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ABSTRACTWe study two separate domains sharing a fixed interface.dh eae, a different hy-

perbolic model is used to describe the flow. We propose apiptepconditions at the interface
in a way to obtain a coherent description of the unsteady flogoaling to physical considera-
tions. The problem we consider is the coupling of the homagen equilibrium model and the
homogeneous relaxation model. Several coupling conditaoe described and illustrated by
numerical results.

RESUME.On étudie le probleme modeéle du couplage de deux systemebblgues séparés
par une interface fixe, les deux systemes étant différeimss [droposons des conditions de
couplage pour obtenir des écoulements instationnairegrestis avec des principes physiques.
Les modeles considérés ici sont, d'un c6té, le modele hamogd'équilibre, et, de I'autre
coOté, le modele homogéne de relaxation. Différentes gfi@déde couplage sont proposées et
comparées numériguement.

KeyworDsModel coupling, hyperbolic system, phase transition.
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1. Introduction

The model coupling arises in the frame of the Neptune pr¢i¢ER 05a], which
involves several numerical and physical problems. One edaiproblems is the nu-
merical coupling of two-phase flow codes which are based fiardint models and
different numerical methods. These models are differentdter to take into account
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the different configurations of a global flow. The main diffigtoccurs when two dif-
ferent models are put side to side: the information to bestrdtted from one model
to the other has to be defined. Moreover, even if some physécgiirements lead
to a coherent description of the coupling, the numericakespf coupling must be
handled with care. Indeed, in some very simple cases, thencahcoupling method
cannot be in agreement with physical principles.

We investigate here the numerical coupling of two differfinst order systems of
partial differential equations. These problems model the ©f a fluid which can
be under its vapor form or under its liquid form. We considexdels based on the
conservation of mass, momentum and total energy, and thean&al equilibrium
(ie p1 = p2) is assumed to be fulfilled. The coupling is located at a fixeerface. On
one side, we assume that the phase transition is instantaaed on the other side, the
thermodynamical equilibrium is reached with a non-zeraxation time. We present
several ways of coupling the two systems, from the mathe@laihd numerical points
of view, following some previous works [GOD 04], [GOD 05],[#B 05]. Atthe end,
we present numerical tests.

2. The homogeneous models

We first present the two models we aim at coupling. The fluid aeser can
be in its “vapor” phase or in its “liquid” phase and we allowgge transitions. The
first model, the homogeneous equilibrium model, assumegtbahermodynamical
equilibrium is fulfilled instantaneously whereas the setorodel, the homogeneous
relaxation model, is a relaxed version, with respect to fifferénce of the chemical
potentials, of the equilibrium model.

2.1. The homogeneous equilibrium model
The first model we consider is the homogeneous equilibriudegh@1EM):

Orp + 0x(pu) = 0,
¢ (pu) + 0. (pu® + pr) = 0, 1)
O(pE) + 0z (u(pE +pr)) =0,

whereE = u?/2+candpr, = pr.(p, ). The notations are classicalis the densityy
the velocity,F the total energyp;, the pressure andthe internal energy. We assume
that the fluid is a composed by two immiscible perfect gas pipeses, with different
adiabatic coefficients; > 1 andvy, > 1. The pressure law is given by

(y1 = 1)pe, if p<pi,
pr(p,e) = (1 — pie, if pI <p < p3, )
(2 — L)pe, if p3 <p,
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wherep;} andp? are two constants defined by
1 v2—1 1 y1—1
— Y12 — Y12
pi=a(Z20)"T and pp—a(22)7 T
Y2 —1 72— 1

A =exp (’71 +(n -V _,2 :Zj —(v2 = 1) In(y2 — 1)) .

See [CAR 04] and [JAO 01] for more details.

with

The equation of state (2) is very simple and it takes into antthe phase transi-
tion: if p € (0, p7] the fluid is in its “vapor” form, ifp € [p}, o), the fluid is in its
“liquid” form and if p € (p1, p3), it corresponds to a mixture.

In the following, we will adopt the condensed notation of (1)
oUr + 0, Fr(Ur) =0, 3)

with U, = Y(p, pu, pE) andF(UL) = (pu, pu? + pr,u(pE + pr)). We also
defineQ;, = {Ur € R?,p > 0, > 0} and note that (1)-(2) is strictly hyberbolic
over this natural phace space.

