure to approximate
the solutions of the GGD system (3.3) is based on an operator splitting for (3.5) and is
made of two steps:
1rst step: We solve the convective part of the relaxation model with µ = 0 in (3.5):

∂tV + ∂xG(V) = 0. (3.6)
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In practice, we will use in this step a Godunov method based on the exact Riemann
solution of (3.6).
2nd step: We then solve ∂tV + ∂xG(V) = (0, 0, 0, µρ(p− Π)) in the asymptotic regime
λ → ∞. The conservative variables ρ, ρu and ρE are thus constant, while Π is set to be
equal to p in this step.

For the sake of completeness, we now give the Riemann solution associated with (3.6).
We propose to take a nonconstant in the Riemann solution and we choose to solve

∂ta + u ∂xa = 0. (3.7)

Recalling τ = 1/ρ, the diagonal form of (3.6)-(3.7) is given by






















∂t(Π + au) + (u + aτ)∂x(Π + au) = 0,
∂t(Π − au) + (u − aτ)∂x(Π − au) = 0,
∂t(Π + a2τ) + u∂x(Π + a2τ) = 0,

∂t(ε −
Π2

2a2 ) + u∂x(ε − Π2

2a2 ) = 0,
∂ta + u∂xa = 0.

In other words, the quantities (Π±au), respectively (Π+a2τ), (ε− Π2

2a2 ) and a, are (strong)
Riemann invariants for the eigenvalues u ± aτ , resp. u. Let be given VL = (UL, (ρΠ)L)
and VR = (UR, (ρΠ)R) two constant states and let aL and aR be two values for a.
The self-similar Riemann solution (x, t) 7→ V(x/t;VL,VR; aL, aR) associated with (3.6)

and initial data V(x, t = 0) =

{

VL if x < 0,
VR if x > 0,

is made of four constant states VL,

V∗
L, V∗

R and VR, separated by three contact discontinuities associated with λk = λk(V),
k = 1, 2, 3 and propagating with speeds denoted by λ(VL,V∗

L), λ(V∗
L,V∗

R) and λ(V∗
R,VR).

The intermediate states V∗
L, V∗

R, as well as the speeds of propagation, are determined
using for all k = 1, 2, 3 the continuity of the (strong) Riemann invariants for λk across the
contact discontinuity associated with λl, l 6= k. We get after easy calculations λ(VL,V∗

L) =
λ1(VL) = uL − aLτL, λ(V∗

L,V∗
R) = u∗, λ(V∗

R,VR) = λ3(VR) = uR + aRτR and

u∗
L = u∗

R = u∗ =
aLuL + aRuR + ΠL − ΠR

aL + aR
, Π∗

L = Π∗
R =

aRΠL + aLΠR − aLaR(uR − uL)

aL + aR
,

1

ρ∗L
=

1

ρL
+

aR(uR − uL) + ΠL − ΠR

aL(aL + aR)
,

1

ρ∗R
=

1

ρR
+

aL(uR − uL) + ΠR − ΠL

aR(aL + aR)
,

ε∗L = εL −
Π2

L

2a2
L

+
Π∗2

2a2
L

, ε∗R = εR −
Π2

R

2a2
R

+
Π∗2

2a2
R

.

At this stage, the initial states VL and VR and more precisely the free parameters aL

and aR are implicitly assumed to be such that the waves in the Riemann solutions are
ordered as they should, namely

λ1(VL) = uL −
aL

ρL
< u⋆ < λ3(VR) = uR +

aR

ρR
. (3.8)

Following Bouchut (2004), we define aL = aL(VL) and aR = aR(VR) as follows:

if pR ≥ pL







aL/ρL = max(cL, cmin) + α
(

(pR−pL)
ρRcR

+ uL − uR

)

+

aR/ρR = max(cR, cmin) + α
(

pL−pR

aL
+ uL − uR

)

+
,
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if pR ≤ pL







aL/ρL = max(cL, cmin) + α
(

pR−pL

aR
+ uL − uR

)

