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Abstract

We investigate the one-dimensional coupling of two systems of gas dy-
namics at a fixed interface. The coupling constraints consist in requiring
the continuity of a system of nonconservative variables at the interface.
Since we are dealing with hyperbolic systems, weak coupling conditions
are proposed. The existence and the uniqueness of the solutions of the
coupled Riemann problem are investigated. Several examples of solutions
satisfying the weak coupling conditions are contructed, either continu-
ous or discontinuous with respect to the nonconservative variables at the
interface.

Introduction.

The problem of coupling various mathematical models described by systems of
partial differential equations is a topic of increasing importance. It arises for
instance in the modelling of complex industrial devices in Engineering. The
device is divided into different parts which are modelled using different approx-
imations. It then remains to couple these models at the interfaces separating
the various parts of the device for obtaining a global mathematical model. As
a constraint, the coupling procedures have to be as local as possible in order to
be easily implemented numerically.

Such coupling problems are encountered in several applications. First, they
naturally arise in Thermohydraulics in connection with the modelling of the
primary coolant circuit of a pressurized water reactor in a nuclear power plant.
Various multiphase fluid models are used involving systems of partial differential
equations having a variable number of equations supplemented with various
closure relations. Similar situations appear also in the modelling of two-fluid
(or multi-fluid) flows where the dynamics is provided by the one of the fluids.
The two fluids possess their own equation of state and are coupled at a moving
interface. See [AK01] and the large literature on this subject. We can also
mention the coupling problems arising in networks [CG06, BHK06a, BHK06b]
and traffic flows [GP06a, GP06b, HR06] which have deserved a growing interest
in the last few years.

In this paper, we are indeed concerned with the applications to nuclear re-
actors1. The overall coupling problem in this context is a very difficult and

1The authors of the present paper are involved in a joint research program on multiphase
flows between CEA and University Pierre et Marie Curie-Paris6 (see [ACC+05a, ACC+05b,
ACC+06b, ACC+06a, ACC+06c] and the references therein) in the framework of the Neptune
project.
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challenging one at least from the mathematical point of view and must be de-
composed in elementary though already complicated subproblems. Here we
focus our attention on the coupling of two Euler systems of compressible gas
dynamics provided with different equations of state. This is indeed a first step in
the mathematical analysis of the coupling of two thermohydraulics models. Our
approach follows that initiated in [GR04] in the scalar case and in [GLTR05] in
the case of systems encountered in plasma physics. In this paper, we study a
fairly general approach of the coupling problem, referred as the state coupling
method. This coupling method has been investigated in the frame of lagrangian
systems in [ACC+06b, ACC+06c] and numerical state coupling methods have
been proposed in [ACC+05a, ACC+05b, ACC+06a]. At the difference of the flux
coupling method (see [ACC+05a, ACC+06a, Hur06] and [IT92, KR95, BV06])
where one imposes the continuity of the flux at the interface, we impose here
the continuity (in a weak sense) at the interface of a set V of variables which
are not necessarily conservative. This method appears to be very flexible in the
sense that we can ensure the global conservation of mass and momentum or
energy for the coupled problem depending on the proper choice of the set V.
In practice, the choice of the information V that must be transmitted at the
interface is given at the level of the physical modelling and generally depends
on the coupling problem. Now, a natural mathematical question is to solve the
coupled Riemann problem. This paper is a contribution to the solution of this
problem which appear far more complicated that one could think a priori. It is
worth noting that a different approach could be followed, introducing an appro-
priate Dirac measure at the interface in a global model in order to recover the
continuity of V at the interface, as done in the scalar case by Boutin [Bou06]
(see also [IT95, GL96, GL04]).

The plan of this paper is as follows. In Section 1, we introduce the gen-
eral state coupling method. In the next two sections, we establish preliminary
results. Section 2 is devoted to the analysis of the signs of the speeds of gas
dynamics waves. Then, in Section 3, we characterize the set of states U that can
be connected to a given state U0 on the left (resp.on the right) by a sequence of
a 1-wave, a 2-wave and a 3-wave whose speeds are nonnegative (resp. nonpos-
itive). Provided with the tools developed in the previous sections, we are able
in Section 4 to characterize the forms of all possible solutions to the coupled
Riemann problem which are V-continuous at the interface x = 0. We prove
the existence and uniqueness of subsonic solutions. We then consider solutions
which may be V-discontinuous at the interface. Such solutions need to satisfy
at x = 0 coupling constraints that we characterize geometrically in Section 5.
In Section 6, we determine the forms of all possible V-discontinuous solutions.
As an application, we consider the coupled Riemann problem whose left and
right initial velocities are equal : this is the case for instance of a matter-wave
which crosses the interface. In Section 7, we solve this problem for “almost”
all such initial data and we give the form of each solution which can be easily
computed. We thus obtain a number of explicit exact solutions that can serve as
benchmarks for numerical methods of solution of the coupled Cauchy problem.
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1 The problem of coupling two gas dynamics

