
Interface model coupling via prescribed local flux balance

Annalisa Ambroso
UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France.

Christophe Chalons
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CNRS & Centre de Mathématiques Appliquées, U.M.R. 7641

Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex, France.

E-mail: frederic.coquel@cmap.polytechnique.fr

Thomas Galié
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Abstract

This paper deals with the non-conservative coupling of two one-dimensional barotropic Euler systems at
an interface located at x = 0. The closure pressure laws differ in the domains x < 0 and x > 0, and a Dirac
source term concentrated at x = 0 models singular pressure losses. We propose two numerical methods.
The first one relies on ghost state reconstructions at the interface while the second is based on a suitable
relaxation framework. Both methods satisfy a well-balanced property for stationary solutions. In addition,
the second method preserves mass conservation and exactly restores the prescribed singular pressure drops
for both unsteady and steady solutions.

1 Introduction

Several problems from the Physics and Engineering yield nonlinear hyperbolic equations involving flux-functions
and source terms which depend on the space variable. In the scalar setting, their mathematical analysis can trace
back to the seminal work of Kruzhkov [32] assuming a smooth enough dependence for the non-homogeneous flux
functions and source terms. As the consequence of the modeling of different natural phenomena, many situations
of practical importance however require to handle closures exhibiting far less smooth non-homogeneities. The
case of a flux-function which is discontinuous in the space variable has retained a considerable attention over
the past two decades. Assuming an identically null source term (or say without real extra difficulties, a smooth
enough non-homogeneous source term), its mathematical analysis has been initiated in the 1990s by Gimse,
Risebro [20] and Diehl [17] in the scalar case, introducing the fruitful and mathematically deep topic of coupling
two nonlinear hyperbolic equations in one space dimension at an interface at x = 0. The proposed coupling
framework is naturally conservative from the underlying Physics. A striking issue stays in the fact that there
exists generically infinitely many possibilities to couple solutions in x < 0 and x > 0, which all satisfy the
prescribed conservation condition. Bürgers, Karlsen have then extensively analyzed this conservative coupling
framework with respect to well-posedness (see [12] for a survey) and relevant numerical methods [13]. Several
other contributions have been proposed and far from being exhaustive, we quote for instance [1, 5, 6] and the
references therein.

The case of source terms that are singular in the space variable has retained in comparison much less
attention despite that many problems of importance actually involve source terms that are Dirac measures.
We refer to the pioneering work by Diehl [16] in the setting of scalar equations. Let us also quote Gosse [25]
for a well-balanced numerical strategy devoted to measure source terms. In the frame of the compressible
fluid models, well-known situations correspond to the so-called singular pressure drops or head losses that are
commonly encountered in various settings. They are responsible for a singular source term in the momentum
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equation (and/or the energy equation). A typical situation comes from free surface hydraulics where local
losses result for instance from trash racks and slide gates. We refer the reader to the text-book by Hager [18]
for a description together with several other examples where locally on purpose or not, the main flow either
accelerates or is retarded. Another well-referenced situation corresponds to pressurized flows where singular
pressure drops may arise from conduit bend, diffusors or mixing grids. There exists an enormous amount of data
on loss semi-empirical laws which have been summarized, for example, by Idel’cik [28] or Miller [31]. In all the
reported settings, the flux function does not depend on the space variable but by essence, the semi-empirical
law at x = 0 modeling the singular pressure drop resumes to a non-conservative coupling condition for the
solutions in x < 0 and x > 0.

Recent applications actually rise the question of handling simultaneously a discontinuous flux-function at
x = 0 with a singular source term at the same space location. A major example comes from nuclear engineering
but it may be encountered as well in the design of other large industrial setups. Their mathematical modeling
often needs to treat the whole system as a collection of sub-systems where due to local operating conditions,
distinct physical phenomena have to be accounted for. In addition, the transition from a given sub-system to the
next one generally results in singular source terms. We refer to [7] within the frame of nuclear thermal hydraulics.
As underlined in [7], existing ad hoc numerical methods to handle the reported non-conservative framework
have revealed some shortcomings. This observation has assessed the need for mathematical investigations. The
existence of semi-empirical laws (see [7], [30]) that define the right trace of the coupled solution as a non-
linear function of its left trace at x = 0, referred to as transmission conditions hereafter, has motivated a
series of studies devoted to well-posedness and to the derivation of efficient numerical methods. Transmission
conditions are given a weak sense via a double IBVP formalism. The pioneering work [23] treats the coupling of
scalar conservation laws and several extensions to the case of hyperbolic systems with possibly distinct size and
involving general transmission conditions have been proposed for instance in [2, 4]. Existence and uniqueness
of a coupled solution to the double IBVP problem have been obtained in the frame of abstract systems in
Lagrangian coordinates [3], where by nature nonlinear waves cannot interact with coupling interface. Existence
of a solution can be established under fairly general assumptions for more general systems [10], [14] but a
difficulty lies in the fact that uniqueness may be lost. Loss of uniqueness is related to the resonance phenomena
that may take place at the interface, when nonlinear waves associated with the fluid have locally vanishing
propagation speed. Already in the scalar case [9], multiple solutions to the coupled Riemann problem can be
exhibited when the coupling interface is resonant. The reported failure of uniqueness corresponds in fact to a
general situation first described by Isaacson-Temple [27] in the scalar setting.

The present work falls within the frame of nuclear thermal hydraulics where the flows of interest are mostly
if not always subsonic [7], [11], namely the speed of propagation of the acoustic waves keeps values away from
zero. As a consequence, the resonance phenomena is of artificial interest here and we thus restrict ourselves to
subsonic coupled solutions for which existence and uniqueness is strongly expected to hold true. We propose
an alternative approach to the double IBVP formalism for handling non-conservative coupling situations. We
indeed suggest to set the coupled problem over the whole real line when observing that transmission conditions
can as well understood to result from a Dirac measure source term concentrated at x = 0 and which mass
precisely defines the expected departure from the conservation property. The underlying Physics make this
approach clearly natural. Motivated by singular pressure drops, we address the coupling of two Euler systems
for barotropic gases, each equipped with a possibly distinct pressure laws, with a given Dirac measure at x = 0
involved in the momentum equation. The property that the source term is a Dirac measure concentrated at x = 0
makes the solutions of the coupled initial value problem for Riemann initial data to be self-similar. Subsonic
self-similar solutions are made of two extreme non-linear waves separated by a standing wave accounting for
the Dirac source term. Due to the non-linearities in the governing PDEs, the derivation of exact Riemann
solutions is however cumbersome and we rely on convenient approximations of the latter. A sharp resolution
of the singular pressure drops is the main goal of the present paper. We propose two methods with distinctive
properties regarding the accuracy with which the pressure drops are restored. Both are well-balanced methods
in the sense of Greenberg-Leroux [26]. In the present setting, this means that the prescribed drops are exactly
restored for time-independent discrete solutions. Both methods rely on a two numerical fluxes approach, the
difference of the latter approximates the mass of the Dirac source term. The first procedure is in the spirit of
a well-balanced strategy due to Gosse [25] and extends to the present setting numerical methods developed by
Ambroso et al. [2, 3] within the frame of coupling technics with transmission conditions. It is based on ghost
state reconstructions at the coupling interface x = 0 that allow to use any existing two states numerical fluxes.
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The side effect of this flexibility is a poor resolution of the prescribed pressure drops for general Riemann initial
data, despite that the method is exact in case of pairs of states that are perfectly at rest. To improve the
accuracy, we propose a second method built from a convenient relaxation approximation of the original PDEs.
Relaxation Riemann solutions involve a standing wave modeling the coupling interface but by contrast with
exact ones, their derivation turns to be fairly simple. The main contribution of paper is to show how to handle
the underlying relaxation mechanism at the coupling standing wave so as to define two numerical fluxes at the
interface whose difference exactly restores the prescribed mass of the Dirac source term, whatever the Riemann
initial data is. In other words, the proposed relaxation method imposes the required conservation property of
the mass flow and the prescribed deviation from it concerning the momentum for both unsteady and steady
solutions.