+

aR/ρR = max(cR, cmin) + α
(

pL−pR

ρLcL
+ uL − uR

)

+

with α = (γ+1)/2, cmin > 0, where pL,R = pL,R(UL,R), cL,R = cL,R(UL,R) are the values
of the pressures and sound speeds evaluated on UL and UR and where ( )+ denotes the
positive part of a quantity. This choice has several advantages. First, it is shown to fullfil
(3.8) and to give the positivy of the intermediate densities ρ∗L and ρ∗R. Then, it complies
with the sub-characteristic condition a > ρc. At last, it guarantees the nonlinear stability
of the underlying relaxation scheme that will be described in the next paragraph, and
the possibility of handling vacuum in the sense that the speeds of propagation λ1(VL)
and λ3(VR) remain finite. In particular, discrete entropy inequalities as well as maximum
principles can be proved. These results are pretty technical to establish and are not
presented in this paper. We refer the reader to Bouchut (2004) for the details. In the case
of PGD, these formulas are to be considered with pL = pR = 0 and cL = cR = 0. We
then observe that the threshold cmin allows to guarantee (3.8) when uL ≤ uR and then
to avoid the resonance phenomenon. We thus are able to provide an analytical solution
of the Riemann problem in the whole range of density and pressures without having
problems with singular limits.

3.3. A generic finite volume relaxation scheme for gas dynamics and PGD separately

In this paragraph, based on the previous results, we present a finite volume relaxation
scheme for approximating the solutions of the GGD or PGD equations (3.3) and (3.2)
separately but exactly along the same lines and using the same formalism. This will allow
an easy coupling in the case of mixed computations involving both GGD and PGD at
the same time in the next paragraph. Just note that in the pressureless case, E must be
understood as a function of the unknowns ρ and ρu, namely E = (ρu)2/2ρ, but not as an
unknown with evolution given by the passive transport equation ∂t(ρE) + ∂x(ρEu) = 0.
Initial condition is denoted U(x, 0) = U0(x), with E0(x) = (ρu)20(x)/2ρ0(x) in the case
of PGD.
Let ∆x and ∆t be two constant steps for space and time discretizations. Let (xj)j∈Z

be a sequence of equidistributed points in R: xj+1 − xj = ∆x. For all j ∈ Z and
all n ∈ N, we define xj+1/2 = xj + ∆x/2, tn = n∆t, and consider the following dis-

cretization of the computational domain Rx × R
+
t =

⋃

j∈Z

⋃

n≥0 Cn
j , with Cn

j =

[xj−1/2, xj+1/2[×[tn, tn+1[. On the one hand and as usual in the context of finite volume
methods, the approximate solution U∆t,∆x(x, t) of (3.2) with initial data U0 is sought
as a piecewise constant function on each slab Cn

j : U∆t,∆x(x, t) = Un
j for (x, t) ∈ Cn

j .

At time t = 0, we set U0
j = 1

∆x

∫ xj+1/2

xj−1/2
U0(x)dx, j ∈ Z. On the other hand, we de-

fine from U∆t,∆x the piecewise constant approximate solution V∆t,∆x(x, t) = Vn
j =

(

Un
j , (ρΠ)n

j

)

for (x, t) ∈ Cn
j . This solution is set to be at equilibrium, that is (ρΠ)n

j =
p(Un

j ), for the GGD and (ρΠ)n
j = 0, for the PGD. Let us assume that the solution

U∆t,∆x(x, tn) at time tn is known. In order to advance it to the next time level tn+1, we
now describe the two steps of the method in details.

1rst step: evolution in time (tn → tn+1−)
In this step, we solve (3.6) with V∆t,∆x(x, tn) as initial data and for times t ∈ [0, ∆t].
Under the CFL condition ∆t/∆xmaxV(|λi(V)|, i = 1, 2, 3) < 1

2 where the maximum is
taken over all the V under consideration, the solution is obtained by solving a sequence of
non interacting Riemann problems set at each cell interface xj+1/2. It is explicitly known
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by the previous paragraph and we have

V(x, t) = V(
x−xj+1/2

t ;Vn
j ,Vn

j+1; aL(Vn
j ), aR(Vn

j+1)), (x, t) ∈ [xj , xj+1]×]0, ∆t], j ∈ Z.

