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Nomenclature

a Relaxation parameter
c Sound speed
Cv,t Specific heat at constant volume

for the translation mode
Ci

v,t Specific heat at constant volume
for the translation mode of the i-th species

ev Vibrational energy
E Total energy of the mixture
Ee Total energy of the electron gas
E Electric field
h0 Heat of formation
Me Molar mass of the electron
Mi Molar mass of the i-th species
p Pressure of the heavy species
pe Pressure of the electron gas
qe Electron charge
R Universal gas constant
Se Entropy of the electron gas
T Temperature
Te Electron temperature
u Velocity
Ye Mass fraction of the electrons
Yi Mass fraction of the i-th species
γ Polytropic coefficient
ρe Electron density (ρe = ρYe)
ρi Density of the i-th species (ρi = ρYi)
ρ Density (ρ = ρe +

∑

ρi)
τ Inverse of the density
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Subscripts

e Electron
i Heavy species
j Molecular species

Introduction

This work treats the numerical approximation of
the convective diffusive system governing ionized mix-
tures of reacting gases in thermal nonequilibrium.
Such plasmas are studied here in the context of large
Mach number flows corresponding to hypersonic flows
around reentry bodies. At high speeds, the flow
reaches extremely high temperatures near the vehicle.
These temperatures are high enough to induce vibra-
tional excitation, dissociation of diatomic molecules
and ionization. For a better description of the flow,
it is necessary to introduce different temperatures,
that are another way to express the value of energy.
Whereas it is a good assumption to take translational
and rotational modes of heavy species in thermal equi-
librium, vibrational modes of polyatomic molecules
and translational mode of electron gas have to be char-
acterized by their own temperatures.
Many different workers have performed simulations1–5

of such weakly ionized flows, using the governing equa-
tions proposed by Appleton-Bray6 and Lee7 . These
approaches have been derived for gas mixtures con-
taining electrons, neutral and ionized species, the ions
being singly-ionized and positively charged. Note that
the corresponding system is naturally written in a non-
conservative form due to the work of the electric field
E .
Basically, we can write the associated system in short
form as

∂tu + A
(

u
)

∂xu − ∂x

(

D
(

u
)

∂xu
)

= ω
(

u), (1)

with t > 0, x ∈ R.
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where the last two terms of the left-hand side represent
respectively the convective and the diffusive effects
while ω

(

u) is a source term. In the paper, we will
focus on the numerical approximation of the underly-
ing first order system

∂tu + A
(

u
)

∂xu = 0, with t > 0, x ∈ R, (2)

which constitutes an essential step in the treatment of
the full system (1).
As the nonlinear system (2) is seen to be hyperbolic
over a phase space to be precised, discontinuous solu-
tions may occur in finite time. Thus, a major difficulty
arises in that case since there does not exist a flux
function f , such that A

(

u
)

= ∇uf
(

u
)

. Put in other
words, system (2) is actually under a non-conservative
form and the standard theory of weak solutions does
apply no longer. Generally speaking, such a feature
is known to make the numerical approximation of the
corresponding solutions very challenging.8 To over-
come the problem, Coquel and Marmignon ?, 12 have
proposed to build a system of conservation laws equiv-
alent to system (1) but under a conservative form,
using specific modelling assumptions. The numerical
approximation of the first-order extracted system no
longer raises questions and the use of classical numer-
ical methods becomes straightforward. To assess the
relevancy of their work, they have also derived an exact
Roe-type linearization.?, ?,? Such an extension is not
evident since the weakly ionized flow equations con-
tain two pressures relative to the heavy species and
the electron gas.
In the paper, we aim at developing a relaxation pro-
cedure for the equivalent governing equations derived
by Coquel-Marmignon. In fact, this strategy presents
several advantages. Let us quote, for instance, that
our relaxation scheme is entropic conversely to the
Roe scheme which uses numerical entropy corrections.
Besides, the two inherent pressures attached to the
system turn out to be very easy to manage in this
context. Assessment of the relaxation scheme is per-
formed with shocktube computations, comparing the
present results with those obtained from an exact Go-
dunov solver and the Roe-linearization proposed by
Coquel-Marmignon.