The model is presented in Section 2. In Section 4, we describe the two numerical methods and discuss their
respective merits in the resolution of the prescribed singular pressure drops. In section 5, numerical illustrations
clearly highlight the distinctive properties of both methods and strongly support the interest of the proposed
relaxation approach.

2 Presentation of the coupling problem

2.1 Statement of the PDE problem

We consider the flow of a barotropic gas in one space dimension. We denote x ∈ R the space variable whereas
t > 0 denotes time. The space domain R is separated by an infinitely thin interface I located at x = 0, across
which the flow may experience singular pressure losses. For reasons put forward along the Introduction, the
flow dynamics is modeled on each side of the interface by the isentropic Euler equations but closed with distinct
equations of state: namely, the pressure law p(τ), where τ is the specific volume, differs across the interface and
shifts from pL(τ) for x < 0 to pR(τ) for x > 0. The PDE model under consideration can be written as:

∂tu + ∂xf(u, x) =M(t)δx=0, t > 0, x ∈ R, (1)

where the unknown u = (ρ, ρu)T , with ρ the density of the fluid and u its velocity, belongs to the following
natural phase space

ω = {u = (ρ, ρu) ∈ R2, ρ > 0, ρu ∈ R}.
The non-homogeneous flux-function f : ω × R→ R2 reads

f(u, x) =

(
ρu

ρu2 + p(τ, x)

)
, p(τ, x) =

{
pL(τ), x < 0,
pR(τ), x > 0.

It will be convenient hereafter to use the following condensed notations:

f(u, x) =

{
fL(u), x < 0,
fR(u), x > 0.

Here, the pressure laws pα(τ) with α = L,R are assumed to obey p′α(τ) < 0 and p′′α(τ) > 0 for all τ > 0: namely
the underlying first order systems in (1) for x < 0 and x > 0 are strictly hyperbolic over the phase space ω. The
characteristic fields of the two systems are genuinely non-linear and each system has two distinct eigenvalues
respectively given by

λ±α (u) = u± cα(τ), cα(τ) = τ
√
−p′α(τ), α = L,R. (2)

At last, the singular source term in (1) where δx=0 refers to the Dirac measure concentrated at x = 0, models
the singular pressure drops at the interface x = 0 and its mass M(t) reads:

M(t) =

(
Mρ(t)
Mρu(t)

)
=

(
0

Mρu(t)

)
, t > 0.

As expected, the conservation of the density ρ holds for all times in contrast with the momentum ρu which
departure from conservation is dictated by the singular loss Mρu(t)δx=0. An exhaustive description of semi-
empirical laws can be found in Idel’cik [28] or Miller [31]. For simplicity in the present work, the load Mρu(t)
is assumed to be a given function to time.
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Being prescribed some initial data u0 : R → ω, solving the associated Cauchy problem for (1) amounts to
find a function u : R× R+ → ω solution of:

∂tu + ∂xfL(u) = 0, t > 0, x < 0, (3)

∂tu + ∂xfR(u) = 0, t > 0, x > 0, (4)

and subject to the following jump conditions across the interface x = 0:

fR(u(0+, t))− fL(u(0−, t)) =M(t), t > 0. (5)

Clearly the above jump relations can be understood as a set of conditions to couple solutions of (3) in x < 0
and (4) in x > 0. When the load M(t) identically vanishes, the resulting coupling is conservative but in many
situations of interest we have put forward along the Introduction, M(t) departs from zero.

Of central importance in the present work is the Cauchy problem for (1) with a prescribed constant load
M = (0,Mρu)T and initial data under the form:

u0(x) =

{
uL, x < 0,
uR, x > 0,

(6)

where uL and uR are two given states in ω. The expected solution is easily seen to be self-similar and its
knowledge (or an approximation of it) can serve within the usual finite volume framework to approximate the
solution of (1) for general initial data u0 and time dependent Dirac source term M(t)δx=0 over successive
time slabs (t, t + ∆t) with ∆t small enough. A central question then concerns existence and uniqueness of a
self-similar solution of (3)-(4)-(5) for a prescribed initial data (6) and a given constant load M. To address
this issue, it is worth observing that the present setting actually falls with a larger framework for non-linear
hyperbolic equations under the non-conservation form:{

∂tu + ∂xf(u, a)− g(u)∂xa = 0,

∂ta = 0,
(7)

where a is a scalar unknown determined by its initial data a0(x) while g : ω → R2 is a given smooth function.
The study of such PDE models has been pioneered by Isaacson-Temple [27] and continued by several authors, the
reader is referred for instance to Goatin-LeFloch [22] and the references therein. A straightforward connection
with our setting is obtained when considering

a0(x) =

{
0, x < 0,
1, x > 0

, g(u) =M.

Existence of solutions of the Riemann problem for (7) can be obtained [27], [22] under fairly general assumptions
on f and g. These results readily apply to the present setting for |uR−uL|, |M| sufficiently small and pressure
laws pL, pR close enough. Besides mandatory entropy conditions that stay beyond the scope of the present paper
(see [27], [22] for the details), uniqueness holds unless non-linear waves exhibit vanishing speeds of propagation
within the Riemann fan. Interactions in between non-linear waves with vanishing velocities and the linearly
degenerate standing wave associated with a result in the so-called resonance phenomena for which multiple
self-similar solutions may be built under generic assumptions on f , g and some natural monotonicity property
on a0(x). This situation is expected to hold true in our setting since in the one hand the eigenvalues (2) of the
non-linear waves for the left and right hyperbolic systems (3)–(4) may well vanish while in the second hand,
due to the strict convexity of each of the pressure law pα(τ), the jump conditions (5) at x = 0:{

(ρu)+ − (ρu)− = 0,
(ρu2 + pR(τ))+ − (ρu2 + pL(τ))− =Mρu,

(8)

may admit for a given left trace u−, either zero, one or two solutions u+ depending on the amplitude of |Mρu|.
The reported two sets of properties may interfere in a negative way to give birth to multiple self-similar solutions
along the same vein of [27]. Observe indeed that the present situation is quite similar to the one encountered
in the frame of the shallow water equations for which pL(τ) = pR(τ) = g/(2τ2) (g being the gravity constant)
while Mρu reflects a jump in the bathymetry at x = 0 (see [22] for instance).
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This being said, let us again emphasize that the present work is concerned with nuclear thermal hydraulics
where the flows of interest exhibit rather small Mach numbers [7], namely the speed of propagation of the
non-linear waves in (1) are mostly dominated by the sound speed and thus keeps values away from zero.
The reported resonance phenomena is of artificial interest and the jump conditions (8) admit generically two
branches of solutions : namely a subsonic and a supersonic one. We always choose the subsonic branch,
restricting ourselves to subsonic coupled solutions of (3)-(4)-(5) for which uniqueness holds true. Observe that
considering two subsonic states uL and uR in (6), namely such that

| uL
cL(τL)

| < 1, | uR
cR(τR)

| < 1, (9)

the range of loadsM that ensures subsonicity within the whole Riemann fan obviously depends on uL and uR,
the pressure laws pα(τ), α = L,R, being fixed. Its derivation has not been addressed in the present work since
this would have required the explicit knowledge of the self-similar solution of (3)-(4)-(5) which calculation is
cumbersome due to the non-linearities in the PDEs.

