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Summary. We study the coupling of two gas dynamics systems in Lagrangian
coordinates at the interface x = 0. The coupling condition was formalized in [9],
[10] by requiring that two boundary value problems should be well-posed, and it
yields as far as possible the continuity of the solution at the interface. In this work
we prove that we may choose the variables we transmit and extend the theory to
Lagrangian systems of different sizes. The coupling condition is expressed in terms of
Riemann problems, which is well suited for the numerical methods we are interested
in implementing. Moreover this formalism is well adapted to Lagrangian systems
since the sign of the wave speeds is known, which enables us to solve the coupled
Riemann problem.

1 Introduction

We are interested in the study of the coupling of two different hyperbolic sys-
tems at a fixed interface. In [9], a new coupling condition (CC in the sequel) is
defined which results by expressing that two boundary value problems should
be well-posed and the approach is justified in the scalar case. This CC resumes
to impose as far as possible the continuity of the solution at the interface. The
case of linear systems and ideas for the Euler system follow in [10]. Here, we
show that in fact we can choose the set of dependent variables which is trans-
mitted and illustrate the result with systems in Lagrangian coordinates for
which the solution of the coupled Riemann problem is given explicitly and
illustrated numerically. We have chosen to express the boundary conditions
in terms of Riemann problems (see [7]). This approach is well suited for the
numerical methods we are interested in implementing and linked to the theo-
retical results concerning the convergence of the two-flux method in the scalar
case [9].

We first describe the theoretical settings and precise our notations. The
case of of the p−system is then detailed, with numerical illustrations and
Lagrangian systems are considered in the following sections.
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1.1 Coupling procedure

Let Ω ⊂ Rp be the set of states and let fα, α = L, R, be two ‘smooth’ functions
from Ω into Rp. Given a function u0 : x ∈ R → u0(x), we want to find a
function u : (x, t) ∈ R × R+ → u(x, t) ∈ Ω solution of

∂tu + ∂xfL(u) = 0, x < 0, t > 0, (1)

∂tu + ∂xfR(u) = 0, x > 0, t > 0, (2)

satisfying the initial condition u(x, 0) = u0(x), x ∈ R, and at the interface
x = 0, a coupling condition CC which we now describe. We have chosen this
CC in order to obtain two well-posed initial boundary-value problems in x > 0,
t ≥ 0 and in x < 0, t ≥ 0. This means that the trace u(0−, t) (resp. u(0+, t)),
t ≥ 0, should be an admissible boundary condition at x = 0 for the system
in x > 0 (resp. x < 0). We will assume that the systems are hyperbolic, i.e.
for α = L, R, the Jacobian matrix f ′α(u) of fα(u) is diagonizable with real
eigenvalues λα,k(u) and corresponding eigenvectors rα,k(u), 1 ≤ k ≤ p. Then
we introduce the solution of the Riemann problem for the system associated
to the flux fα,

u(x, t) = Wα(x/t;uL,uR)

i.e. the solution of ∂tu + ∂xfα(u) = 0 with initial condition

u(x, 0) =

{

uL, x < 0,
uR, x > 0.

(3)

We set for all b ∈ Ω,

OL(b) = {w = WL(0−;uℓ,b);uℓ ∈ Ω}
OR(b) = {w = WR(0+;b,ur);ur ∈ Ω} (4)

and we define admissible boundary conditions of the form u(0−, t) ∈ OL(b(t)),
t > 0, for (1) (resp. u(0+, t) ∈ OR(b(t)), t > 0, for (2)). Hence natural cou-
pling conditions for problem (1)–(2) consist in requiring

{

u(0−, t) ∈ OL(u(0+, t)),
u(0+, t) ∈ OR(u(0−, t)).

(5)

The approach is thoroughly justified in the scalar case [9] and for linear sys-
tems [10]. In [9] it is shown that this is indeed a ‘reasonable’ way of coupling
two conservation laws in the sense that, in meaningful situations, the coupled
problem has a unique solution and the ‘natural’ numerical upwind scheme (the
so called two-fluxes scheme) converges to this solution. Condition (5) resumes
in a number of cases to the continuity of the solution at the interface

u(0−, t) = u(0+, t). (6)

Thus we may interpret the coupling condition as a way of ensuring in a weak
sense the continuity, we will say the transmission of the conservative variables.
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1.2 Numerical coupling