systems at a fixed interface.

We want to couple two gas dynamics systems corresponding to two different
equations of state at a fixed interface located at x = 0. This amounts to solve
the systems

∂tU + ∂tFL(U) = 0, x < 0, t > 0, (1)

∂tU + ∂tFR(U) = 0, x > 0, t > 0, (2)

where for α = L, R,

U =





ρ
ρu
ρe



 , Fα(U) =





ρu
ρu2 + pα

(ρe + pα)u



 (3)

and pα = pα(ρ, ε) may be given for instance as a function of ρ and ε. These
systems are supplemented by an initial condition

U(x, 0) = U0(x) (4)

and coupling conditions that we shall define below. Recall that ρ denotes the
density of the fluid, u its velocity, ε its specific internal energy and e = ε+u2/2
its specific total energy. The pressure p of the fluid is thus defined by

p =

{

pL(ρ, ε), if x < 0,

pR(ρ, ε), if x > 0.

We denote by Ω the state space

Ω =
{

U ∈ R
3; ρ > 0, p > 0

}

.

Concerning the coupling conditions at x = 0, we want to ensure ”as far as
possible” the continuity of some system V of variables, i.e., we would like to
impose the constraint on the traces of V(., t) at x = 0

V(0+, t) = V(0−, t).

More precisely, we are given two C1 diffeomorphisms Θα : V ∈ ΩV 7→ U =
Θα(V) ∈ Ω, α = L, R and we would like to impose

Θ−1

L (U(0−, t)) = Θ−1

R (U(0+, t)). (5)

At least three choices of V are of practical interest:
(i) V = U, Θα = Id ;

(ii) V =





ρ
u
p



 , Θα(V) =





ρ
ρu
ρeα



 , eα = εα(ρ, p) + u2/2

where p 7→ εα(ρ, p) is the inverse function of ε 7→ pα(ρ, ε), i.e.,

pα(ρ, εα(ρ, p)) = p ;
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(iii) V =





ρ
u
h



 , Θα(V) =





ρ
ρu
ρeα



 , ρeα = ρh − pα(ρ, h) + ρu2/2

where h = ε + p/ρ denotes the specific enthalpy and the equations of state are
taken in the form

p = pα(ρ, h), α = L, R.

Indeed, suppose that we ensure the exact continuity of V at the interface. Then,
the choice (i) guarantees the global mass conservation but not the global mo-
mentum and energy conservations since only the first component ρu of the flux
function is continuous at the interface. On the other hand, the choice (ii) guar-
antees the continuity of ρu and ρu2 +p but not that of (ρe+p)u at the interface
so that here the global mass and momentum conservations are preserved but
not the global energy conservation. Alternatively, the choice (iii) guarantees the
continuity of ρu and ρhu = (ρe + p)u at the interface but not that of ρu2 + p
which implies that the global mass and energy conservations are preserved but
not the global momentum conservation.

Returning to the general case, we note that the continuity condition (5) is
too restrictive and cannot be satisfied at least in general. This is easily seen by
considering the geometry of characteristics of both hyperbolic systems (1) and
(2) at the interface x = 0. As in [GR04, GLTR05], we weaken this condition in
the following way. We denote by Wα(x/t;UG,UD) the solution of the Riemann
problem











∂tU + ∂xFα(U) = 0, x ∈ R, t > 0

U(x, 0) =

{

UG, if x < 0,

UD, if x > 0,

(6)

and by Zα(x/t;VG,VD) the solution of this Riemann problem expressed in the
variables V, i.e.,

Zα(x/t;VG,VD) = Θ−1
α (Wα(x/t; Θα(VG), Θα(VD))). (7)