To bypass non-linearities, our main purpose is to provide relevant approximations of exact subsonic self-
similar solutions. In particular, we stress at this stage that the subsonic admissible range of M is actually
entirely determined for some relevant relaxation approximation of the original PDEs in Section 4.2.2. Next
and besides natural stability requirements (preservation of the phase space ω), we intend to sharply resolve the
jump relations (5) at the interface x = 0. We will systematically require the approximate Riemann solutions to
coincide with the exact ones in the case of pairs (uL,uR) giving birth to equilibrium subsonic solutions in the
sense of:

Definition 2.1. Let M be a constant weight and uL, uR two subsonic constant states (9) such that

fR(uR)− fL(uL) =M, (10)

then the function

u(x, t) =

{
uL, x < 0, t > 0,

uR, x > 0, t > 0,

is said to be an equilibrium subsonic solution of (1).

Preserving exactly those equilibrium solutions naturally yields well-balanced methods in the sense of Leroux-
Greenberg [26] for approximating the solutions of the Cauchy problem for (1).

3 Well-balanced finite volume methods

We propose two well-balanced numerical methods based on a two numerical fluxes strategy at the interface
x = 0. Their difference approximates the prescribed load M for general pairs of states (uL,uR) and restores
the latter exactly in case of pairs verifying the equilibrium property (10). The first method relies on ghost state
reconstructions as pioneered by Glimm et al. [21] for the separation of fluid components across an interface. A
pair of ghost states is reconstructed from the states of the Riemann problem at the interface, so as to mimic
the expected jump relations (5). This technic has been proved powerful in a series a works by Ambroso et al.
[2, 3] devoted to the numerical coupling of hyperbolic systems based on transmission conditions (see also [4]).
We show how to extend the ghost state reconstruction in the present coupling setting, in the spirit of Gosse [24]
for hyperbolic systems with source terms (see also Bouchut [8]). Its main advantage is its flexibility: it can be
applied to any existing two states numerical fluxes. The method is by construction well-balanced for pairs of
states verifying (10). Its main drawback is that for more general pairs, mass conservation is not exactly verified
while the approximate pressure loss departs from the exact oneMρu. This well-known drawback already holds
in a purely conservative setting [21]. To circumvent this shortcoming, we propose a second well-balanced method
based on a dedicated approximate Riemann solver built from a relaxation approximation of the original PDEs
(1). The approximate Riemann fan involves a standing wave modeling the interface x = 0 and across which a
convenient relaxation version of the jump relations (5) are prescribed. In contrast with the original PDEs, the
resulting approximate Riemann solution is fairly easily derived. In addition, it naturally yields left and right
numerical fluxes at x = 0 whose difference exactly restores the prescribed loadM = (0,Mρu) entering the jump
relations (5) whatever is the pair of left and right states (uL,uR) at the interface. This is the very novelty of
the present paper.
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3.1 General numerical standpoint

This paragraph introduces the required numerical notations. We denote ∆t the time step, ∆x the space step
and ν = ∆t/∆x their ratio. The interfaces of the cells are located in xj = j∆x for j ∈ Z so that the interface
x = 0 at which the Dirac source term acts comes with index j = 0. Intermediate times are tn = n∆t for
n ∈ N. We seek at each time tn a piecewise constant approximate solution x → uν(x, tn) of the solution u of
the Cauchy problem (1) with initial data u0:

uν(x, tn) = unj+1/2 for x ∈ Cj+1/2 = [xj , xj+1),

defining at t = 0:

u0
j+1/2 =

1

∆x

∫ xj+1

xj

u0(x)dx, j ∈ Z.

For simplicity, we use a 3-point finite-volume method to update the discrete solution uν(x, tn) at time tn+1:

un+1
j−1/2 = unj−1/2 − ν((gL)nj − (gL)nj−1), j ≤ 0, (11)

un+1
j+1/2 = unj+1/2 − ν((gR)nj+1 − (gR)nj ), j ≥ 0. (12)

For indexes j < 0 (respectively j > 0), numerical fluxes (gL)nj (respectively (gR)nj ), are computed from any

given locally Lipschitz continuous numerical flux function gL : ω × ω → R2 that is consistent with the exact
flux fL (resp. gR : ω × ω → R2 consistent with fR), namely:

gα(u,u) = fα(u), for all u ∈ ω, α = L,R, (13)

and are given by:

(gL)nj = gL(unj−1/2,u
n
j+1/2), j < 0,

(gR)nj = gR(unj−1/2,u
n
j+1/2), j > 0.

At the coupling interface labelled by index j = 0, the updating formulas (11)–(12) make use of two distinct
numerical fluxes (gL)n0 and (gR)n0 , approximating respectively fL(u(0−, t)) and fR(u(0+, t)). Their definition
must be related to the prescribed weightM(t) and they will be derived in order to provide some approximation
of the jump conditions (5) at each time tn:

(gR)n0 − (gL)n0 uMn, Mn =
1

∆t

∫ tn+1

tn

M(t)dt, n > 0. (14)

At last, the ratio ν is chosen under a classical CFL restriction. In the next section, we describe two methods
to compute the numerical fluxes (gL,R)n0 and we discuss in which sense the discrete jump conditions (14) is
achieved.

4 Two numerical fluxes approaches

4.1 Ghost state reconstructions

The first method we present relies on ghost state reconstructions at the interface x = 0. Being given the right
state un1/2 at the interface and the load Mn, we consider the following non-linear algebraic problem in the

unknown uL(un1/2,M
n):

fR(un1/2)− fL(uL(un1/2,M
n)) =Mn. (15)

Recall that we assume subsonic discrete solutions. As already discussed in the previous section and for small
enough values of |Mn| , the proposed equations generically admits two solutions: a subsonic and a supersonic
one. We choose the subsonic solution to define the ghost state uL(un1/2,M

n) and we introduce:

(gL)n0 = gL(un−1/2,u
L(un1/2,M

n)), (16)
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where gL : ω × ω → R2 denotes ones favorite numerical flux fonction consistent with fL (13). In a symmetric
way, being given the left state un−1/2, a second ghost state uR(un−1/2,M

n) is defined as the subsonic solution
of the non-linear algebraic problem:

fR(uR(un−1/2,M
n))− fL(un−1/2) =Mn, (17)

so as to introduce

(gR)n0 = gR(uR(un−1/2,M
n),un1/2), (18)

where gR : ω × ω → R2 is any existing numerical flux function consistent with fR. The following statement
assesses the property that the proposed method is well-balanced:

Lemma 4.1. Let be given two subsonic states u− and u+ in ω and a constant load M such that:

fR(u+)− fL(u−) =M. (19)

Then the subsonic solution uL(u+,M) of Eq. (15) (respectively uR(u−,M) of Eq. (17)) exists and coincides
with u− (respectively with u+). Using any given pair of consistent numerical fluxes (13), the following identity
is met:

gR(uR(u−,M),u+)− gL(u−,u
L(u+,M)) = fR(u+)− fL(u−) =M. (20)

Therefore, the ghost state reconstructions method (15), (16) and (17), (18) exactly captures the stationary
solution of the Riemann Problem (1) with initial data (u−,u+).

Proof. By definition, the ghost states uL(u+,M) and uR(u−,M) under consideration are the subsonic solutions
of

fR(u+)− fL(uL(u+,M)) =M,

fR(uR(u−,M))− fL(u−) =M.