We use a finite volume method for each system (1), (2). Let ∆x, ∆t, de-
note the uniform space and time steps, µ = ∆t/∆x, tn = n ∆t, n ∈ N,
Cj+1/2 = (xj , xj+1), the cell with center xj+1/2 = (j + 1/2)∆x, j ∈ Z. The

initial condition is discretized by u0

j+1/2
= 1

∆x

∫

Cj+1/2
u0(x)dx, j ∈ Z. For the

numerical coupling, we are given two numerical fluxes gL, gR (gα is consis-
tent with fα) corresponding to 3-point monotone schemes (under some CFL
condition), we set gn

α,j = gα(un
j−1/2

,un
j+1/2

) and define the scheme by

un+1

j−1/2
= un

j−1/2 − µ
(

gn
L,j − gn

L,j−1

)

, j ≤ 0, n ≥ 0,

un+1

j+1/2
= un

j+1/2 − µ
(

gn
R,j+1 − gn

R,j

)

, j ≥ 0, n ≥ 0,

(see also [1] in another context). So we have one fixed interface at x = 0 and
two fluxes gn

α,0. The choice gn
α,0 = gα(un

−1/2
,un

1/2
), α = L, R corresponds to

transmit the conservative variables. Namely, if j ≥ 0, the scheme with flux gR

approximates the IBVP (1) with initial condition u(x, 0) = u0(x), x > 0 and
for boundary condition at x = 0, the scheme takes un

−1/2
. Since gn

L,0 6= gn
R,0,

it is a nonconservative numerical approach, as for the continuous problem.
For example, the flux at the boundary with Godunov’s scheme is gn

R,0 =
fR(WR(0+;un

−1/2
,un

1/2
)).

1.3 Choice of transmitted variables

When dealing with physical systems, we may prefer to transmit not the con-
servative variables but the physical variables, or even the flux. Now, assume
that there exists a change of variables v → u = ϕα(v); α = L, R from some
set Ωv ⊂ Rp onto Ω such that ϕ′

α(v) is an isomorphism of Rp. Then if c

is a given boundary physical data, setting bα = ϕα(c), we define OL(bL)
and OR(bR) which are admissible boundary sets for the systems (1) and (2)
respectively. Thus we now require

{

u(0−, t) ∈ OL(ϕL(v(0+, t)),
u(0+, t) ∈ OR(ϕR(v(0−, t)).

(7)

Since ϕL(v(0+, t)) 6= ϕR(v(0+, t)) = u(0+, t), the boundary sets in (5) and
(7) are a priori distinct. Conditions (7) will ensure whenever possible the
transmission of physical variables and their continuity instead of (6)

v(0−, t) = v(0+, t). (8)

We are going to illustrate the two choices in the coupling procedure on the p−
system and then for the full Euler system in Lagrangian coordinates. On the
one hand, it is a simplified model of what we get when coupling more com-
plex models associated to distinct systems whose closure laws are not always
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compatible, as will happen for instance in the context of thermal-hydraulics.
On the other hand, the analysis will justify the use of Lagrange+projection
schemes when coupling systems in Eulerian coordinates at a fixed interface.
Note however that for the Euler system in Lagrangian coordinates, the inter-
face is characteristic and corresponds to a contact discontinuity. Hence, the
coupling does not yield the continuity (6) or (8) for all the components. In our
case, physical arguments, such as the continuity of some primitive quantities
(for instance velocity and pressure) help defining the transmission. However,
both theoretical considerations and numerical results obtained on some signif-
icant tests when coupling Euler systems (see [3][4]) will prove that if several
CC based on continuity arguments are feasible, one cannot maintain all the
conservation properties and we must choose which we want to be preserved.

2 Coupling two p−systems

We consider two systems (1) and (2) with







u = (τ, v)T , τ > 0
fL(u) = (−v, p)T , p = pL(τ),
fR(u) = (−v, p)T , p = pR(τ).

(9)

The two systems differ by the pressure law p = p(τ). We assume that p′α <
0, p′′α > 0. The eigenvalues are ±

√

−p′α.
We first transmit the conservative variables (τ, v). The study of the Rie-

mann problem is needed in order to express the CC. We denote by Ci
α(u−) the

i−wave curve, i.e., the set of states that can be connected to a given state u−

by a i− wave (either rarefaction or admissible shock) relative to the p−system
with flux fα. Expressing (5) gives that u(0−) is connected to u(0+) by a 2−L
(positive) wave which means u(0+) ∈ C2

L(u(0−)) and similarly (for the right
condition) by a 1−R (negative) wave. Thus u(0+) ∈ C2

L(u(0−))∩C1
R(u(0−))

and u(0+) = u(0−) because it is well known that the two wave curves inter-
sect at only one point in the plane (τ, v) (see for instance [8]).