Next, we define the sets

OL(VD) = {ZL(0−;V,VD);V ∈ ΩV } (8)

and
OR(VG) = {ZR(0+;VG,V);V ∈ ΩV } . (9)

Note that
OL(VD) = Θ−1

L ({WL(0−;U, ΘL(VD));U ∈ Ω}) (10)

and
OR(VG) = Θ−1

R ({WR(0+; ΘR(VG),U);U ∈ Ω}) . (11)

Then, the coupling conditions at x = 0 which have to be viewed as a weak form
of (5) read:

V(0−, t) ∈ OL(V(0+, t)) (12)

V(0+, t) ∈ OR(V(0−, t)) (13)

or equivalently

{

U(0−, t) ∈
{

WL(0−;U, ΘL(Θ−1

R (U(0+, t))));U ∈ Ω
}

,
U(0+, t) ∈

{

WR(0+; ΘR(Θ−1

L (U(0−, t)),U));U ∈ Ω
}

.
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This method of coupling will be referred in the sequel as the V-state coupling
method.

Now, a fundamental question from both theoretical and numerical points of
view is the study of the V-coupled Riemann problem which consists in solving
Eqs.(1),(2) with the coupling conditions (10),(11) and the initial condition

U0(x) =

{

UG, if x < 0,

UD, if x > 0.
(14)

2 Analysis of the wave speeds.

As a preliminary step for the solution of the coupled Riemann problem, we need
to study the sign of the speed of the gas dynamics waves. We begin by precising
some notations that we will use in all the sequel and by recalling some standard
results concerning these waves. Let us first characterize the states U that can
be connected to a given state U0 by an admissible (i.e., entropic) shock wave.
We then assume the following simplifying hypothesis:
H.1. There exists a unique function p 7→ τ = h0(p) solution of the Hugoniot
equation

ε(τ, p) − ε(τ0, p0) +
1

2
(p + p0)(τ − τ0) = 0, τ =

1

ρ
. (15)

Moreover, this function is monotone decreasing, strictly convex and satisfies
h0(p0) = τ0.
Then the states U that can be connected to U0 on the right by an admissible
1-shock wave are given by

u = u0 −
√

(p − p0)(τ0 − h0(p)), ρ =
1

h0(p)
, p > p0,

while the states U that can be connected to U0 on the left by an admissible
3-shock wave are characterized by

u = u0 +
√

(p − p0)(τ0 − h0(p)), ρ =
1

h0(p)
, p < p0.

We next look for the states U that can be connected to U0 by a rarefaction
wave. For convenience, we take the equation of state in the form

ρ = ρ(p, s)

so that the sound speed is given by

c = c(p, s) = (∂pρ)−
1
2 .

Then, the states U that can be connected to U0 on the right by a 1-rarefaction
wave are characterized by

u = u0 −

∫ p

p0

dp

(ρc)(p, s0)
, ρ = ρ(p, s0), p < p0

)while the states U that can be connected to U0 on the left by a 3-rarefaction
wave are given by

u = u0 +

∫ p

p0

dp

(ρc)(p, s0)
, ρ = ρ(p, s0), p > p0
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If we set

Φ0(p) =







∫ p

p0

dp

(ρc)(p, s0)
, if p ≤ p0,

√

(p − p0)(τ0 − h0(p)), if p ≥ p0,

(16)

and

ϕ0(p) =







ρ(p, s0), if p ≤ p0,
1

h0(p)
, if p ≥ p0,

(17)

we obtain that the 1-wave curve C1(U0) of states U which can be connected on
the right by an admissible 1-wave is given by

u = u0 − Φ0(p), ρ = ϕ0(p) (18)

while the 3-wave curve C3(U0) of states U which can be connected on the left
by an admissible 3-wave is given by

u = u0 + Φ0(p), ρ = ϕ0(p). (19)

Now, for i = 1, 3, we denote by Γi(U0) the projection onto the (u, p)-plane of
the i-wave curve Ci(U0). Hence, the Γ-curves are defined by

{

Γ1(U0) : u = u0 − Φ0(p),
Γ3(U0) : u = u0 + Φ0(p).