By (19), uL(u+,M) = u− and uR(u−,M) = u+ are the solutions we seek for. The rest of the proof follows
immediately from the definitions (16)–(18) of the two consistent numerical fluxes at the interface x = 0.

In other words, the proposed method exactly restores the prescribed singular pressure drops for discrete
solutions that are at rest in a neighborhood of the interface. For transient solutions, namely for general pairs
of states (un−1/2,u

n
1/2), the difference (gR)n0 − (gL)n0 merely approximates the load Mn. In particular, mass

conservation is not exactly verified, neither is the prescribed departure from conservationMn
ρu in the momentum

equation.

4.2 A Relaxation model approach

In this section, we propose an alternative method based on a dedicated Riemann solver built from a Relaxation
approximation of the Riemann solutions of the coupled equations (1) with a Dirac source term. We promote a
Suliciu like relaxation framework of the underlying barotropic Euler equations which has been proved successful
in the purely homogeneous setting. We refer the reader to [8] and the references therein. In contrast with the
Jin and Xin’s relaxation approach [29], only the exact pressure laws are given a relaxation approximation. They
are no longer consider as non-linear closure laws but are instead treated as an additional unknown governed by
its own PDE. The latter involves a relaxation source term which depends on the space variable and restores the
closure laws in the limit of an infinite relaxation rate. By construction, the relaxation PDEs involve a standing
wave across which the expected pressure drop is prescribed so that it is exactly restored for subsonic transient
solutions, thus bypassing the limitation of the ghost state reconstructions technic. We then show how to take
advantage of the underlying relaxation mechanism in order to capture subsonic equilibrium solutions. Our
discussion is divided in two subsections. It turns convenient to first show how to solve the coupled Riemann
problem for the Relaxation model in the case of a conservative coupling, i.e. when M(t) identically vanishes
in the equations (1). Then, the second subsection will treat the case of the non-conservative coupling problem,
i.e. with M(t) 6= 0. In particular, precise conditions on the pair of states (uL,uR) and the load M are derived
to ensure existence and uniqueness of a subsonic self-similar solution for the relaxation model.
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4.2.1 Conservative coupling by the Relaxation method

We begin this section by writing the equations (1) closed by M(t) = 0, with initial data u0(x):{
∂tρ+ ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + p(τ, x)) = 0, t > 0, x ∈ R
(21)

where

p(τ, x) =

{
pL(τ), x < 0,

pR(τ), x > 0.

The present conservative coupling requires the continuity of the exact fluxes at the interface x = 0:

ρu(0−, t) = ρu(0+, t),

(ρu2 + pL(τ))(0−, t) = (ρu2 + pR(τ))(0+, t).

We propose to approximate the solutions of (21) by those of the following relaxation system
∂tρλ + ∂x(ρu)λ = 0,

∂t(ρu)λ + ∂x(ρu2 + π)λ = 0,

∂t(ρπ)λ + ∂x(ρπu+ a2u)λ = λρλ(p(τ, x)− π)λ, t > 0, x ∈ R,
(22)

where λ > 0 plays the role of a relaxation rate. Indeed in (22), observe that the original non-homogenous
pressure law p(τ, x) is replaced by a new unknown denoted by πλ. The solutions of the original equations (21)
are formally restored in the limit of an infinite relaxation parameter λ → +∞, since we formally get in this
limit

lim
λ→+∞

πλ = p(τ, x),

from the last equation in (22). Then, the given real number a > 0 in (22) can be understood as a frozen value
of ρc(τ, x) where c(τ, x) = τ

√
−∂τp(τ, x) is the sound speed (see [8] for instance). It is known that to prevent

the relaxation procedure from instabilities in the regime of a large relaxation parameter λ >> 1, the frozen
value a > 0 in (22) has to be chosen large enough (see for instance [8] and Proposition 4.2 below for a precise
definition). The relaxation system (22) is given the following condensed form:

∂tUλ + ∂xF(Uλ) = λS(Uλ, x), x ∈ R, t > 0, (23)

with

U =

 ρ
ρu
ρπ

 , F(U) =

 ρu
ρu2 + π
ρπu+ a2u

 , S(U, x) =

 0
0

ρ(p(τ, x)− π)

 .

We define the new space Ω of states U:

Ω = {U = (ρ, ρu, ρπ) ∈ R3, ρ > 0, ρu ∈ R, ρπ ∈ R}. (24)

Let us underline that in the present relaxation framework, the flux function F(U) does not depend on the
space variable x. In fact, the spatial non-homogeneity of the original flux is taken into account when always
considering well-prepared initial data U0 for (23), namely such that the relaxation pressure π0 is systematically
set at equilibrium:

π0(x) = p(τ0(x), x) =

{
pL(τ0(x)), x < 0,
pR(τ0(x)), x > 0.

The basic properties of system (23) are as follows. Being given a > 0, it admits three distinct real eigenvalues:

λ1(U) = u− aτ, λ2(U) = u, λ3(U) = u+ aτ, (25)
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and is thus strictly hyperbolic over the phase space (24). A strong property is that all the associated fields are
linearly degenerate [8].

Let us now describe the numerical approximation of the solutions of (21) by means of those of (22). Assum-
ing a discrete solution uν(x, tn) of system (21) at time tn, this one is evolved to the next time level tn+1 into
two steps. These steps can be understood in terms of a splitting strategy for (22), choosing first λ = 0 and then
considering the limit of an infinite relaxation parameter λ→∞.

First step: time evolution (tn → tn+1−)

In the first step, we set λ = 0 in (23) in order to solve for t ∈ [0,∆t], ∆t small enough, the following ho-
mogeneous initial value problem {

∂tU + ∂xF(U) = 0, x ∈ R, t > 0,

U(x, 0) = Uν(x, tn),
(26)

with
Uν(x, tn) = (uν(x, tn), (ρπ)ν(x, tn))T . (27)

Here we recall that ρπ is set at equilibrium:

(ρπ)ν(x, tn) = ρ(x, tn)p(τν(x, tn), x).

The frozen velocity an > 0 is prescribed at time tn so as to satisfy the following Whitham like stability condition
(see [8] for instance)

an > a#(U(x, tn)) ≡ max
x∈R

(√
−∂τp(τ(x, tn), x)

)
, (28)

a precise definition will be given in Proposition 4.2 below. Under the usual CFL restriction

∆t

∆x
max
x∈R

(|uν(x, tn)|+ anτν(x, tn)) ≤ 1

2
,

the solution of (26) is classically built from a sequence of non-interacting Riemann solutions for the homogeneous
relaxation system. Hence being given two states UL,UR in Ω, the self-similar solution of

∂tU + ∂xF(U) = 0, x ∈ R, t > 0,

U(x, 0) =

{
UL, x < 0,

UR, x > 0,

(29)

we denote W(x/t; UL,UR), is generically made of four constant states UL, U?
L, U?

R and UR systematically
separated by contact discontinuities propagating with velocity σi, i = {1, 2, 3} (see Figure 1). The precise

t

x

σ1 σ2 σ3

UL

U?
L

U?
R

UR

(a)

Figure 1: Generic wave pattern in the Riemann solution for the conservative coupling relaxation model

definition of the intermediate states is the matter of the following statement:
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Proposition 4.2. Being given two states UL and UR in the phase space Ω, let us prescribe a frozen velocity
a according to

a(UL,UR) > max
(
a#(UL,UR), a?(UL,UR)

)
, (30)

where a#(UL,UR) is defined in (28) and

a?(UL,UR) =
(uR − uL) +

√
(uR − uL)2 + 4 max(τL, τR)|πR − πL|

2 min(τL, τR)
.

