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ABSTRACT.We study two separate domains sharing a fixed interface. In each one, a different hy-
perbolic model is used to describe the flow. We propose appropriate conditions at the interface
in a way to obtain a coherent description of the unsteady flow according to physical considera-
tions. The problem we consider is the coupling of the homogeneous equilibrium model and the
homogeneous relaxation model. Several coupling conditions are described and illustrated by
numerical results.

RÉSUMÉ.On étudie le problème modèle du couplage de deux systèmes hyperboliques séparés
par une interface fixe, les deux systèmes étant différents. Nous proposons des conditions de
couplage pour obtenir des écoulements instationnaires cohérents avec des principes physiques.
Les modèles considérés ici sont, d’un côté, le modèle homogène à l’équilibre, et, de l’autre
côté, le modèle homogène de relaxation. Différentes stratégies de couplage sont proposées et
comparées numériquement.
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1. Introduction

The model coupling arises in the frame of the Neptune project[HER 05a], which
involves several numerical and physical problems. One of these problems is the nu-
merical coupling of two-phase flow codes which are based on different models and
different numerical methods. These models are different inorder to take into account
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the different configurations of a global flow. The main difficulty occurs when two dif-
ferent models are put side to side: the information to be transmitted from one model
to the other has to be defined. Moreover, even if some physicalrequirements lead
to a coherent description of the coupling, the numerical aspect of coupling must be
handled with care. Indeed, in some very simple cases, the numerical coupling method
cannot be in agreement with physical principles.

We investigate here the numerical coupling of two differentfirst order systems of
partial differential equations. These problems model the flow of a fluid which can
be under its vapor form or under its liquid form. We consider models based on the
conservation of mass, momentum and total energy, and the mechanical equilibrium
(ie p1 = p2) is assumed to be fulfilled. The coupling is located at a fixed interface. On
one side, we assume that the phase transition is instantaneous and on the other side, the
thermodynamical equilibrium is reached with a non-zero relaxation time. We present
several ways of coupling the two systems, from the mathematical and numerical points
of view, following some previous works [GOD 04], [GOD 05], [AMB 05]. At the end,
we present numerical tests.

2. The homogeneous models

We first present the two models we aim at coupling. The fluid we consider can
be in its “vapor” phase or in its “liquid” phase and we allow phase transitions. The
first model, the homogeneous equilibrium model, assumes that the thermodynamical
equilibrium is fulfilled instantaneously whereas the second model, the homogeneous
relaxation model, is a relaxed version, with respect to the difference of the chemical
potentials, of the equilibrium model.

2.1. The homogeneous equilibrium model

The first model we consider is the homogeneous equilibrium model (HEM):











∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + pL) = 0,

∂t(ρE) + ∂x(u(ρE + pL)) = 0,

(1)

whereE = u2/2+ε andpL = pL(ρ, ε). The notations are classical:ρ is the density,u
the velocity,E the total energy,pL the pressure andε the internal energy. We assume
that the fluid is a composed by two immiscible perfect gas typephases, with different
adiabatic coefficientsγ1 > 1 andγ2 > 1. The pressure law is given by

pL(ρ, ε) =











(γ1 − 1)ρε, if ρ ≤ ρ∗1,

(γ1 − 1)ρ∗1ε, if ρ∗1 < ρ < ρ∗2,

(γ2 − 1)ρε, if ρ∗2 ≤ ρ,

(2)
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whereρ∗1 andρ∗2 are two constants defined by

ρ∗1 = A

(

γ1 − 1

γ2 − 1

)

γ2−1

γ1−γ2

and ρ∗2 = A

(

γ1 − 1

γ2 − 1

)

γ1−1

γ1−γ2

,

with

A = exp

(

γ1 + (γ1 − 1) ln(γ1 − 1) − γ2 − (γ2 − 1) ln(γ2 − 1)

γ2 − γ1

)

.

See [CAR 04] and [JAO 01] for more details.