Governing equations and physical

modelling
Non conservative system

We consider a mixture of gases made of electrons
and n heavy species, ni, 1 ≤ ni ≤ n of them be-
ing ionized. All the heavy species are described using
the same velocity u. We associate a temperature
T for the translational-rotational modes. Moreover,
nν, 1 ≤ nν ≤ n, molecular species have their own
vibrational temperature Tv,j , j ∈ {1, ..., nν}. Con-
cerning the electron gas, one defines a temperature Te

distinct from the temperature T of the heavy species
mixture in order to account for the smallness of the
mass ratios Me/Mi << 1, i ∈ {1, ..., n}. Besides, lo-
cal charge neutrality is assumed.
The governing equations of the first order convective
system are :

∂t(ρYi) + ∂x(ρYiu) = 0, i = 1, ..., n,

∂t(ρu) + ∂x(ρu2 + p + pe) = 0,

∂t(ρE) + ∂x(ρE + p + pe)u = 0, (3)

∂t(ρYeEe) + ∂x(ρYeEe + pe)u = NeqeEu,

∂t(ρYjev,j) + ∂x(ρYjev,ju) = 0, j = 1, ..., nν.

The first n equations represent the mass conservation
of each heavy species. The next two govern respec-
tively the conservation of the momentum ρu and the
total energy ρE of the mixture. The last nν equations
refer to the conservation of the vibrational energies
ρYjev,j of the nν molecular species that are in ther-
mal nonequilibrium. These (n + nv + 2) conservation
laws are supplemented with a balance equation : the
expected conservation law for the electron gas energy
ρYeEe balanced by the work of the electric field E . The
assumption of local charge neutrality yields the electric
field E from the electron gas momentum equation

NeqeE = ∂xpe +
{

∂t(ρYeu) + ∂x(ρYeu
2)

}

. (4)

The second term in the right hand side of (4) is tra-
ditionally neglected, considering the smallness of Ye

(Me/Mi << 1). But in the present work, this term is
kept and leads, for smooth solutions, to the following
equivalent system :

∂t(ρYi) + ∂x(ρYiu) = 0, i = 1, ..., n,

∂t(ρu) + ∂x(ρu2 + p + pe) = 0,

∂t(ρE) + ∂x(ρE + p + pe)u = 0, (5)

∂t(ρYeEe) + ∂x(ρYeEe + pe)u

−u∂xpe + Yeu∂x(p + pe) = 0,

∂t(ρYjev,j) + ∂x(ρYjev,ju) = 0, j = 1, ..., nν.

Note that this system will be seen to be hyperbolic and
that it is naturally written under a non conservative
form as

∂tu + A
(

u
)

∂xu = 0, (6)

where u and A find natural definitions. At the end
of this section, we will derive an equivalent system of
conservation laws that will be more convenient to deal
with from a numerical point of view.

Closure relations

In this part, we present the required additional clo-
sure relations for the system under study.
We first specify the heavy species and the electron
pressures. The latter one obeys the following relation

pe = κe(ρeEe −
1

2
ρeu

2), κe = (γe − 1) =
2

3
, (7)
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while the pressure law p for the mixture of heavy
species is defined by

p = κ
(

ρE −
1

2
ρu2 −

pe

κe
−

nν
∑

j=1

ρjev,j

−

n
∑

i=1

ρi(ei(T ) + h0
i )

)

. (8)

The terms ei(T ) and h0
i refer respectively to the energy

of the internal modes at thermal equilibrium with the
translational mode and to the heat of formation of the
i-th species.
As each partial pressure is assumed to obey the perfect
gas assumption, one defines the temperatures T and
Te by :

p = ρ
R

M
T, pe = ρe

R

Me
Te,

where the molar mass M of the mixture is given by
Dalton’s law :

1

M
=

n
∑

i=1

Yi

Mi
.