Using the Godunov method, the update formula can be easily given under the conser-
vation form Vn+1−

j = Vn
j − ∆t/∆x(g(Vn

j ,Vn
j+1) − g(Vn

j−1,V
n
j )), j ∈ Z, n ≥ 0, where the

numerical flux function, which is explicitly known, writes for all j ∈ Z

g(Vn
j ,Vn

j+1) = G
(

V
(

0;Vn
j ,Vn

j+1; aL(Vn
j ), aR(Vn

j+1)
)

)

. (3.9)

2nd step: relaxation (tn+1− → tn+1)
We now project the solution V∆t,∆x(x, tn+1−) obtained at the end of the previous step
on the equilibrium manifold µ = +∞: Vn+1

j =
(

Un+1
j , (ρΠ)n+1

j

)

for all j ∈ Z

with

{

Un+1
j = Un+1−

j and (ρΠ)n+1
j = p(Un+1

j ) for the GGD

Un+1
j =

(

ρ, ρu, (ρu)2/2ρ
)n+1−

j
and (ρΠ)n+1

j = 0 for the PGD

In agreement with the description of these two steps, the approximate solution U∆t,∆x

is then updated according to the following consistent finite volume method:

ρn+1
j = ρn

j −
∆t

∆x
∆fρ(Un

j−1,U
n
j ,Un

j+1), (ρu)
n+1
j = (ρu)

n
j −

∆t

∆x
∆fρu(Un

j−1,U
n
j ,Un

j+1),

(3.10)

together with (ρE)
n+1
j = (ρE)

n
j −

∆t

∆x
∆fρE(Un

j−1,U
n
j ,Un

j+1) for the GGD (3.11)

(ρE)
n+1
j =

(

(ρu)2

2ρ

)n+1

j

for the PGD. (3.12)

Here of course, (fρ, fρu, fρE)(Un
j ,Un

j+1) denote the first three components of g(Vn
j ,Vn

j+1)
and ∆fα(Un

j−1,U
n
j ,Un

j+1) = fα(Un
j ,Un

j+1) − fα(Un
j−1,U

n
j ) for α = ρ, ρu, ρE.

3.4. Coupling the GGD and PGD by the use of an internal energy threshold

In order to perform computations involving both GGD and PGD at the same time, we
have to couple the relaxation schemes developed for both systems. The main difference
then clearly lies in the treatment of the energy equation. For the sake of clarity, we
begin by introducing a color function Y such that Y = 1 for GGD and Y = 0 for
PGD. From a numerical point of view, a given cell Cn

j is said to be pressureless, or

equivalently such that Y n
j = 0, if the internal energy εn

j = (ρE− (ρu)2

2ρ )n
j is less than a given

threshold εmin and with pressure, that is Y n
j = 1, otherwise. Introducing the threshold

εmin is a convenient way to switch from one algorithm to the other. In agreement with
the threshold cmin already introduced for the sound speed in the definition of aL and

aR, we set εmin =
c2

min

γ(γ−1) . We thus distinguish between zones with PGD where the

internal energy is exactly zero and zones where the energy level is above the defined small
threshold, a property which is preserved by the pure convective part of the evolution. Let
us consider a given cell Cn

j . Two different situations must be distinguished, depending in
particular on whether Y n

j−1 = Y n
j = Y n

j+1 or not. The case Y n
j−1 = Y n

j = Y n
j+1. In this

case, we simply use (3.10) and (3.12) without any modification. The case Y n
j−1 6= Y n

j

and/or Y n
j+1 6= Y n

j . In this case, we consider that the cell Cn
j should be considered

with pressure in the update formula. Thus we propose to use Eq. (3.10-3.12) where for
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k = j − 1, j, j + 1, we replace the Un by U
n

and ρEn
k by ρE

n

k , with :
{

U
n

k = (ρ, ρu, ρE)n
k , ρE

n

k = ρn
kεmin +

(

(ρu)2/(2ρ)
)n

k
if εn

k < εmin

U
n

k = Un
k otherwise.