Then the Riemann problem (29) admits a unique self-similar solution W(x/t; UL,UR) for which the interme-
diate states U?

L and U?
R belong to Ω with

u?(UL,UR) = u?L = u?R =
1

2
(uL + uR)− 1

2a
(πR − πL),

π?(UL,UR) = π?L = π?R =
1

2
(πL + πR)− a

2
(uR − uL),

τ?L(UL,UR) = τL + 1
a (u? − uL) > 0,

τ?R(UL,UR) = τR + 1
a (uR − u?) > 0.

(31)

Proof. The proof relies on simple calculations due to the linear degeneracy of all the fields in the relaxation
equations. Since some of the main ingredients will be used in the next section, we briefly sketch it to be
self-contained. The contact discontinuities are moving with the characteristic speed λi of the corresponding
field:

σ1 = λ1(UL) = λ1(U?
L), σ2 = λ2(U?

L) = λ2(U?
R), σ3 = λ3(U?

R) = λ3(UR). (32)

Using these identities together with the usual Rankine-Hugoniot relations for (29) easily yield the following
jump conditions

a(u?L − uL) + (π?L − πL) = 0,

u?L = u?R ≡ u?,
π?L = π?R ≡ π?,
a(u?R − uR) + (πR − π?R) = 0.

Easy manipulations left to the reader give the formulas for u? and π?. Then, the intermediate specific volumes
τ?L and τ?R are recovered from the first and last identities in (32). The positivity requirements τ?L > 0 and τ?R > 0
are easily seen to be equivalent to the natural wave ordering condition

σ1 < σ2 < σ3,

which is satisfied provided that the frozen velocity a is chosen according to (30).

Second step: relaxation (tn+1− → tn+1)

The solution obtained after this convective step is noted Uν(x, tn+1−). In the second step, we solve the following
system of ordinary differential equations

∂tρ = 0

∂t(ρu) = 0

∂t(ρπ) = λρ(p(τ, x)− π),

with λ → +∞ and initial condition given by the solution of the first step Uν(x, tn+1−). Finally the discrete
solution uν(x, tn+1) corresponds to

Uν(x, tn+1) = (uν(x, tn+1), (ρπ)ν(x, tn+1))T
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with

uν(x, tn+1) =uν(x, tn+1−)

(ρπ)ν(x, tn+1) =ρ(x, tn+1−)p(τν(x, tn+1−), x).

To summarize this paragraph, we give the detailed form of the numerical fluxes (gL)n0 and (gR)n0 entering Eqs.
(11) and (12). At time tn, being given the states un−1/2 and un1/2, we define Un

−1/2 = (un−1/2, ρ
n
−1/2pL(τn−1/2))

and Un
1/2 = (un1/2, ρ

n
1/2pR(τn1/2)) according to Eq. (27). The required fluxes (gL)n0 and (gR)n0 are recovered from

the first two components of F(W(0+; Un
−1/2,U

n
1/2)) setting

(gL)n0 = (gR)n0 =

(
ρu

ρu2 + π

)(
W(0+; Un

−1/2,U
n
1/2)

)
.

4.2.2 Non conservative coupling by the Relaxation method

The frame of a non-zero Dirac source term Mδx=0 in (1) is more involved than the setting of a conservative
coupling. Self-similar solutions now involve an additional standing wave as a consequence of the singular source
term. But again due to the linear degeneracy of all the fields in the relaxation system, their derivation will
be seen to be fairly tractable and to yield a simple two numerical fluxes strategy that accurately handles the
pressure drops while ensuring mass conservation for subsonic transient solutions. This is a direct consequence
of solving self-similar solutions involving a standing wave across which the expected load is prescribed. We
then show how to take advantage of the underlying relaxation mechanism so as to capture subsonic equilibrium
solutions of the original PDEs. In that aim, the governing PDE for the relaxation pressure π is equipped with a
Dirac source term Mρπδx=0 whose proper definition depends on the pair of states (uL,uR) and the load Mρu

under consideration. Precise conditions on these data are introduced to ensure existence and uniqueness of a
subsonic self-similar solution with positive intermediate densities. With the notations of the previous section,
the Riemann relaxation coupling problem writes in the present setting:

∂tU + ∂xF(U) = M̃δx=0, x ∈ R, t > 0,

U(x, 0) =

{
UL, x < 0,

UR, x > 0,

(33)

where M̃ is built from M = (0,Mρu) in (1) when setting

M̃ =

(
M
Mρπ

)
=

 0
Mρu

Mρπ

 . (34)

As already emphasized, the additional load Mρπ acting on the relaxation pressure equation of system (22)
must be given a precise non zero definition in order to exactly capture the subsonic equilibrium solutions of the
original coupling problem (1) (see Proposition (4.3) below). At this stage, the definition ofMρπ is left general.
Let us briefly comment on the structure of the self-similar solution of the relaxation coupling Riemann problem
(33). In contrast with the last paragraph, a non-trivial additional wave with zero speed - the so-called coupling
standing wave - has to be clearly dealt with. This supplementary wave accounts for the Dirac source term
M̃δx=0 and yields the left and right traces of self-similar solutions at the interface to obey the jump conditions:

(ρu)+ − (ρu)− = 0,

(ρu2 + π)+ − (ρu2 + π)− =Mρu,

(ρπu+ a2u)+ − (ρπu+ a2u)− =Mρπ.

(35)

As already put forward, we only address the case of subsonic self-similar solutions of (33). It means that being
given two states UL and UR satisfying |uL/aτL| < 1 and |uR/aτR| < 1 (see indeed the sub-characteristic
condition (28)), we focus ourselves on Riemann solutions with subsonic left and right traces at x = 0 :

| u−
aτ−
| = | u+

aτ+
| = |m

a
| < 1, (36)
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where we have set from the first equation in (35)

m ≡ ρ−u− = ρ+u+. (37)

Hence, the typical wave patterns of the self-similar solutions under consideration are displayed in Figure (2).
Obviously the expected self-similar solution of (33) depends on the given data UL, UR but also on the two

t

x

σ1 σ2 σs σ3

UL

U1

U2 U3

UR

(a) Case σ2 < 0

t

x

σ1 σ2σs σ3

UL

U1 U2

U3

UR

(b) Case σ2 > 0

Figure 2: Wave patterns of subsonic solutions of the coupled Riemann problem (33)

prescribed weights Mρu and Mρπ. A pair of subsonic states (UL,UR) being fixed, arbitrary values of those
weights may result in one hand in a wave pattern distinct from the ones depicted in Figure (2), and in a second
hand in states within the wave fan with a non-positive density ρ.

4.2.3 Subsonic admissible domain for (Mρu,Mρπ) and Riemann solution

The values of Mρu and Mρπ must be suitably prescribed in order to fit with the expected subsonic wave
structures while guaranteeing the positivity of all the intermediate densities. We will see hereafter that the
latter positivity requirement is closely related to the natural wave ordering condition σ1 < σ2 < σ3, as already
put forward in the proof of Proposition 4.2. The next statement provides a sharp characterization of the
relevant loads Mρu,Mρπ built from the eigenvalues λ1(UL), λ3(UR) in (25) and the intermediate velocities
u?(UL,UR) defined in (31), which we write for short u?. In addition, the proposed statement shows that the
sign of σ2, namely the relative position of the λ2- wave with respect to the coupling standing one, can be entirely
determined from the pair (Mρu,Mρπ) and the given states UL,UR.