The last term to be defined in equation (8) is the co-
efficient κ :

κ = (γ − 1) =
R

∑n
i=1

Yi

Mi

Cv,t
=

R/M

Cv,t
,

with

Cv,t =
n

∑

i=1

YiC
i
v,t.

Finally, we have assumed that the flow is locally elec-
trically neutral. The corresponding relation is :

ρe = ρYe =

ni
∑

j=1

Me

Mj
ρj . (9)

Associated Conservative system

In this paper, we are interested in the numerical ap-
proximation of system (6). Since this nonlinear system
is hyperbolic, its solutions are known to develop, gen-
erally speaking, discontinuities in a finite time. Thus,
these solutions have to be understood as weak solu-
tions. In this context, a major difficulty arises since
the system is under a non-conservative form. Indeed, it
is known that the non-conservative products involved
in A

(

u
)

∂xu have no classical sense at the location of
a shock since they cannot be given a unique defini-
tion within the standard framework of distributions.
For this reason, additional informations are required
in order to specify the value of the non conservative
product A

(

u
)

∂xu at shocks. A closure equation for
defining the shock solutions is therefore needed and
its mathematical definition must match the underly-
ing physics. Let us recall that system (6) comes from
a more complex system :

∂tu + A
(

u
)

∂xu − ∂x

(

D
(

u
)

∂xu
)

= 0. (10)

where the term D represents the diffusive tensor in-
cluding viscous, conductive and diffusive effects. The
key point is that the definition of shock solutions heav-
ily depends on the shape of the diffusive tensor D

(

u
)

.
This feature is very classical when dealing with system
in non-conservative form9–11 .
Once the discontinuous solutions of the non-
conservative hyperbolic system (6) are defined, the sys-
tem becomes well-posed and its numerical approxima-
tion could be tackled. However, using classical meth-
ods straightforwardly may lead to significant errors
between the numerical and the exact solutions?, 11–13

due to the non-conservative form.
To overcome these difficulties, the study of the exis-
tence of a conservative formulation for system (6) that
is compatible with the diffusive tensor D has been made
by Coquel-Marmignon12 . Assuming that the viscosity
and the conductivity of the electrons are neglectible,
they have found an equivalent convective-diffusive sys-
tem under a conservative form, of which the associated
first order system is

∂tρi + ∂x(ρiu) = 0, i = 1, ..., n,

∂t(ρu) + ∂x(ρu2 + p + pe) = 0,

∂t(ρE) + ∂x(ρE + p + pe)u = 0, (11)

∂t(ρSe) + ∂x(ρSeu) = 0,

∂t(ρjev,j) + ∂x(ρjev,ju) = 0, j = 1, ..., nν,

or equivalently

∂tu + ∂xf(u) = 0, (12)

with a little abuse in notation since, from now on,
u denotes the vector ({ρi}i, ρu, ρE, ρSe, {ρjev,j}j) in-
stead of ({ρi}i, ρu, ρE, ρYeEe, {ρjev,j}j). Compared
to system (5), the variable ρYeEe has been replaced by
the entropy Se of the electron gas. In this paper, we
set Se = pe/ργe and refer to Coquel-Marmignon12 for
other definitions. Considering the phase space Ω ⊂ R

N

with N = n + nν + 3 where

Ω = {u = T ({ρi}i, ρu, ρE, ρSe, {ρjev,j}j),

ρi > 0, u ∈ R, p(u) > 0, ev,j > 0, Se > 0},

the next proposition summarizes some important
properties of system (12).

Proposition 1 The first order system is hyperbolic
over Ω and admits the following three distinct eigen-
values :

u − c < u < u + c,

where the sound speed c is defined by

c2 =
γepe + γ̄p

ρ
with γ̄ = 1 +

R/M

Cv,t +
∑ dei

dT Yi

and the eigenvalue u has (n + nν + 1) order of mul-
tiplicity. Moreover, eigenvalues u − c and u + c are
associated with genuinely non linear fields, while u is
associated with linearly degenerate fields.
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Let us mention that weak solutions of system (12) are
naturally selected by an entropy inequality of the form

∂tρS(u) + ∂xρS(u)u ≤ 0, (13)

where u → ρS(u) represents a convex function.
Assessment of the system for weakly ionized flows
has been finally considered by developing an adapted
Roe-linearization scheme. Due to the presence of the
electron pressure, the extension of the Roe scheme
to weakly ionized gases is not at all straightforward.
However that may be, numerical simulations on real-
istic configurations (RAM-C) have demonstrated the
interest of this approach5 .