2.2. The homogeneous relaxation model

We focus now on the homogeneous relaxation model (HRM):

dimi + Oz (miu) = N(mi(p) —ma),
Oip + 0x(pu) = 0,

Oy (pu) + 0 (pu® + pr) = 0,

9(pE) + 9z (u(pE + pr)) = 0,

where) is a positive constant and; is the partial density of the “vapor”. The pres-
sure law is now

(4)

pr(p,e;m1) = (1 — Dma + (2 — 1)(p — ma1))e. (5)

The functionm] is defined by

P if p < pi,
mi(p) = | Plyis i pT <p<pi, (6)
0, it p3 < p.

Let us emphasize that the adiabatic coefficientandy, are the same as the adiabatic
coefficients of the HEM. Therefore, one can check that when +oco (that is when
my — mj), the HRM formally tends to the HEM. In other words, we have

pr(p,e,mi(p)) =pr(p,e), Vp,e>0.
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Here again, we introduce a short notation for (4):
O Ug + 0,Fr(Ug) = Sr(Ug), (7)

with Ui = *(m1, p, pu, pE), Fr(Ug) = “(myu, pu, pu® + pr,u(pE + pr)) and
Sr(Ug) = Y(A(m3(p) —m1),0,0,0). The set of admissible statests; = {Ux €
R%0 < ml < p,p > 0,e > 0} and the system turns out to be strictly hyperbolic
over{)g.

3. The mathematical model of the coupled problem

We consider the two different hyperbolic systems preseats/e separated by
the fixed interfac€x = 0}

8tUL+8IFL(UL):O, t>0,2<0, (8)
0;,Ugr + (’)IFR(UR) = SR(UR), t>0,x>0, (9)

with the initial conditions

Ur(z,0) =Ugo(z), =<0, (20)
UR(x,O) = URy()(x), x> 0. (11)

In order to couple the two systems (8) and (9), we will intrcgltwo operators

I : U = “(p, pu, pE) —  E(UL) = “(mi(p), p, pu, pE), (12)
Hf :Ugr = t(mlapapuapE) = Hf(UR) = t(pv puva)7 (13)

which will enable us to convert one variable into the other.

We present three approaches, according to the informatidohvmust be trans-
mitted or according to physical requirements: global coregéon, continuity of some
physical variables through = 0. In the following, the source ter8z(Up) is omit-
ted for simplicity (and without any restriction).

3.1. The flux coupling

The first approach of coupling relies on the use @béor functionY : (z,t) €
R x (0,00) — [0,1] and it is based on a simple definition of the coupling which
provides the global conservation of the unknowns. We reptlae systems (8) and (9)
by theaugmentedystem
{8tU+8IF(U,Y)O, zeR >0, 14
oY =0,
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with Y (x < 0,0) = 0 andY (x > 0,0) = 1. The new variabl&J is defined by

Ula, 1) = | RUD(@:1) 2 <0,
b= Ugr(z,t) if 2> 0,

and the new flux functiol (U, Y") by
F(U,Y)=(1-Y)F(U,0) 4+ YF(U,1)

with
F(U,0) = (0, 'F(I#(U))) and F(U,1)=Fg(U).

This model of coupling is conservative. Nonetheless, thatesy (14) is resonant,
which means that if an eigenvalue of the jacobian mafrixF (U, Y) vanishes, the
system admits two null eigenvalues and the eigenvectorsotiform a basis oRR*
anymore. In order to avoid this problem, the second equati¢h4) can be replaced
by

9 (pY) + 0x(pY'u) = pp(Yo = Y), (15)
where we will makeu: tend to+oc formally.

3.2. The intermediate state coupling

The idea of this technique is to impose the continuity of tagables through the
interface, namely
L (UL)(0-,t) = Ugr(04,t), t>0. (16)
Since we are focusing on the coupling of systems that maylalewiscontinuities,
the continuity condition (16) cannot be fulfilled in all casén particular when the
characteristics of the two problems are incompatible. &foee, a weak formulation
of this condition is proposed:

UL(0_,t) € O (TTF(UR)(04,1)), t >0, (17)

Ur(04,t) € Op(T4(UL)(0_,1)), t > 0, (18)
with

Or(Uy) = {Wr(0_;U,U,), U € Q. }, (19)

Or(Uyp) = {Wg(04; U, U),U € Qr}, (20)

whereW, (z/t; Uy, Uy), o = L, R, is the self-similar solution of the Riemann prob-
lem
Uy + 0, F,(U,) =0, xz€R,t>0,

U (2,0) U, ifz<0,
al\l, - .
U, ifz>0.