The equation of state (2) is very simple and it takes into account the phase transi-
tion: if ρ ∈ (0, ρ∗1] the fluid is in its “vapor” form, ifρ ∈ [ρ∗2,∞), the fluid is in its
“liquid” form and if ρ ∈ (ρ∗1, ρ

∗
2), it corresponds to a mixture.

In the following, we will adopt the condensed notation of (1):

∂tUL + ∂xFL(UL) = 0, (3)

with UL = t(ρ, ρu, ρE) andFL(UL) = t(ρu, ρu2 + pL, u(ρE + pL)). We also
defineΩL = {UL ∈ R

3, ρ > 0, ε > 0} and note that (1)-(2) is strictly hyberbolic
over this natural phace space.

2.2. The homogeneous relaxation model

We focus now on the homogeneous relaxation model (HRM):


















∂tm1 + ∂x(m1u) = λ(m∗
1(ρ) − m1),

∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + pR) = 0,

∂t(ρE) + ∂x(u(ρE + pR)) = 0,

(4)

whereλ is a positive constant andm1 is the partial density of the “vapor”. The pres-
sure law is now

pR(ρ, ε, m1) = ((γ1 − 1)m1 + (γ2 − 1)(ρ − m1))ε. (5)

The functionm∗
1 is defined by

m∗
1(ρ) =











ρ, if ρ ≤ ρ∗1,

ρ∗1
ρ−ρ∗

2

ρ∗

1
−ρ∗

2

, if ρ∗1 < ρ < ρ∗2,

0, if ρ∗2 ≤ ρ.

(6)

Let us emphasize that the adiabatic coefficientsγ1 andγ2 are the same as the adiabatic
coefficients of the HEM. Therefore, one can check that whenλ → +∞ (that is when
m1 → m∗

1), the HRM formally tends to the HEM. In other words, we have

pR(ρ, ε, m∗
1(ρ)) = pL(ρ, ε), ∀ρ, ε > 0.
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Here again, we introduce a short notation for (4):

∂tUR + ∂xFR(UR) = SR(UR), (7)

with UR = t(m1, ρ, ρu, ρE), FR(UR) = t(m1u, ρu, ρu2 + pR, u(ρE + pR)) and
SR(UR) = t(λ(m∗

1(ρ) − m1), 0, 0, 0). The set of admissible states isΩR = {UR ∈
R

4, 0 ≤ m1 ≤ ρ, ρ > 0, ε > 0} and the system turns out to be strictly hyperbolic
overΩR.

3. The mathematical model of the coupled problem

We consider the two different hyperbolic systems presentedabove separated by
the fixed interface{x = 0}

∂tUL + ∂xFL(UL) = 0, t > 0, x < 0, (8)

∂tUR + ∂xFR(UR) = SR(UR), t > 0, x > 0, (9)

with the initial conditions

UL(x, 0) = UL,0(x), x < 0, (10)

UR(x, 0) = UR,0(x), x > 0. (11)

In order to couple the two systems (8) and (9), we will introduce two operators

ΠL
R : UL = t(ρ, ρu, ρE) 7−→ ΠL

R(UL) = t(m∗
1(ρ), ρ, ρu, ρE), (12)

ΠR
L : UR = t(m1, ρ, ρu, ρE) 7−→ ΠR

L(UR) = t(ρ, ρu, ρE), (13)

which will enable us to convert one variable into the other.

We present three approaches, according to the information which must be trans-
mitted or according to physical requirements: global conservation, continuity of some
physical variables throughx = 0. In the following, the source termSR(UR) is omit-
ted for simplicity (and without any restriction).

3.1. The flux coupling

The first approach of coupling relies on the use of acolor functionY : (x, t) ∈
R × (0,∞) 7→ [0, 1] and it is based on a simple definition of the coupling which
provides the global conservation of the unknowns. We replace the systems (8) and (9)
by theaugmentedsystem

{

∂tU + ∂xF(U, Y ) = 0, x ∈ R, t > 0,

∂tY = 0,
(14)
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with Y (x < 0, 0) = 0 andY (x > 0, 0) = 1. The new variableU is defined by

U(x, t) =

{

ΠL
R(UL)(x, t) if x < 0,

UR(x, t) if x > 0,

and the new flux functionF(U, Y ) by

F(U, Y ) = (1 − Y )F(U, 0) + Y F(U, 1)

with
F(U, 0) = t(0, t

FL(ΠR
L(U))) and F(U, 1) = FR(U).