A relaxation model

In this section, we propose a relaxation system for
approximating the weak solutions of (12). Motivated
by pioneering works14–16 or more recently13, 17 , our
aim is to overcome the strong nonlinearities that make
difficult the resolution of system (12). Keeping this in
mind, we introduce the following non linear first order
system with singular perturbation :

∂tρi + ∂x(ρiu) = 0, i = 1, ..., n,
∂t(ρu) + ∂x(ρu2 + Π) = 0,
∂t(ρE) + ∂x(ρE + Π)u = 0,
∂t(ρSe) + ∂x(ρSeu) = 0,
∂t(ρjev,j) + ∂x(ρjev,ju) = 0, j = 1, ..., nν,
∂t(ρΠ) + ∂x(ρΠ + a2)u = λρ(p + pe − Π),

(14)

where solely the nonlinearities in p + pe have been
relaxed. From this definition, we observe (at least for-
mally) that relaxation variable Π tends to p + pe as
λ goes to infinity, so that the equilibrium system (12)
is recovered when the relaxation parameter λ tends
towards that limit. In system (14), a > 0 denotes a
free parameter in the relaxation procedure we propose.
In the description of the numerical strategy associated
with system (14), we will precise the sub-characteristic
condition that the parameter a must satisfy for stabil-
ity requirements.
To avoid cumbersome notations, we give system (14)
the following abstract form :

∂tv + ∂xF(v) = λR(v), (15)

where both the flux F and the source term R find nat-
ural definitions. The phase space Ωv ⊂ R

N+1 (recall
that N = n + nν + 3) for (15) is given by :

Ωv = {v = T ({ρi}i, ρu, ρE, ρSe, {ρjev,j}j , ρΠ)

ρi > 0, u ∈ R, p(v) > 0, Se > 0, ev,j > 0}.

We now state the first result of this section, of which
the proof is left to the reader. It proves the relevance
of the relaxation model (15).

Proposition 2

Assume that a > 0. Then, the first order system ex-
tracted from (15) is hyperbolic over Ωv and admits the
following three real and distinct eigenvalues :

λ1,3(v) = u ∓ aτ = u ∓
a

ρ
, λ2(v) = u,

with an order of multiplicity (N − 1) for λ2(v). More-
over, each eigenvalue is associated with a linearly de-
generate field.

The theorem makes the solution of the Riemann prob-
lem associated with (15) (when λ is taken to be 0)
explicitly known. Since each field is linearly degener-
ate, the solution is indeed systematically made of four
constant states, called vL, v∗

L, v∗
R and vR, separated

by three contact discontinuities propagating with the
characteristic speeds

λ(vL,v∗
L) < λ(v∗

L,v∗
R) < λ(v∗

R,vR),

where we have used clear notations. More precisely,
let us recall that we necessarily have λ(vL,v∗

L) =
λ1(vL) = λ1(v

∗
L), λ(v∗

L,v∗
R) = λ2(v

∗
L) = λ2(v

∗
R)

and λ(v∗
R,vR) = λ3(v

∗
R) = λ3(vR) and that there is

no entropy dissipation across contact discontinuities.
Therefore, invoking the Rankine-Hugoniot jump rela-
tions across admissible discontinuities leads to the next
theorem.