The interface between PGD and GGD is automaticaly treated by means of a threshold.
The GGD zone can propagate and, with εt = 0 as energy source, eventually vanish.

3.5. Extension to 2D configurations and to second-order accuracy

The 2D computations on cartesian meshes presented in the next section are performed
using a very classical dimensional splitting method. Recall that if we denote (u, v) the two
components of the velocity field, v being associated with the additional space dimension,
the governing equation for v in the quasi-1D system reads

∂t(ρv) + ∂x(ρvu) = 0. (3.13)

This equation means that v is simply passively transported with the flow. From a nu-
merical point of view, a natural discretisation of (3.13) is given by :

(ρv)n+1
j = (ρv)n

j −
∆t

∆x
∆fρv(Un

j−1,U
n
j ,Un

j+1),

∆fρv(Un
j−1,U

n
j ,Un

j+1) = fρv(Un
j ,Un

j+1) − fρv(Un
j−1,U

n
j ),

fρv(Un
j ,Un

j+1) =

{

fρ(Un
j ,Un

j+1) vn
j if fρ(Un

j ,Un
j+1) ≥ 0,

fρ(Un
j ,Un

j+1) vn
j+1 if fρ(Un

j ,Un
j+1) ≤ 0.

This formula has been first introduced in Larrouturou (1991) and complies with the exact
resolution of the Riemann problem for the quasi-1D relaxation model. The calculations
are left to the reader. The space second-order extension we use in the numerical experi-
ments is based on a classical MUSCL reconstruction technique on the primitive variables
ρ, u and ε, using a minmod slope limiter and a second order Runge-Kutta method.

4. Results and discussion

In order to evaluate the hybrid PGD/GGD relaxation method, the Sod shock tube test
is performed with the initial conditions

(

v0 = 0, ρ0 = 1, p0 = 1.1 |x ≤ 0.5
)

and
(

v0 = 0,

ρ0 = 0.125, p0 = 0 |x > 0.5
)

. At the initial time, x > 0.5 is a zero pressure field computed
with the PGD algorithm while x ≤ 0.5 is computed with the GGD algorithm. In this test
case as in all other coupled method calculations, cmin = 10−5 and εmin = 10−10. Figures 1
shows the density and pressure profiles at time t = 0.1644 for the first and second order
relaxation schemes. Due to the poor discretization of the surface discontinuity and the
shock, the density solution is smeared by the numerical diffusion. The second order
scheme presents a significantly better accuracy than the first order one. While the shock
propagates toward the pressureless region, the interface between pressure and pressureless
regions does not present any numerical artefact. However, numerical diffusion causes some
pressureless cells to become with pressure in the upstream region of the shock, this effect
being stronger with the first order scheme. For brevity, other 1D tests that proves the high
robustness of the method, in particular in a shock/δ-shock interaction, are not shown
here (see Boileau et al. (2010)).

Figure 2.a shows the velocity field of the carrier phase corresponding to the four contra-
rotating Taylor-Green vortices used in the following numerical tests. The spray dynamics
is coupled to the gaseous flow field through a Stokes drag source term in the momentum
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Figure 1. Profiles of density (a) and pressure (b) for the hybrid relaxation scheme in Sod
numerical test at time t = 0.1644: analytical solution (—), 1rst order relaxation scheme (pressure
region: ◦, pressureless region: +), 2nd order relaxation scheme (pressure region: �, pressureless
region: ×) (80 nodes, CFL = 0.5).

equation, which amounts to relaxing the spray velocity field toward the gaseous one
at a rate set by the Stokes number St, i.e. the non dimensional relaxation time. From
de Chaisemartin (2009) we know that there exists a critical value Stc = 1/8π which
separates two regimes. For St < Stc, the particles cannot escape from the Taylor-Green
vortices while, for St ≥ Stc, they are ejected out of their original vortices. Therefore, we
have conducted various tests with two values of St in order to cover these two regimes:
St = 0.9Stc and St = 13Stc (Boileau et al. (2010)). In the following we only present the
latter case. From a numerical point of view, the drag source term F is applied via operator
splitting through an analytical expression of the exponential relaxation (Eq. 2.2). The
initial spray velocity is uniformly zero for all test-cases.