This model of coupling is conservative. Nonetheless, the system (14) is resonant,
which means that if an eigenvalue of the jacobian matrixDUF(U, Y ) vanishes, the
system admits two null eigenvalues and the eigenvectors do not form a basis ofR4

anymore. In order to avoid this problem, the second equationof (14) can be replaced
by

∂t(ρY ) + ∂x(ρY u) = µρ(Y0 − Y ), (15)

where we will makeµ tend to+∞ formally.

3.2. The intermediate state coupling

The idea of this technique is to impose the continuity of the variables through the
interface, namely

ΠL
R(UL)(0−, t) = UR(0+, t), t > 0. (16)

Since we are focusing on the coupling of systems that may develop discontinuities,
the continuity condition (16) cannot be fulfilled in all cases, in particular when the
characteristics of the two problems are incompatible. Therefore, a weak formulation
of this condition is proposed:

UL(0−, t) ∈ OL(ΠR
L(UR)(0+, t)), t > 0, (17)

UR(0+, t) ∈ OR(ΠL
R(UL)(0−, t)), t > 0, (18)

with

OL(Ub) = {WL(0−;U,Ub),U ∈ ΩL}, (19)

OR(Ub) = {WR(0+;Ub,U),U ∈ ΩR}, (20)

whereWα(x/t;Ug,Ud), α = L, R, is the self-similar solution of the Riemann prob-
lem











∂tUα + ∂xFα(Uα) = 0, x ∈ R, t > 0,

Uα(x, 0) =

{

Ug if x < 0,

Ud if x > 0.

The condition (17) (respectively (18)) means that the stateΠR
L(UR)(0+, t) (resp.

ΠL
R(UL)(0−, t)) is an admissible boundary condition (see [DUB 88]) for the system

(8) (resp. (9)). More details can be found in [GOD 05].
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3.3. The modified intermediate state coupling

The conditions (17)-(18) provide, whenever it is possible,the continuity of the
variablesm1 (with m1 = m∗

1 for x < 0), ρ, ρu andρE through the interface. Let us
assume thatρ, ρu andρE are continuous atx = 0 and thatρu(0, t) < 0. In such a
case, ifm1 6= m∗

1 in the right part of the domain, the continuity ofm1 atx = 0 cannot
be ensured. As a result, the pressure cannot be continuous atx = 0:

pL(ρ, ε)(0−, t) = pR(ρ, ε, m∗
1(ρ))(0−, t) 6= pR(ρ, ε, m1)(0+, t).

But, for physical considerations, one could prefer the solution to fulfill the continuity
of the pressure atx = 0.

Therefore, instead of (17)-(18), the coupling condition should be a weakened form
of

φL(ΠL
R(UL))(0−, t) = φR(UR(0+, t)), t > 0, (21)

whereφL andφR are two changes of variable fromΩR to ΩR. In our case, they are

φL(m1, ρ, ρu, ρE) = (m1, ρ, ρu, pL(ρ, ε)),

φR(m1, ρ, ρu, ρE) = (m1, ρ, ρu, pR(ρ, ε, m1)).

The weak coupling conditions associated with (21) are

UL(0−, t) ∈ OL(ΠR
L(φ−1

L (φR(UR)))(0+, t)), t > 0, (22)

UR(0+, t) ∈ OR(φ−1

R (φL(ΠL
R(UL)))(0−, t)), t > 0, (23)

using the previous definitions (19)-(20) ofOL andOR.

4. Numerical coupling of hyperbolic systems

We focus now on the simulation of the coupling problem (8)-(9)-(10)-(11). Of
course, the numerical coupling must vary according to the type of coupling we want
to impose.