The condition (17) (respectively (18)) means that the stBf¢Ur)(0,,t) (resp.
I1%(UL)(0_,¢)) is an admissible boundary condition (see [DUB 88]) for thstem
(8) (resp. (9)). More details can be found in [GOD 05].
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3.3. The modified intermediate state coupling

The conditions (17)-(18) provide, whenever it is possilhes continuity of the
variablesm; (with m; = mj for z < 0), p, pu andpFE through the interface. Let us
assume thap, pu andpFE are continuous at = 0 and thatpu(0,¢) < 0. In such a
case, ifm; # mj in the right part of the domain, the continuityof; atz = 0 cannot
be ensured. As a result, the pressure cannot be continuous at

pL(pa 5)(0*a t) = pR(pvsva(p))(O*at) 7é pR(pvsvml)(OJrvt)'

But, for physical considerations, one could prefer the tsmfuto fulfill the continuity
of the pressure at = 0.

Therefore, instead of (17)-(18), the coupling conditioawdd be a weakened form
of
¢L (HII:Z(UL))(Ofvt) = ¢R(UR(O+5 t))v t> 07 (21)
where¢r, and¢y are two changes of variable frofy, to Q2. In our case, they are
¢L(m17 P, puU, pE) = (mla 12 PUaPL(Pa E))a
¢r(m1, p, pu, pE) = (ma, p, pu, pr(p; €,m1)).

The weak coupling conditions associated with (21) are
UL(0-,t) € OL(IIF(¢7 ' (6r(UR)))(0+,1)), t > 0, (22)
Ug(04,t) € Or(¢g' (¢r(IE(UL)))(0-,1)), t >0, (23)
using the previous definitions (19)-(20) 6f, andOx.

4. Numerical coupling of hyperbolic systems

We focus now on the simulation of the coupling problem (8H®)-(11). Of
course, the numerical coupling must vary according to tpe tyf coupling we want
to impose.

Let At and Ax be the time and the space steps. The interfaces of the mesh are
defined asc; = jAz, j € Z, and the intermediate times arfe= nAt, n € N. The
classical finite volume approximation is used:

ZTj+1

Ax(Ua)g-)_,’_l/2 = / Uqo(z)dz, o=L,R.

T

The approximatior@UZJH/Q)jyn is given by the numerical scheme
n+1 n At n n .
UL,j+1/2:UL,j+1/2*A_x(GL,jH*GL,j)’ forj <0,n >0, (24)
n+1 n At n n .
Uklit12 = Uiy — A_w(GR,jH —Gjg,), forj=>0,n2>0, (25)
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where the numerical fluxes are defined with the help of two istenst functions
GL(UL,VL) andGR(UR,VR) with the ﬂUXGSFL(UL) andFR(UR):

GTLIJ = GL(Uzﬂj71/25U27j+1/2)5 j < O,TL Z 07 (26)
Gk, =Gr(Ug ;_1/2: Uk j11/2), J>0,n>0. (27)

Note that it remains to define the numerical flux@$ , and G}, , at the coupling
interface. We restrict this presentation to three-poihesees for simplicity, though
we will use five-point schemes in applications (the extemg&@abvious).

We present several ways to define these two numerical fluxkeetate their defi-
nition to the previous models of coupling.

4.1. The numerical flux coupling

The following numerical method is dedicated to the simolatdf the flux cou-
pling. The way of defininds? , andG¥; , consists in solving the problem (14) with

the initial data
un if <0
U(IE,O) _ —-1/2 . € )
U11/2 if x>0,
(28)
if
Y (2,0) = 0 I z <0,
1 ifz>0.

It has been investigated in [HER 05b] and it gives precisaltgs But, in order to
avoid any resonance phenomenon, we use the equation (1®dnsfo,Y = 0 in
(14). This system is solved in two steps. First, the convegiart is solved, that is to
say

U+ 0, F(U,Y) =0,

Ot (pY) + 0. (pYu) = 0,
with the initial data (28). It gives an exact (or approximatalue of (U*,Y™)(x/t)
and we set

Gi o= Gho = F(U(0),Y*(0). (29)

In the second step, the equilibrium is recovergd:= Y;. As a result, this method is
completely conservative. We refer to [AMB 05] for more ditai

4.2. The two-flux method

- This numgrical method is based on the introduction of tw@mnstructed states
Uy, 1/, andU7 ; ». The numerical fluxes at = 0 are given by