Proposition 4.3. Let be given two subsonic states UL and UR in Ω, then there exists a non-empty open
convex domain Dadm(UL,UR) ⊂ RMρu

×RMρπ
such that for any given pair (Mρu,Mρπ) ∈ Dadm(UL,UR) the

Riemann problem (33) admits a unique subsonic self-similar solution with positive intermediate densities.
In addition, the so-called admissible domain Dadm(UL,UR) is the union of two open convex sets D−adm(UL,UR)

and D+
adm(UL,UR) respectively given by

D−adm(UL,UR) =
{

(Mρu,Mρπ) ∈ R2/− 2a2λ3(UR) < aMρu +Mρπ < −2a2u?,

− 2a2u?(2u? − λ3(UR)) < (2u? − λ3(UR))aMρu + λ3(UR)Mρπ

< −2a2u?(2λ1(UL)(λ3(UR)− u?) + u?(2u? − λ3(UR))
}
,

and

D+
adm(UL,UR) =

{
(Mρu,Mρπ) ∈ R2/− 2a2u? < aMρu +Mρπ < −2a2λ1(UL),

− 2a2u?(2u? − λ1(UL)) < (2u? − λ1(UL))aMρu − λ1(UL)Mρπ

< −2a2u?(2λ3(UR)(λ1(UL)− u?) + u?(2u? − λ1(UL))
}
,

12



with the property that if (Mρu,Mρπ) ∈ D−adm(UL,UR) (respectively (Mρu,Mρπ) ∈ D+
adm(UL,UR)) then the

self-similar solution of (33) verifies σ2 < 0 (resp. σ2 > 0) and thus corresponds to the wave pattern exhibited in

Figure (2a) (resp. (2b)). At last, the set D−adm(UL,UR)∩D+
adm(UL,UR) reads {(−2u?, 0)} and corresponds to

the limiting case of a vanishing speed σ2 = 0.

The proof of the proposed statement relies on the following technical result.

Lemma 4.4. Let be given a pair of subsonic states (UL,UR) and a pair of weights (Mρu,Mρπ). Assuming a
subsonic self-similar solution of (33) in the sense of (36) with positive intermediate densities, such a solution
is uniquely determined and can be written in the case σ2 < 0:

W(x/t;Mρu,Mρπ,UL,UR) =


UL, x/t < λ1(UL),
U1, λ1(UL) < x/t < λ2(U1),
U−, λ2(U1) < x/t < 0,
U+, 0 < x/t < λ3(UR),
UR, λ3(UR) < x/t,

(38)

and in the case σ2 > 0:

W(x/t;Mρu,Mρπ,UL,UR) =


UL, x/t < λ1(UL),
U−, λ1(UL) < x/t < 0,
U+, 0 < x/t < λ2(U3),
U3, λ2(U3) < x/t < λ3(UR),
UR, λ3(UR) < x/t.

(39)

Assuming σ2 < 0, we have:

m =
aMρu +Mρπ + 2a2u?

2a2τ?R
< 0, u1 = u+, τ1 = τL −

1

a
(uL − u−), π1 = π−, (40)

where m is the mass flux defined in (37) while when σ2 > 0:

m =
aMρu −Mρπ + 2a2u?

2a2τ?L
> 0, u3 = u+, τ3 = τR +

1

a
(uR − u+), π3 = π+. (41)

The left and right traces of the solution at the interface x = 0 read

u− = u? +
aMρu −Mρπ

2a(a−m)
, τ− =

u−
m
, π− = π? − 2aMρu −Mρπ

2(a−m)
, (42)

u+ = u? +
aMρu +Mρπ

2a(a+m)
, τ+ =

u+
m
, π+ = π? +

2aMρu +Mρπ

2(a+m)
. (43)

At last, assuming σ2 = 0, the self-similar solution comes with m = 0 and writes

W(x/t;Mρu,Mρπ,UL,UR) =


UL, x/t < λ1(UL),
U−, λ1(UL) < x/t < 0,
U+, 0 < x/t < λ3(UR),
UR, λ3(UR) < x/t,

with
u− = 0, τ− = τL − uL

a , π− = π? + au?,
u+ = 0, τ+ = τR − uR

a , π+ = π? − au?.

Proof. The proof is derived in the case σ2 < 0. Similar steps are involved in the situations σ2 > 0, σ2 = 0
and are left to the reader. Let us thus assume a subsonic wave pattern as depicted in Figure (2a). Let us first
observe the identities u1 = u− and π1 = π− inferred from the property that both the velocity u and the pressure
π are the two Riemann invariants of the λ2-wave. A straightforward adaptation of arguments given in the proof
of Proposition 4.2 then provides the following jump conditions, respectively for the first and last wave:

a(u− − uL) + (π− − πL) = 0,

a(u+ − uR) + (πR − π+) = 0.
(44)
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Considering the mass flux m introduced in (37), the last two jump relations at the coupling interface (35) can
recast:

m(u+ − u−) + (π+ − π−) =Mρu,

m(π+ − π−) + a2(u+ − u−) =Mρπ.
(45)

Understanding in a first step m as a free parameter, equations (44) and (45) read as a 4×4 linear system in the
unknown (u−, π−, u+, π+). This linear system is seen to be invertible provided that a2−m2 6= 0, such a condition
is met since by assumption |m/a| < 1 (see indeed (36)). Easy calculations then yield the expected definitions
(42)–(43) of the intermediate velocities u± and pressures π±. The specific volumes τ− and τ+ follow from the
definition of the mass flux m while τ1 is inferred from the identity λ1(U1) = λL(UL). Let us now determine the
mass flux m entering the proposed formulas. In that aim, observe that the property λ3(U+) = λ3(UR) once
multiplied by ρ+ writes m+ a = λ3(UR)ρ+, so that one gets:

(a+m)u+ = λ3(UR)ρ+u+ = λ3(UR)m. (46)

The definition of u+ in (43) yields 2a(a+m)(u+ − u?) = aMρu +Mρπ and easy algebraic manipulations give
from (46):

2a(λ3(UR)− u?)m = aMρu +Mρπ + 2a2u?.

The desired expression (40) for m follows from the identity λ3(UR) = λ3(U?
R) established in (32). We have

thus established that any given subsonic self-similar solution corresponding to the wave pattern displayed in
Figure (2a) is uniquely determined by the proposed formulas (40)-(42)-(43).

Equipped with Lemma 4.4, let us prove Proposition 4.3.