Let ∆t and∆x be the time and the space steps. The interfaces of the mesh are
defined asxj = j∆x, j ∈ Z, and the intermediate times aretn = n∆t, n ∈ N. The
classical finite volume approximation is used:

∆x(Uα)0j+1/2 =

∫ xj+1

xj

Uα,0(x) dx, α = L, R.

The approximation(Un
α,j+1/2

)j,n is given by the numerical scheme

U
n+1

L,j+1/2
= U

n
L,j+1/2 −

∆t

∆x
(Gn

L,j+1 − G
n
L,j), for j < 0, n ≥ 0, (24)

U
n+1

R,j+1/2
= U

n
R,j+1/2 −

∆t

∆x
(Gn

R,j+1 − G
n
R,j), for j ≥ 0, n ≥ 0, (25)
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where the numerical fluxes are defined with the help of two consistant functions
GL(UL,VL) andGR(UR,VR) with the fluxesFL(UL) andFR(UR):

G
n
L,j = GL(Un

L,j−1/2,U
n
L,j+1/2), j < 0, n ≥ 0, (26)

G
n
R,j = GR(Un

R,j−1/2,U
n
R,j+1/2), j > 0, n ≥ 0. (27)

Note that it remains to define the numerical fluxesG
n
L,0 andG

n
R,0 at the coupling

interface. We restrict this presentation to three-point schemes for simplicity, though
we will use five-point schemes in applications (the extension is obvious).

We present several ways to define these two numerical fluxes and relate their defi-
nition to the previous models of coupling.

4.1. The numerical flux coupling

The following numerical method is dedicated to the simulation of the flux cou-
pling. The way of definingGn

L,0 andG
n
R,0 consists in solving the problem (14) with

the initial data

U(x, 0) =

{

U
n
−1/2

if x < 0,

U
n
+1/2

if x > 0,

Y (x, 0) =

{

0 if x < 0,

1 if x > 0.

(28)

It has been investigated in [HER 05b] and it gives precise results. But, in order to
avoid any resonance phenomenon, we use the equation (15) instead of∂tY = 0 in
(14). This system is solved in two steps. First, the convective part is solved, that is to
say

{

∂tU + ∂xF(U, Y ) = 0,

∂t(ρY ) + ∂x(ρY u) = 0,

with the initial data (28). It gives an exact (or approximate) value of(U∗, Y ∗)(x/t)
and we set

G
n
L,0 = G

n
R,0 = F(U∗(0), Y ∗(0)). (29)

In the second step, the equilibrium is recovered:Y ∗ = Y0. As a result, this method is
completely conservative. We refer to [AMB 05] for more details.

4.2. The two-flux method

This numerical method is based on the introduction of two reconstructed states
U

n

R,−1/2 andU
n

L,1/2. The numerical fluxes atx = 0 are given by

G
n
L,0 = GL(Un

L,−1/2,U
n

L,1/2), (30)

G
n
R,0 = GR(U

n

R,−1/2,U
n
R,1/2). (31)
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Such a numerical coupling aims at approximating the (modified or not) intermediate
state coupling. If the variable to be transmitted at the interface is the conservative
variable, we use

U
n

R,−1/2 = ΠL
R(Un

L,−1/2) and U
n

L,1/2 = ΠR
L(Un

R,1/2).

For what concerns the modified intermediate state coupling,we use

U
n

R,−1/2 = φ−1

R (φL(ΠL
R(Un

L,−1/2))) and U
n

L,1/2 = ΠR
L(φ−1

L (φR(Un
R,1/2))).

For more details, see [GOD 04] and [GOD 05].

4.3. The numerical schemes

We describe in this section the numerical schemes we use in each domain. The
same numerical scheme has been used on each side, in order to simplify the compari-
son. We present it in the frame of the HRM, which includes the frame of the HEM (we
have dropped the subscriptsL andR). The scheme we use is a Lagrange-Projection
scheme (see for instance [DEP 01]). Actually, it is a five-point scheme, that is to say
the fluxG

n
j depends on four states:

G
n
j = G(Un

j−3/2,U
n
j−1/2,U

n
j+1/2,U

n
j+3/2, ∆t/∆x).