Gz,o = GL(UZ,—l/Qaﬁz,l/Q)a (30)
G?\’,,O = GR(ﬁ?%,fl/%U?\’,,l/Q)' (31)
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Such a numerical coupling aims at approximating the (matlifienot) intermediate
state coupling. If the variable to be transmitted at therfat® is the conservative
variable, we use

ﬁ?ﬁ,—l/z = Hle(UTLl,q/z) and ﬁz.;/z = Hf(UTﬁ,1/2)-
For what concerns the modified intermediate state coupliegjse
ﬁg,—yz = ¢§1(¢L(H1LQ(UZ,—1/2)>> and ﬁ7L1,1/2 = Hg((bzl(d)R(U?%,l/Q)))'
For more details, see [GOD 04] and [GOD 05].

4.3. The numerical schemes

We describe in this section the numerical schemes we useclndgamain. The
same numerical scheme has been used on each side, in ortheplifyshe compari-
son. We present it in the frame of the HRM, which includes thete of the HEM (we
have dropped the subscriptsand R). The scheme we use is a Lagrange-Projection
scheme (see for instance [DEP 01]). Actually, it is a fiveapscheme, that is to say
the fluxG” depends on four states:

Gj = G(U}ls/za Ui 12 Ujy12: Ujys e At/Az).
Note that it also depends on the ratio/Ax. This scheme is based on two steps.
ThelLagrange stefis solved with the help of the acoustic scheme:
n+1— n
yjjrrl/z = Yjt1/25
n+1— At

Tz = Tzt P2 BT (U = u3),
J
At
+1- _
U?+1/2 - u?+1/2 - pn+1/2A£E (p?-}—l 7p§l)a
J
At
+1— _
E_;l+1/2 - ?+1/2 - 7pﬂ+1/2Az((PU)?+1 - (PU)?),
J

with

“? = (“?—1/2 + “?+1/2)/2 + (p?—1/2 —p?+1/2)/(2(pc)?),

pj = (Pi_1/2 +DPji1/2)/2+ (pc) (Wj_1 0 — ufiq/0)/2,
wherey = m1/p, 7 =1/pand(pc)} = max((pc)?_l/Q, (pC)}y1/5)- We then obtain
(U;?jfll/g)j. The grid points have moved at the fluid velocity, approxidatere by
u?. The quantitieséU?jll/‘Q)j are then defined on a Lagrangian gfig ), defined by
r; =x; +ujAl.
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The second step is tipgojection stepWe defineU™ 1~ (z) as a function which is
constant on each cell of the Lagrangian dri¢); and given byU"jll/2 [z5;27, )

for all j € Z. We then projectU"™!~ on the Eulerian gridz;);: A:z:UJLl/2 =
[l Ut (z) da.

n+1 .
J+1/2

At _
(ml)?j-_l/Q (ml)?+1/2 - A—m(U?ﬂ(ml)ZﬁM — Uy (ml)gﬁ )

As a result, we get fotJ

t
+1 +1- +1
Pivije = Pz = xn (WP, = uiPg,, ),
n+1 n At n n+1 n+1— n n
(p“)j+1/2 (Pu)j+1/2 - A_w(UjH(PU)@HM (Pu)g W TPin - 7)),

n At n n — n n —
(PE)}EL e = 0BV o — oW (0E)GSL — (0B
+ (pu);brl - (pu);l)a

g — j—1/2 iful >0,
P +1/2 iful <o,

This scheme is entropy consistent and positive (for theitiepsthe partial density
my and the internal energy) under a classical CFL condition [DEP 01].

where

4.4. Numerical tests

In order to clarify the results, we only focus on the case 0. We sety; = 1.6
andy,; = 1.4 (which givesp; ~ 0.613 andp} ~ 0.919). The initial condition is

r<0|xz>0
partial density| — 2
density 1 2
velocity -1/2 -1/2
pressure 1 1

It corresponds to a contact discontinuity going left. On g, “Flux”, “State CV”
and “State Pr” respectively denote to the flux coupling, ttatescoupling with the
conservative variable and the modified state coupling wighcontinuity of pressure.
These results have been obtained with 1000 cells and withusa@bnumber equal to
0.4. We can see that only the modified state coupling enablgseserve the velocity
and the pressure constant. Moreover, a mixtare (n; < p) appears in the negative
part of the domain for the conservative state coupling. Nuwdg if we aim at preserve
the contact discontinuity through the coupling interfatte modified state coupling
with the continuity of pressure must be used.
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Figure 1. Comparison of the three methods of coupling for a contactadisnuity.
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