Theorem 1

Let be given vL and vR two constant states in Ωv.
Assume that the parameter a > 0 satisfies the condi-
tion

λ1(vL) = uL − aτL < u? < λ3(vR) = uR + aτR,

u? = 1
2
(uL + uR) + 1

2a (ΠL − ΠR),
(16)

with the definition τ = 1/ρ.
Then, the self-similar solution va(x, t;vL,vR) ≡
va(x/t;vL,vR) of the Cauchy problem (15) with λ = 0
and for the initial data

v0(x) =

{

vL if x < 0,
vR if x > 0,

(17)

at time t = 0 is made of four constant states separated
by three contact discontinuities as follows :

va(x/t;vL,vR) =















vL if x
t < λ1(vL),

v∗
L if λ1(vL) < x

t < λ2(v
∗
L),

v∗
R if λ2(v

∗
R) < x

t < λ3(vR),
vR if λ3(vR) < x

t ,

with

λ2(v
∗
L) = λ2(v

∗
R) = u?.
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Setting

u∗
L = u∗

R = u∗,
τ∗
L = τL + (u∗ − uL)/a,

τ∗
R = τR − (u∗ − uR)/a,

(ρi)
∗
L = (ρi)L τL/τ∗

L, i = 1, ..., n,
(ρi)

∗
R = (ρi)R τR/τ∗

R, i = 1, ..., n,
Π∗ = Π∗

L = Π∗
R = 1

2
(ΠL + ΠR) − a

2
(uR − uL),

(eν,j)
∗
L = (eν,j)L, j = 1, ..., nν,

(eν,j)
∗
R = (eν,j)R, j = 1, ..., nν,

(Se)
∗
L = (Se)L,

(Se)
∗
R = (Se)R,

E∗
L = EL + (ΠLuL − Π∗u∗)/a,

E∗
R = ER − (ΠRuR − Π∗u∗)/a,

the intermediate states are defined by :

v∗
L =

















{(ρi)
∗
L}i=1,...,n

(ρu)∗L
(ρE)∗L
(ρSe)

∗
L

{(ρeν,j)
∗
L}j=1,...,nν

(ρΠ)∗L

















,

v∗
R =

















{(ρi)
∗
R}i=1,...,n

(ρu)∗R
(ρE)∗R
(ρSe)

∗
R

{(ρeν,j)
∗
R}j=1,...,nν

(ρΠ)∗R

















.

Moreover, v∗
L and v∗

R are in Ωv.

In the notation va(x/t;vL,vR), the subscript a high-
lights the dependence of the solution with respect to
the parameter a. In addition, observe that condition
(16) gives the characteristic speeds in the Riemann so-
lution with increasing order.

Numerical scheme

In this section, we present a relaxation scheme for
approximating the weak solutions of the Cauchy prob-
lem (12)-(13) with initial data

u(x, 0) = u0(x).

Based on system (15), the procedure is classical within
the framework of relaxation method (see for instance,
Jin,16 Coquel and al.17 or Chalons13). It is made of
two steps that we describe in details : the first one con-
sists in a time evolution of the solution according to
system (15) with λ = 0, while the second one projects
the uptaded solution at equilibrium state λ = +∞.
We first set some notations.
Let ∆x and ∆t be two constant steps for space and
time discretizations. Let (xj)j∈Z be a sequence of
equidistributed points of R : xj+1 − xj = ∆x. For
all j ∈ Z and all n ∈ N, we introduce the notations

xj+1/2 = xj +
∆x

2
, tn = n∆t,

and consider the following discretization of the com-
putational domain Rx × R

+
t :

Rx×R
+
t =

⋃

j∈Z

⋃

n≥0

Cn
j , Cn

j = [xj−1/2, xj+1/2[×[tn, tn+1[.

As usual in the context of finite volume methods, the
approximate solution u∆t,∆x(x, t) of (12)-(13) with ini-
tial data u0 is sought as a piecewise constant function
on each slab Cn

j .

u∆t,∆x(x, t) = un
j for (x, t) ∈ Cn

j ,

and for the sake of completeness

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, j ∈ Z.

On the other hand, we also define from u∆t,∆x an-
other piecewise constant approximate solution v∆t,∆x

by setting

v∆t,∆x(x, t) = vn
j =

(

un
j

(ρΠ)n
j

)

for (x, t) ∈ Cn
j .