Note that it also depends on the ratio∆t/∆x. This scheme is based on two steps.

TheLagrange stepis solved with the help of the acoustic scheme:

yn+1−
j+1/2

= yn
j+1/2,

τn+1−
j+1/2

= τn
j+1/2 +

∆t

ρn
j+1/2

∆x
(un

j+1 − un
j ),

un+1−
j+1/2

= un
j+1/2 −

∆t

ρn
j+1/2

∆x
(pn

j+1 − pn
j ),

En+1−
j+1/2

= En
j+1/2 −

∆t

ρn
j+1/2

∆x
((pu)n

j+1 − (pu)n
j ),

with

un
j = (un

j−1/2 + un
j+1/2)/2 + (pn

j−1/2 − pn
j+1/2)/(2(ρc)n

j ),

pn
j = (pn

j−1/2 + pn
j+1/2)/2 + (ρc)n

j (un
j−1/2 − un

j+1/2)/2,

wherey = m1/ρ, τ = 1/ρ and(ρc)n
j = max((ρc)n

j−1/2
, (ρc)n

j+1/2
). We then obtain

(Un+1−
j+1/2

)j . The grid points have moved at the fluid velocity, approximated here by

un
j . The quantities(Un+1−

j+1/2
)j are then defined on a Lagrangian grid(x∗

j )j defined by
x∗

j = xj + un
j ∆t.
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The second step is theprojection step. We defineUn+1−(x) as a function which is
constant on each cell of the Lagrangian grid(x∗

j )j and given byUn+1−
j+1/2

in [x∗
j ; x

∗
j+1)

for all j ∈ Z. We then projectUn+1− on the Eulerian grid(xj)j : ∆xU
n+1

j+1/2
=

∫ xj+1

xj
U

n+1−(x) dx.

As a result, we get forUn+1

j+1/2
:

(m1)
n+1

j+1/2
= (m1)

n
j+1/2 −

∆t

∆x
(un

j+1(m1)
n+1−
βj+1,n

− un
j (m1)

n+1−
βj,n

),

ρn+1

j+1/2
= ρn

j+1/2 −
∆t

∆x
(un

j+1ρ
n+1−
βj+1,n

− un
j ρn+1−

βj,n
),

(ρu)n+1

j+1/2
= (ρu)n

j+1/2 −
∆t

∆x
(un

j+1(ρu)n+1−
βj+1,n

− un
j (ρu)n+1−

βj,n
+ pn

j+1 − pn
j ),

(ρE)n+1

j+1/2
= (ρE)n

j+1/2 −
∆t

∆x
(un

j+1(ρE)n+1−
βj+1,n

− un
j (ρE)n+1−

βj,n

+ (pu)n
j+1 − (pu)n

j ),

where

βj,n =

{

j − 1/2 if un
j > 0,

j + 1/2 if un
j < 0.

This scheme is entropy consistent and positive (for the density ρ, the partial density
m1 and the internal energyε) under a classical CFL condition [DEP 01].

4.4. Numerical tests

In order to clarify the results, we only focus on the caseλ = 0. We setγ1 = 1.6
andγ2 = 1.4 (which givesρ∗1 ≈ 0.613 andρ∗2 ≈ 0.919). The initial condition is

x < 0 x > 0
partial density — 2
density 1 2
velocity -1/2 -1/2
pressure 1 1

It corresponds to a contact discontinuity going left. On figure 1, “Flux”, “State CV”
and “State Pr” respectively denote to the flux coupling, the state coupling with the
conservative variable and the modified state coupling with the continuity of pressure.
These results have been obtained with 1000 cells and with a Courant number equal to
0.4. We can see that only the modified state coupling enables to preserve the velocity
and the pressure constant. Moreover, a mixture (0 < m1 < ρ) appears in the negative
part of the domain for the conservative state coupling. Notethat, if we aim at preserve
the contact discontinuity through the coupling interface,the modified state coupling
with the continuity of pressure must be used.
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Figure 1. Comparison of the three methods of coupling for a contact discontinuity.
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