(20)

Note that Φ0 is a strictly increasing function with

Φ0(0) = −

∫ p0

0

dp

(ρc)(p, s0)
. (21)

If we consider the case of a polytropic ideal gas whose equation of state is of
the form

p = (γ − 1)ρε, (22)

we have on the one hand

h0(p) = τ0

µ2p + p0

p + µ2p0

, µ2 =
γ − 1

γ + 1
(23)

so that
√

(p − p0)(τ0 − h0(p)) =| p − p0 |

√

1 − µ2

ρ0(p + µ2p0)
. (24)

On the other hand, since the polytropic equation of state may be equivalently
written in the form

p = A(s)ργ ,

we find

ρ(p, s0) = ρ0

(

p

p0

)
1
γ

(25)

and since c =
√

γp
ρ

c(p, s0) = c0

(

p

p0

)
γ−1

2γ

(26)
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which yields

∫ p

p0

dp

(ρc)(p, s0)
=

2

γ − 1
(c(p, s0) − c0) =

2

γ − 1
c0

(

(

p

p0

)
γ−1

2γ

− 1

)

. (27)

Therefore, we obtain for a polytropic gas

Φ0(p) =















2

γ − 1
(c(p, s0) − c0), if p ≤ p0,

(p − p0)

√

1 − µ2

ρ0(p + µ2p0)
, if p > p0,

(28)

and

ϕ0(p) =















ρ0

(

p

p0

)
1
γ

, if p ≤ p0,

ρ0

p + µ2p0

µ2p + p0

, if p > p0.

(29)

We have in that case

Φ0(0) = −
2c0

γ − 1
. (30)

Let us lastly recall that the states U which can be connected to U0 on the
right or on the left by a 2-contact discontinuity are characterized by

u = u0, p = p0. (31)

We are now in a position to study the signs of the wave speeds. We first
consider the 1-waves which connect a state U to U0 on the right (U ∈ C1(U0)).
We begin with the 1-shock waves. Let us denote by σ the speed of such a shock;
we observe that σ = σ(p) may be parametrized by p as U varies along the shock
part C1

s (U0) of the wave curve C1(U0). Then we can state

Proposition 1 Assume the hypothesis H.1. The following properties hold:
(i) for u0 < c0,we have σ = σ(p) < 0 along C1

s (U0);
(ii) for u0 ≥ c0, there exists a unique p1

s = p1
s(U0) ≥ p0 such that

σ(p1
s) = 0

and we have
{

σ(p) > 0, if p0 < p < p1
s,

σ(p) < 0, if p > p1
s.

Moreover p1
s is the unique solution of the equation

ρ0u0h0(p) = u0 − Φ0(p), p ≥ p0. (32)

Proof. Using the Rankine-Hugoniot jump conditions, we obtain on the one
hand from the Hugoniot equation

τ = h0(p)

and on the other hand from the mass conservation 2

[ρu] = σ [ρ] ,

2As usual [ϕ] = ϕ − ϕ0 denotes the jump of a quantity ϕ at a discontinuity.
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hence
ρu = ρ0u0 + σ(ρ − ρ0).

Since ρ > ρ0 for such an admissible shock, we have







σ = 0 ⇐⇒ ρu = ρ0u0

sgn(σ) = sgn(ρu − ρ0u0), ρ =
1

h0(p)
.

This leads us to consider the curve of equation

u = ρ0u0h0(p).

In order to determine the sign of σ, we need only to find the intersection point(s)
of this curve with the shock part C1

s (U0) of the 1-wave curve C1(U0) or equiv-
alently to solve the equation

ρ0u0h0(p) = u0 −
√

(p − p0)(τ0 − h0(p)), p ≥ p0

that we write in the form

u0

τ0

(τ0 − h0(p)) =
√

(p − p0)(τ0 − h0(p)), p ≥ p0.

Since τ = h0(p) ≤ τ0 for p ≥ p0, we must have u0 ≥ 0 for the above equation to
possess a solution. Let us then assume u0 ≥ 0; we have to solve

u0 = τ0

√

p − p0

τ0 − h0(p)
⇐⇒ u2

0 = τ2
0

p − p0

τ0 − h0(p)
.

If we define the function

f(p) = τ2
0

p − p0

τ0 − h0(p)
, (33)

we observe that

f ′(p) =
τ2
0

(τ0 − h0(p))2
(τ0 − h0(p) + (p − p0)h

′
0(p)) > 0

by the strict convexity of the function h0. In addition, we have (cf. Lemma 1
below)

f(p0) = −
τ2
0

h′
0(p0)

= c2
0,

lim
p→+∞

f(p) = +∞.