This solution is set to be at equilibrium, that is

(ρΠ)n
j = (p + pe)(u

n
j ).

Let us assume as known the solution u∆t,∆x(x, tn)
at time tn. In order to advance it to the next time
level tn+1, we now precise each of the two steps of the
algorithm.

First step : evolution in time (tn → tn+1−)
In this step, we take λ = 0 and solve system (15) with
v∆t,∆x(x, tn) as initial data and for times t ∈ [0, ∆t].
Under CFL condition

∆t

∆x
max

v
(|λi(v)|, i = 1, 2, 3) <

1

2
, (18)

where the maximum is taken over all the v under
consideration, the solution is obtained by solving a se-
quence of non interacting Riemann problems set at
each cell interface xj+1/2, and so is actually known
thanks to theorem 1. Note that a can be chosen lo-
cally in space, i.e. with a value that possibly differs
from one interface to another. If aj+1/2 denotes the
value of a for the Riemann problem set at interface
xj+1/2, we have :

v(x, t) = vaj+1/2
(
x − xj+1/2

t
;vn

j ,vn
j+1),

for (x, t) ∈ [xj , xj+1]×]0, ∆t], j ∈ Z.

As it is usually done, we propose to get back a piece-
wise constant function in x ∈ [xj−1/2, xj+1/2] by
means of a L2 projection :

ṽ(x, t) =
1

∆x

∫ xj+1/2

xj−1/2

v(x, t)dx,

for (x, t) ∈ [xj−1/2, xj+1/2]×]0, ∆t], j ∈ Z.
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We then complete this first step by setting

vn+1−
j =

(

un+1−
j

(ρΠ)n+1−
j

)

= ṽ(xj , ∆t), j ∈ Z. (19)

Of course, this procedure is nothing but the celebrated
Godunov method applied to (15). As a consequence,
updated formula (19) equivalently recasts according to
the following conservation form

vn+1−
j = vn

j − ∆t
∆x(g(vn

j ,vn
j+1) − g(vn

j−1,v
n
j )),

j ∈ Z, n ≥ 0,
(20)

where the numerical flux function writes

g(vn
j ,vn

j+1) = F(vaj+1/2
(0;vn

j ,vn
j+1)). (21)

Let us recall that the numerical flux (21) is here ex-
plicitly known.
Before presenting the second step of the algorithm, we
briefly discuss the definition of the parameter aj+1/2

in the numerical flux (21). It is known from litera-
ture14, 15 that each value aj+1/2 has to be carefully
chosen. In order to avoid instabilities in the relaxation
procedure as λ goes to infinity, some compatibility con-
ditions with respect to the original system (12) have
to be satisfied. These conditions, often referred as to
sub-characteristic conditions or Whitham conditions,
express that each characteristic speed of the relaxation
model (15) with λ = 0 must be greater than the cor-
responding one in the equilibrium system (12), that
is a > ρc (see indeed propositions 1 and 2). ¿From a
numerical point of view, we propose to impose

aj+1/2 > max({ρc}(un
j ), {ρc}(un

j+1)). (22)

At each interface, the parameter a can thus a priori be
selected unspecified in the infinite domain described
by relation (22). However, a deeper analysis of
the relaxation system (14) would demonstrate that
the associated rate of entropy dissipation actually
depends on this parameter. In fact, this rate increases
with a. As a consequence, this parameter should be
chosen as small as possible according to (22) in order
to lower the numerical dissipation. This is the main
motivation in the use of a local definition.

Second step : relaxation (tn+1− → tn+1)
We now project the solution v∆t,∆x(x, tn+1−)
obtained at the end of the previous step on the
equilibrium manifold λ = +∞. More precisely, we set
for all j ∈ Z :

vn+1
j =

(

un+1
j

(ρΠ)n+1
j

)

with un+1
j = un+1−

j

and (ρΠ)n+1
j = (p + pe)(u

n+1
j ).