Now the IBVP’s in both half planes are also well posed if one ‘imposes’ a
given (v, p) on x = 0. Indeed, by assumption p′α < 0, we can define its inverse
mapping τα(p) for α = L, R. Setting v = (v, p)T , we have an admissible
change of variables: u = ϕα(v) where

(v, p) → ϕα(v, p) ≡ (τ, v) (10)

is simply defined by τ = τα(p), for instance if pα(τ) = τ−γα , τα(p) = p−1/γα .
We now transmit this set of variables (v, p). Expressing the coupling con-

dition (7) yields that ϕR(v(0−, t)) is connected to u(0+, t) = ϕR(v(0+, t))
by a 1 − R wave. We can parametrize the wave curves by p and project
them onto the (v, p)−plane (see [8], Chapter I, section 7). If the 1 − R wave
curve is C1

R(u(0−)) = {(τ, v); v = Ψ1,R(τ)}, then C̃1
R(v(0−)) = {(v, p); v =
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Ψ1,R(τR(p))} = {(v, p); ϕR(v, p) ∈ C1
R(u(0−))}=ϕ−1

R (C1
R(u(0−))) is its rep-

resentation in the (v, p)−coordinates, we then have v(0+) ∈ C̃1
R(v(0−)).

Similarly, u(0−, t) ∈ OL(ϕL(v(0+, t))) yields v(0+) ∈ C̃2
L(v(0−)). We get

v(0+) ∈ C̃1
R(v(0−)) ∩ C̃2

L(v(0−)) and it is easily proved that the two curves
intersect at only one point in the plane (v, p) so that v(0+) = v(0−). Hence
we do have continuity of v, p, but not of τ since τ(0+) = p(0+)−1/γR 6=
p(0−)−1/γL = τ(0−).

Let us illustrate the results on the solution of a Riemann problem (the
exact solution is known). We take a uniform grid, with 150 meshes and a
first-order explicit Roe-type coupled scheme, the CFL is 0.5. The two pressure
laws are pα(τ) = τ−γα with γL = 1.4, γR = 1.6, and we represent in this order
τ , v and p at a given time t (exact and approximate solution). We note in
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Fig. 1. Transmission of u = (τ, v) left vs v = (v, p) right for the coupled p−system

fig.1, left part, the continuity of τ, v the discontinuity of p at x = 0 while in
the right part we note the discontinuity of τ and the continuity of v, p.

3 Coupling two Euler systems in Lagrangian coordinates

We consider the system of gas dynamics in Lagrangian coordinates
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∂tu + ∂xf(u) = 0,u = (τ, v, e)T , f(u) = (−v, p, pv)T . (11)

In (11), x stands for a mass variable, τ denotes the specific volume, v the
velocity, e = ε + 1

2
v2 the specific total energy, ε the specific internal energy,

and we assume that the pressure p is a given function p = p(τ, ε). We study
the coupling of two such systems at x = 0 thus at a contact discontinuity
separating two fluids with different equations of state p = pα(τ, ε), α = L, R.
We denote by

fα(u) = (−v, p, pv)T , p = pα(τ, ε), α = L, R, (12)

the corresponding flux functions. The eigenvalues of the Jacobian matrix of
f(u) are λ1(u) = −C < λ2 = 0 < λ3(u) = C, where C =

√−pτ + ppε denotes
the Lagrangian sound speed. In this case, the interface x = 0 is characteristic
(λ = 0 is an eigenvalue) hence, in general, the coupling does not yield the
continuity of (6) nor of (8). However we have for each system one strictly
positive and one strictly negative eigenvalue and we will see that it yields the
continuity of a subset of two variables. When coupling the two systems (1)
and (2) with fα given by (12), we may want to transmit also the velocity and
the pressure. This corresponds to the CC (7) expressed in primitive variables

v = (τ, v, p)T . (13)

The change of variables u = (τ, v, e)T = ϕα(v), is defined assuming that the
functions p = pα(τ, ε) may be inverted in ε = εα(τ, p), which is the case for
instance for an ideal polytropric gas satisfying a γ-law p = (γ − 1)ε/τ , more
generally, we assume ∂p

∂ε > 0.