Proof. We derive the admissible subset D−adm(UL,UR) assuming u− = σ2 < 0. Similar steps are in order
concerning D−adm(UL,UR) when σ2 > 0. Let us first qualify pairs of weights (Mρu,Mρπ) so that the self-
similar solution exhibited in Lemma 4.4 is subsonic with a negative velocity u−. Assuming in a first step a
positive specific volume τ− > 0, this amounts to impose

− a < m < 0, (47)

with a mass flux m given by (40), that is to say after multiplication by 2a2τ?R while using the identity λ3(U?
R) =

(UR) established in (32):
− 2a2λ3(UR) < aMρu +Mρπ < −2a2u?. (48)

The proposed bounds are the first set of inequalities entering the definition of D−adm(UL,UR). Let us now
require a negative intermediate velocity u−, namely from its definition in (42):

u? +
aMρu −Mρπ

2a(a−m)
< 0,

and equivalently from the fact that a−m > 0 in view of (47):

2a(a−m)u? < −aMρu +Mρπ. (49)

Noticing from (40) the identity

2a(a−m) = − 1

aτ?R
(aMρu +Mρπ + 2a2(u? − aτ?R)), with u? − aτ?R = 2u? − λ3(UR), (50)

the inequality (49) rewrites

− 2a2u?(2u? − λ3(UR)) < (2u? − λ3(UR))aMρu + λ3(UR)Mρπ. (51)

The proposed condition for admissible pairs of weights (Mρu,Mρπ) is the lower bound in the second set of
conditions expressed in the definition of D−adm(UL,UR). Observe that under the two conditions (48)-(51), the
specific volume τ− = u−/m is naturally positive. Next in view of the identity λ3(U+) = λ3(UR) where by
assumption λ3(UR) > 0, requiring the positivity of τ+ is equivalent to ask for ρ + (u+ + aτ+) > 0, namely
m + a > 0. But this holds true under the condition (48). To conclude, it suffices to express a condition
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for ensuring τ1 > 0. Its representation formula in (40) once multiplied by a yields the equivalent condition:
u− > uL − aτL which is nothing but the ordering condition λ1(UL) < λ2(U−) = u−. That is to say from the
definition of u−

u? +
aMρu −Mρπ

2a(a−m)
> λ1(UL).

Using once again the equation (50), easy calculations give

−2a2(2u? − λ3(UR))(λ1(UL)− u?) < (λ1(UL)− (2u? − λ3(UR)))aMρu + (λ1(UR)− λ3(UR))Mρπ

= λ1(UL)(aMρu+)−
(

(2u? − λ3(UR))aMρu + λ3(UR)Mρπ

)
.

But inequalities (48) and λ1(UL) < 0 clearly allow to strengthen the above condition according to

− 2a2(2u? − λ3(UR))(λ1(UL)− u?) < −2a2λ1(UL)λ3(UR)−
(

(2u? − λ3(UR))aMρu + λ3(UR)Mρπ

)
, (52)

which is up to a multiplication by −1 the last inequality expressed in the definition of D−adm(UL,UR). This
concludes the proof.

4.2.4 Choice of Mρπ and well-balanced property of the relaxation scheme

Motivated by the well-balanced property, we now pay a specific attention to relevant definitions of M̃ in (34)
from the given weightM in the initial value problem (1) such that its equilibrium solutions are exactly preserved
by the relaxation approximation. More precisely, being given two subsonic states uL and uR in ω and a weight
Mρu ∈ R such that:

fR(uR)− fL(uL) = (0,Mρu)T , (53)

the weight Mρπ has to be properly prescribed such that the self-similar solution of the relaxation Riemann
problem (33) writes:

W(x/t;Mρu,Mρπ,UL,UR) =

{
UL, x < 0, t > 0,

UR, x > 0,
(54)

where the two constant states are defined at equilibrium:

UL = (uL, ρLpL(τL)), UR = (uR, ρRpR(τR)). (55)

In other words, the self-similar solution under consideration is stationary and reduces to the initial data.
Restricting such a solution to its two first components restores the next function

u(x, t) =

{
uL, x < 0, t > 0,

uR, x > 0,

which is nothing the expected equilibrium solution put forward in Definition 2.1. The next statement provides
the required definition of the required weight Mρπ for general subsonic states (uL, uR) and weight Mρu:

Proposition 4.5. For any given pair of subsonic states (uL, uR) in ω2 and any given load Mρu, let us define
from the pair of equilibrium states (55):

Me
ρπ(Mρu,UL,UR) = me(Mρu,UL,UR)

(
IR − IL

)
, (56)

with
IL = pL(τL) + a2τL, IR = pR(τR) + a2τR,

and a mass flux given by

me(Mρu,UL,UR) =
Mρu + 2au?(UL,UR)

a(τ?L(UL,UR) + τ?R(UL,UR))
. (57)

Here the mappings τ?L, τ?R and u? have been introduced in Proposition 4.2. Then considering a pair of states
(uL,uR) such that the balance condition (53) holds true, the self-similar solutionW(x/t;Mρu,Me

ρπ(Mρu,UL,UR),UL,UR)
of the Riemann problem (33) with initial data (55) coincides with (54).
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Proof. Let us first establish in the case of a general pair of subsonic states and a givenMρu that a weightMρπ

under the form
Mρπ = m(IR − IL)

with a mass flux m given either by (40) or (41) necessarily writes as (56) with m = me(Mρu,UL,UR). In
that aim, let us observe from the definition of the states U?

L and U?
R defined in Proposition 4.2 the following

identities
IL = π? + a2τ?L, IR = π? + a2τ?R.

These come from simple algebraic manipulations that are left to the reader. As a consequence, we infer

IR − IL = a2(τ?R − τ?L). (58)

Equipped with this formula and considering the case of a mass flux m given by (40) (respectively (41)), straight-
forward calculations give(

2a2τ?R − (IR − IL)
)
m = aMρu + 2a2u?, (resp.

(
2a2τ?L + (IR − IL)

)
m = aMρu + 2a2u?),

and the expected conclusion readily follows in both cases from the identity (58).
Let us now turn considering a pair of states (uL,uR) and a weightMρu verifying the balance equation (53)

and prove that the self-similar function (54) is the solution W(x/t;Mρu,Me
ρπ(Mρu,UL,UR),UL,UR) of the

Riemann problem (33) with initial data (55). Let us first establish that the mass flux in (57) we write for short
me coincides with m ≡ (ρu)L = (ρu)R. The second equation in (53) writes

Mρu = m(uR − uL) + (pR − pL) = m2(τR − τL) + (pR − pL),

while the formulas defining u?, τ?L and τ?R easily yield

2au? = (uR + uL)− (pR − pL) = ma(τR + τL)− (pR − pL),
a(τ?L + τ?R) = a(τR + τL) + (uR − uL) = a(τR + τL) +m(τR − τL).

We thus deduce that Mρu + 2au? = m
(
a(τ?L + τ?R)

)
, that is to say me = m.

From Figure (2), it now clearly suffices to check in the case m = me < 0, i.e. σ2 < 0, (respectively σ2 > 0)
that a self-similar function defined from (38) (resp. (39)) with U1 = U− = UL and U+ = UR (resp. U− = UL

and U+ = U3 = UR solves the Riemann problem (33) with an initial data given by (55). Jumps in this
piecewise constant function are trivial except at the interface x = 0 and is therefore a solution of the problem
under consideration if and only if

F(UR)− F(UL) = (0,Mρu,Me
ρπ)T , (59)

withMe
ρπ defined in (56). The initial data (55) being at equilibrium, the first two equations in (59) just read :

fR(uR)− fL(uL) = (0,Mρu)T ,

and are readily satisfied since me = m while by assumption uL,uR and Mρu solve (53). The left-hand side in
the last equation of (59) writes

me(πR − πL) + a2(uR − uL) = me

(
(πR + a2τR)− (πL + a2τL)

)
since the mass flux me = m = uR/τR = uLτL. The right hand-side in the above identity is nothing but the
definition of Me

ρπ given in (56). This concludes the proof.

4.2.5 Intermediate states and numerical fluxes at the coupling interface

We first summarize the definition of the three intermediate states U1, U2 and U3 involved in the waves patterns
depicted in Figure (2). In this aim, it is convenient to consider the left and right traces of the self-similar solution
W(x/t;me(Mρu,UL,UR),Mρu,UL,UR) singled out in the above statement at the interface, which we denote
respectively

U− =W(0−;me(Mρu,UL,UR),Mρu,UL,UR)
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and
U+ =W(0+;me(Mρu,UL,UR),Mρu,UL,UR).