In order to test the capability of the method to treat multidimensional transport
of inertial particles, the Stokes number is fixed at a supercritical value St = 13Stc.
Figure 2.a shows the initial density distribution provided by a cardinal sinus function.
To allow comparison with Bouchut’s scheme, the pressureless relaxation scheme is used.
Figure 2.b and 2.c show the results at time t = 0.8 for the second order Bouchut scheme
and the second order relaxation scheme. Both schemes predict very similar density fields
featuring a δ-shock, as expected (see de Chaisemartin (2009)).

The hybrid scheme is evaluated in a configuration where two parcels of high-inertia
particles are ejected from their initial vortices and collide. The density distribution is
given by a cardinal sinus function whose center is (0.125,±0.375) and radius 0.125 (see
Fig. 3). A PGD calculation and a GGD calculation are performed. For the GGD case, a
relaxation term of internal energy is imposed using a cardinal sine function centered on
y = 0 with a radius of 0.125 and a maximum value of εt = 0.5 (see Fig. 3.c). This energy
source term simulates the effect of a local turbulence region of the carrier flow on the
particles transport. As expected, Fig. 3 shows that, for both PGD and hybrid schemes,
each particle parcel is ejected from its vortex and start to interact with its mirror image
at t = 0.75. In the PGD case (Fig. 3.a), this interaction forms a δ-shock at the meeting
line y = 0. On the other hand, the hybrid case (Fig. 3.c) features only a small increase in
density at y = 0 because pressure effects limit the concentration of particles. Later, the
behavior of both schemes are even more different (see Fig. 3.b and d). Most of the density
is concentrated close to y = 0 in the PGD case, while a smoother density distribution is
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Figure 2. Carrier phase velocity field (Taylor-Green periodic vortices) and initial density con-
tours (a). Snapshots of the density distribution at time t = 0.8 for Stokes number St = 13Stc

(200 nodes, CFL = 1): 2nd order Bouchut scheme (b) and 2nd order pressureless relaxation
scheme (c).

Figure 3. Snapshots of the density for Stokes number St=13Stc (1rst order relaxation scheme,
200 nodes, CFL=1): pressureless scheme (a, b) and hybrid scheme (c, d). Time t=0.75 (a, c)
and t=1.1 (b, d). Dotted circles and dashed lines are the limits of the cardinal sinus function
of the initial density distribution and the energy source term (b, d) respectively.

observed in the hybrid case. Note that with the hybrid scheme, the maximum of density
is not located on the y = 0 line because the pressure gradient resulting from the energy
source term prevents particles from accumulating.

A novel hybrid numerical method for solving Eulerian models for spray dynamics has
been proposed. Based on the relaxation method, it can deal with both PGD and GGD
system of equations in various zones of the same configuration. Therefore, it has the abil-
ity, on the one hand, to compute the low-inertia particles dynamics – described by PGD
– and, on the other hand, to account for the effects of high-inertia particles in the turbu-
lent regions of the flow — falling under the general GGD framework. The zero-density is
also explicitely handled, which is a key feature for simulating spray injection. In terms
of accuracy, two-dimensional tests in PGD configurations show that the scheme matches
the kinetic scheme of Bouchut previously used and thus validate the approach. Beside,
the hybrid PGD/GGD approach predicts accurate results in the 1D shock tube test-case.
Two-dimensional simulations in the framework of Taylor-Green vortices with eventually
localized turbulent subgrid energy source allow to exhibit the potential of the method.
Besides, the relaxation framework makes it possible to handle arbitrary pressure law such
as the real gas-type behaviour of turbulent sprays. Therefore the present investigation
shows that this method provides the ingredients needed to simulate turbulent sprays in
a DNS/LES framework.
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