3.1 Coupling with transmission of primitive variables

The Riemann problem for (11) is usually solved using primitive variable be-
cause the ‘projection’ of the wave curves on the (v, p)-plane are easily ex-
pressed. Let uL and uR be two given states. We denote by S1

R(uL) the 1−wave
curve consisting of states u which can be connected to uL on the right by ei-
ther a 1−shock or a 1−rarefaction wave corresponding to the equation of
state p = pR(τ, ε). Similarly, given a right state uR, we denote by S3

L(uR), the
(backward) 3-wave curve consisting of left states u which can be connected
to uR by a 3−shock or a 3−rarefaction wave corresponding to the equation
of state p = pL(τ, ε). We denote by S1

R(vL) and S3
L(vR) the ‘projections’ (in

a sense to be precised below) onto the (v, p)-plane of the wave curves S1
R(uL)

and S3
L(uR) respectively. In fact Si(vL) is the projection of the i−wave curve

ϕ−1(Si(uL)) expressed in primitive variables v = (τ, v, p)T on the (v, p)-plane:

ϕ−1(Si(uL)) =
{

v = (τ, v, p)T ; ϕ(v) ∈ Si(uL)
}

and
Si(vL) =

{

(v, p); (τ, v, p)T ∈ ϕ−1(Si(uL))
}

.
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Proposition 1. In the case (13), the coupling conditions (7) are equivalent
to

v(0−, t) = v(0+, t), p(0−, t) = p(0+, t). (14)

The proof consists as for the p−system in expressing the CC (7) in terms of
solutions of Riemann problems and intersection of the projected wave curves.
We assume that the curves S1

R(vℓ) and S3
L(vr) intersect at one point at most.

3.2 Transmission of conservative variables

In this case, the (v, p)− plane is not well suited, since p is no longer a trans-
mitted variable. For two γ−laws

pα = (γα − 1)ε/τ (15)

we can think of the plane (v, π = ε/τ), since π is a variable independent of
the pressure law. Indeed, following the above arguments while projecting on
the (v, π)−plane, we can prove

Proposition 2. Assuming (15), the coupling conditions (5) are equivalent to

{

v(0−, t) = v(0+, t),
ε

τ
(0−, t) =

ε

τ
(0+, t).

(16)

We can easily extend the result to the case of pressure laws which can be
written as a function of one dependent variable π = π(τ, ε) i.e. such that
pα(τ, ε) = pα(π(τ, ε)). The above argument will show that (v, π) is continuous
at the interface x = 0. For general pressure laws, the velocity need not be
continuous. This is in particular the case for two pressure laws of Grüneisen
type

pα(τ, ε) = (γα − 1)
ε

τ
+ c2

α(
1

τ
− 1

τref,α
), α = L, R. (17)

such that
c2

L

γL−1
6= c2

R

γR−1
(for details, we refer to [5]).

4 Coupling Lagrangian systems of different dimensions

We consider the p−system (9) in the left half-plane and the Euler system
in Lagrangian coordinates (11) in the right half-plane (using in this section
capital letters to distinguish the conservative variables)

∂u

∂t
+

∂

∂x
f(u) = 0, x < 0, u = (τ, v)T , fL(u) = (−v, p)T , p = pL(τ)

and
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∂U

∂t
+

∂

∂x
FR(U) = 0, x > 0,U = (τ, v, e)T ,FR(U) = (−v, p, pv)T , p = pR(τ, ε).

The dimensions of the two systems are now different, but the physical context
helps to give a meaning to the coupling since some state variables such as
the specific volume τ , velocity v or pressure p are defined for each model. We
write the CC using the variables (v, p) that are common to the two systems
and which we have seen are good candidates for both. We reconstruct the
missing variable for the smaller system in such a way that we may transmit
the velocity and the pressure. Indeed, we can lift v = (v, p)T by reconstructing
τ when we transmit from the left to the right

v = (v, p)T → L(v) = (τ, v, p)T , τ = τL(p), (18)

where p → τL(p) is the inverse of pL(τ). And we easily project V when we
transmit from the right to the left

V = (τ, v, p)T → P(V) = (v, p)T . (19)

Using the previously defined admissible change of variables ϕα, the CC nat-
urally writes

{

u(0−, t) ∈ OL(ϕL(P(V(0+, t))
U(0+, t) ∈ OR(ϕR(L(v(0−, t)).

(20)

We obtain the following result.

Proposition 3. Assuming (18) with (19), the coupling conditions (20) are
equivalent to

{

v(0−, t) = v(0+, t),
p(0−, t) = p(0+, t).

(21)

5 Conclusion

The extension of the previous approach to general Lagrangian systems requires
some technical developments but is straightforward and presented in [5]. This
work is part of an ingoing joint research program on multiphase flows between
CEA and University Pierre et Marie Curie. Other topics encountered in the
context of the coupling of two-phase flow models are developed in [2] [3] [4].
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A.: Couplage de deux systèmes de la dynamique des gaz, 17ème congrès Français
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