(23)

Such an operation can be seen as a rough but efficient
manner of bringing v∆t,∆x(x, tn+1−) closer to the equi-
librium system (12). Indeed, v∆t,∆x(x, tn+1−) is in
general far from an equilibrium state and so cannot be
considered as a fair approximation of the solution of
(12). In addition, updating formula (23) are equivalent
to solve the following ordinary differential equations
system with λ = +∞ :































∂tρi = 0, i = 1, ..., n,
∂t(ρu) = 0,
∂t(ρE) = 0
∂t(ρSe) = 0,
∂t(ρjev,j) = 0, j = 1, ..., nν,
∂t(ρΠ) = λρ(p + pe − Π),

(24)

so that the whole algorithm may be understood as
a splitting strategy applied on (15) : we solve first
the convective part and, afterwards, we consider the
source term in the regime λ → ∞.

In agreement with the description of these two
steps, the approximate solution u∆t,∆x is then
updated according to the following consistent finite
volume method:

un+1
j = un

j − ∆t
∆x(f(un

j ,un
j+1) − f(un

j−1,u
n
j )),

j ∈ Z, n ≥ 0,

where the numerical flux f(un
j ,un

j+1) is given by the
N first components of the consistent numerical flux
function g(vn

j ,vn
j+1).

We conclude this section by emphasizing that
several stability properties are met by this relaxation
scheme. For instance, a discrete version of entropy
inequality (13) can be obtained. Such a result is
pretty technical to establish and so is not presented
in this paper. We refer the reader to a follow-up
paper from the authors, and to Chalons13 for similar
results in a slightly different context. Notice that a
refinement of the Whitham condition (22) is needed.
In addition, expected discrete maximum principles
also hold on Se and {ev,j}j=1,...,nν.

Numerical Experiments

The gas mixture under consideration contains three
species, namely nitrogen atoms N, nitrogen ions N+

and electrons. Three shocktube testcases have been
considered and the description of the initial left and
right states are given in tables 1,2,3. Note that we
only need to prescribe the mass fraction of the ni-
trogen atoms since the other concentrations comes
from the local charge neutrality and the relationship
∑n

i=1 Yi + Ye = 1. The conditions have been chosen
in order to get different types of waves. The results
are presented in Fig. 1,2,3. For each testcase, we show
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Table 1 Testcase A definition

Left state Right state
u(m/s) 1500 -2000
p(Pa) 7.5x104 1.5x104

T(K) 4000 1378
Te(K) 6000 1000
YN 0.7999998 0.8999998

Table 2 Testcase B definition

Left Right
u(m/s) 2200 0
p(Pa) 1x104 5x105

T(K) 780 4742
Te(K) 2000 8300
YN 0.7999999 0.8989998

Table 3 Testcase C definition

Left Right
u(m/s) 0 -1500
p(Pa) 3x105 6.5x103

T(K) 2452 346
Te(K) 8000 300
YN 0.8998999 0.7989998

the heavy species pressure, the electron pressure and
the total pressure p + pe and we compare the distri-
butions obtained with a Godunov solver, the previous
Roe scheme and the relaxation scheme. Results are
in good agreement even if some discrepancies appear
in the region of the 2-wave (contact discontinuity) for
the heavy species pressure and the electron pressure.
Note that, as it is expected from the mathematical
properties of the system, the variable p + pe is con-
stant through the contact discontinuity.

Concluding Remarks

The paper presents a relaxation model developed
for the numerical approximation of weakly ionized
flows in the context of hypersonic hyperenthalpic flows.
Governing equations rest on a conservative system
proposed by Coquel and Marmignon. Comparisons
between different solvers for shocktube applications
assess the relaxation approach since the results com-
parison with a Godunov solver and a Roe solver is fair.
Extension of the relaxation model to two dimensional
configurations is now planned.
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écoulements à haute enthalpie: influence du déséquilibre
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spécifiques, Phd thesis, Université Paris VI, 1999.
12Coquel, F. and Marmignon, C., “A voir,” ONERA Report

RSF. no 6/1929AY, 1993.
13Chalons, C., Bilans d’entropie discrets dans

l’approximation numérique des chocs non classiques. Ap-
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