Hence, for p ≥ p0, the equation

f(p) = u2
0 (34)

has a unique solution p = p1
s for u0 ≥ c0 and no solution for u0 < c0. Since, for

p ≥ p0, the expression

ρu − ρ0u0 =

(

1

h0(p)
−

1

h0(p0)

)(

u0 − τ0

Φ0(p)

τ0 − h0(p)

)
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has the sign of

u0 − τ0

Φ0(p)

τ0 − h0(p)
= u0 − τ0

√

p − p0

τ0 − h0(p)
,

we find that ρu − ρ0u0 is < 0 for p large enough, which proves our assertions.
It remains to check

Lemma 1 We have

h′
0(p0) = −

τ2
0

c2
0

.

Proof. We indicate the proof for reader’s convenience. By differentiating Hugo-
niot’s equation, we obtain

∂τε(τ, p)h′
0(p) + ∂pε(τ, p) +

p

2
(h0(p) − τ0) +

1

2
(p + p0)h

′
0(p) = 0, τ = h0(p)

which yields

h′
0(p0) = −

∂pε(τ0, p0)

∂τε(τ0, p0) + p0

.

But, as a consequence of the thermodynamic relation

dε = Tds − pdτ = ∂τεdτ + ∂pεdp,

we find

dp =
1

∂pε
(−(∂τε + p)dτ + Tds)

and therefore
c2

τ2
= −∂τε|s =

∂τε + p

∂pε

which proves the lemma.
We next consider the 1-rarefaction waves which connect U to the state U0

on the right. As U varies along the rarefaction part C1
r (U0) of the wave curve

C1(U0), we want to determine the sign of the speed u−c(p, s0) of the right edge
of the fan of such a rarefaction. Again, we assume a simplifying hypothesis:
H.2. The function p 7→ c(p, s) is monotone increasing with

lim
p→0

c(p, s) = 0. (35)

Remark 1. Since

∂pc(p, s) =
1

2c
∂pc

2(p, s) =
1

2c
∂p(∂ρp(ρ, s))

=
1

2c
∂2

ρρp(ρ, s)∂pρ(p, s) =
1

2c3
∂2

ρρp(ρ, s),

we obtain that the function p 7→ c(p, s) is decreasing as soon as the function
ρ 7→ p(ρ, s) is convex, which is a property shared by standard gases. Indeed, the
assumptions on the function p 7→ c(p, s) are trivially satisfied for a polytropic
gas.
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Proposition 2 Assume the hypothesis H.2. Then the following properties hold:
(i) for u0 < Φ0(0), we have u − c(p, s0) < 0 along C1

r (U0);
(ii) for Φ0(0) ≤ u0 ≤ c0, there exists a unique p1

r = p1
r(U0) ∈ [0, p0] such that

c(p1
r, s0) = u0 − Φ0(p

1
r) = u0 −

∫ p1
r

p0

dp

(ρc)(p, s0)
(36)

and we have
{

u − c(p, s0) > 0, if p < p1
r ,

u − c(p, s0) < 0, if p1
r < p < p0;

(iii) for u0 > c0, we have u − c(p, s0) > 0 along C1
r (U0).

Proof. In order to determine the sign of u− c(p, s0), we need to find the inter-
section point(s) of the curve u = c(p, s0) with the curve C1

r (U0) or equivalently
to solve the equation

c(p, s0) = u0 − Φ0(p) = u0 −

∫ p

p0

dp

(ρc)(p, s0)
, 0 ≤ p ≤ p0.

Clearly, as p varies from 0 to p0, c(p, s0) increases from 0 to c0 while u0 −Φ0(p)
decreases strictly from u0 − Φ0 to u0. Hence the above equation has a solution
which is indeed unique if and only if

Φ0(0) ≤ u0 ≤ c0.

Since by (35)
lim
p→0

u − c(p, s0) = u0 − Φ0(0),

u − c(p, s0) remains < 0 in case (i), passes from < 0 to > 0 as p crosses p1
r in

case (ii) and remains > 0 in case (iii).
To summarize Propositions 1 and 2, we obtain the diagrams of Fig. 1.