Observe that me ≡ me(Mρu,UL,UR) (which we write me(Mρu) for short) in (57) verifies me < 0 as soon as
σ2 < 0 and me > 0 whenever σ2 > 0. With these solutions, observe that in Figure (2(a)) with σ2 < 0, we have
U− = U2 and U+ = U3 while by contrast in Figure (2(b)) with σ2 > 0, we have U− = U1 and U+ = U2.
Equipped with the definition of the mass flux (57), let us introduce

Me
ρπ(me(Mρu),UL,UR) = me(Mρu)(IR − IL), (60)

where we have set IR = pR(τR) + a2τR and IL = pL(τL) + a2τL which we write for short Me
ρπ(Mρu). Then

the left and right traces U− and U+ at x = 0 of the self-similar solution displayed in Figure (2) are recovered
from:

u− = u? +
aMρu−Me

ρπ(Mρu)

2a(a−me(Mρu))
, τ− = u−

me(Mρu)
, π− = π? − 2aMρu−Me

ρπ(Mρu)

2(a−me(Mρu))
,

u+ = u? +
aMρu+Me

ρπ(Mρu)

2a(a+me(Mρu))
, τ+ = u+

me(Mρu)
, π+ = π? +

2aMρu+Me
ρπ(Mρu)

2(a+me(Mρu))
,

(61)

as soon as me(Mρu) 6= 0. If me(Mρu) vanishes, then U− = U+ = U?
L if u? > 0 and U− = U+ = U?

R otherwise,
see again Figure (2). At last, we need to define U3 in the case me(Mρu) > 0 (i.e. U1 = U−,U2 = U+) by:

u3 = u+, τ3 = τR +
1

a
(uR − u+), π3 = π+,

and U1 in the case me(Mρu) < 0 (i.e. U2 = U−,U3 = U+) by:

u1 = u−, τ1 = τL −
1

a
(uL − u−), π1 = π−.

To conclude, the expected numerical fluxes entering Eqs. (11) and (12) are recovered as follow. At time tn, being
given the states un−1/2 and un1/2, we define Un

−1/2 = (un−1/2, ρ
n
−1/2pL(τn−1/2)) and Un

1/2 = (un1/2, ρ
n
1/2pR(τn1/2))

according to Eq. (27). Then from the value of Mn = (0,Mn
ρu = Mρu(tn)) in (1) we define M̃n =

(0,Mn
ρu,Me

ρπ(Mn
ρu)) withMe

ρπ(Mn
ρu) in (60). The solutionW(x/t;me(Mn

ρu),Mn
ρu,U

n
−1/2,U

n
1/2) of (33) being

built, we have:

(gL)n0 =

(
ρu

ρu2 + π

)(
W(0−;me(Mn

ρu),Mn
ρu,U

n
−1/2,U

n
1/2)

)
,

(gR)n0 =

(
ρu

ρu2 + π

)(
W(0+;me(Mn

ρu),Mn
ρu,U

n
−1/2,U

n
1/2)

)
.

Observe that by construction, one has

(gR)n0 − (gL)n0 = (0,Mn
ρu)T .

5 Numerical results

We present in this section results from numerical simulations based on the methods we propose. The aims
of the study are twofold and intend to illustrate the respective capabilities of the numerical methods under
consideration to sharply resolve the prescribed jump conditions at the interface x = 0 for both steady and
unsteady discrete solutions. The well-balanced property is investigated for solutions that are stationary in a
neighborhood of the interface while possible departures from the expected prescribed losses and/or conservation
properties are addressed in the transient regime. In the next test cases, two distinct values for the load Mρu

are considered. The initial condition for Cauchy problem are of Riemann type. The two constant states uL and
uR under consideration are given by:

u(x, 0) =

{
uL if x < 0,

uR if x > 0,
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with

L R
ρ 2 1
u uL 0

where

uL = uR +
√

(pR(τR)− pL(τL))(τL − τR).

The pressure law is pα(τ) = τ−γα . The adiabatic coefficients are γL = 1.4 for the left domain and γR = 1.6 for
the right domain. The number of mesh points is 200 and the space domain is the interval [−0.5, 0.5]. The CFL
constant is set to 0.5.

5.1 Conservative coupling M≡ (0, 0)

The purpose of the present benchmark is to illustrate the behavior of the numerical methods we have introduced
to approximate the solution of Problem (1) in the conservative setting: i.e. with M = (0, 0). We show
that the ghost states method and the relaxation strategy described in Section (4) yield discrete solutions in
a good agreement despite some minor discrepancies may be reported. Discrete solutions are compared on
Figures (3) and (4). We observe that the approximate solution obtained by the ghost states method exhibits a
perfectly sharp discontinuity at the interface while the relaxation approach described in Section (4), namely with
Mρπ = 0, displays a discrete profile with one intermediate point resulting in a slight overshoot in the pressure
distribution. To go further, Figures (8(a)) and (9(a)) display the momentum component of the difference
(gR)n0 − (gL)n0 in its time history and the value Mn

ρu (that is here strictly zero). As expected from its design
principle, the relaxation approach yields an exact balance (gR)n0 − (gL)n0 = 0 at each time step. The ghost
states approach achieves this exact balance after a few time steps but departure from the expected conservation
properties stays rather admissible.

Figure (5) shows the results achieved by the relaxation approach described in Section (4.2.2) withMe
ρπ(Mρu)

given in (60) choosing Mρu ≡ 0. Notice that the present method differs from the first relaxation strategy
described in Section (4.2.1) since Me

ρπ(0) 6= 0 in general. The benefit of this second approach clearly stays in
the capture of a perfectly sharp standing wave at the interface. Let us stress that this second method exactly
restores by construction the identity (gR)n0 = (gL)n0 at any given time step.

5.2 Non conservative coupling

In this test case, the value of Mρu is chosen so as to enforce the continuity of the traces of the exact Riemann
solution in Problem (1) at x = 0; namely u(0−,uL,uR) = u(0+,uL,uR). It can be seen [19] that the expected
value is given by:

Mn
ρu = 0.354404, n > 0.

Figures (6) and (7) compare the discrete solutions obtained by the ghost states approach and the relaxation
strategy. Figures (8(b)) and (9(b)) display the momentum component of the difference (gR)n0 − (gL)n0 and the
exact value of the load Mn

ρu under consideration. Again by construction such a difference strictly coincides
with the prescribed load at all time steps in the relaxation strategy while it takes few time steps in the ghost
states method to reach a steady state in a neighborhood of the interface.

6 Conclusion

We have proposed two well-balanced numerical methods to deal with the non-conservative coupling of two one-
dimensional barotropic Euler equations with a Dirac source term to model singular pressure losses. The first
method relies on ghost state reconstructions at the coupling interface while the second one is derived thanks to
a suitable extension of a classical pressure relaxation framework. Unlike the first method, the second one always
preserves mass conservation and exactly restores the prescribed singular pressure drops for both unsteady and
steady solutions. This is the very novelty of the present work. Both methods are first order accurate. Their
extension to higher order of approximation together with applications to two-phase flow models will be the
matter of a forthcoming study.
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Figure 3: Conservative coupling: results for the ghost states method.
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Figure 4: Conservative coupling: results for the Relaxation approach with load Mρπ = 0.
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Figure 5: Conservative coupling: results for the Relaxation approach with the well-balanced load Me
ρπ.
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Figure 6: Non conservative coupling: results for the ghost states method.
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Figure 7: Non conservative coupling: results for the Relaxation approach.
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Figure 8: Comparison between the numerical value of the momentum flux jump at the interface and the exact
load value in the ghost states approach.
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