Defining
u1

s = u1
s(U0) = u0 − Φ0(p

1
s) = ρ0u0h0(p

1
s),

u1
r = u1

r(U0) = u0 − Φ0(p
1
r) = c(p1

r, s0),

we set

u1
max = u1

max(U0) =

{

u1
s, if u0 ≥ c0,

u1
r, if Φ0(0) ≤ u0 ≤ c0.

(37)

Then it follows from Propositions 1 and 2 that the part C1
−(U0) of the wave

curve C1(U0) of all states U which can be connected to U0 on the right by a
(non trivial) 1-wave whose speed is nonpositive 3 is given by

C1
−(U0) =

{

C1(U0) \ {U0} , if u0 ≤ Φ0(0),
{

U ∈ C1(U0) \ {U0} ; u ≤ u1
max(U0)

}

, if u0 ≥ Φ0(0).

Since,for u0 ≤ Φ0(0), the velocity u of any state U ∈ C1(U0) is less than Φ0(0),
it appears convenient to set

u1
max(U0) = u0 − Φ0(0) < 0 if u0 < Φ0(0) (38)

3A rarefaction wave is said to have a nonnegative (resp. a nonpositive) speed if its minimum
(resp. maximum) speed is nonnegative (resp. nonpositive).
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u0 < Φ0(0) Φ0(0) < u0 < c0

u0 > c0

0

00 u

u

u u1
r

u1
s

p

p

p

p1
r

p1
s

Γ1(U0)

Γ1(U0)

Γ1(U0)

σ > 0

σ > 0
σ > 0

σ < 0

U0

U0

U0

u − c < 0
u − c < 0

u − c > 0

u − c > 0

u = c(p, s0)

u = ρ0u0h0(p)

Figure 1: Signs of the wave speeds of C1(U0).
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so that C1
−(U0) may be equivalently characterized by

C1
−(U0) =

{

U ∈ C1(U0); ρ 6= ρ0, u ≤ u1
max(U0)

}

. (39)

Let us next study the 3-waves which connect a state U to the state U0 on
the left (U ∈ C3(U0)). We first consider the shock waves and again we denote
by σ = σ(p) the speed of such a shock when U varies along the shock part
C3

s (U0) of C3(U0).

Proposition 3 Assume the hypothesis H.1. The following properties hold:
(i) for u0 > −c0, we have σ(p) > 0 along C3

s (U0);
(ii) for u0 ≤ −c0, there exists a unique p3

s ≥ p0 such that

σ(p3
s) = 0

and we have
{

σ(p) < 0, if p0 < p < p3
s,

σ(p) > 0, if p > p3
s.

Moreover p3
s is the unique solution of the equation

ρ0u0h0(p) = u0 + Φ0(p), p ≥ p0. (40)

Proof. The proof mimics that of Proposition 1. Here we have to find the
intersection of the curve of equation u = ρ0u0h0(p) with C3

s (U0) or equivalently
to solve

u0

τ0

(τ0 − h0(p) = −
√

(p − p0)τ0 − h0(p)) , p ≥ p0.

We pass to the 3-rarefaction waves which connect U to U0 on the left. Here
we want to determine the sign of the speed u + c(p, s0) of the left edge of the
fan of such a rarefaction as U varies along the rarefaction part C3

r (U0) of the
wave curve C1(U0). We can state the analogue of Proposition 2.

Proposition 4 Assume the hypothesis H.2. Then the following properties hold:

(i) for u0 >

∫ p0

0

dp

(ρc)(p, s0)
, we have u + c(p, s0) > 0 along C3

r (U0);

(ii) for −c0 ≤ u0 ≤

∫ p0

0

dp

(ρc)(p, s0)
, there exists a unique p3

r ∈ [0, p0] such that

−c(p3
r, s0) = u0 + Φ0(p

3
r) = u0 +

∫ p3
r

p0

dp

(ρc)(p, s0)
(41)

and we have
{

u + c(p, s0) < 0, if p < p3
r,

u + c(p, s0) > 0, if p > p3
r;

(iii) for u0 < −c0, we have u + c(p, s0) < 0 along C3
r (U0).

To summarize Propositions 3 and 4, we obtain the diagrams of Fig. 2.
Defining

u3
s = u3

s(U0) = u0 + Φ0(p
3
s) = ρ0u0h0(p

3
s),

u3
r = u3

r(U0) = u0 + Φ0(p
3
r) = −c(p3

r, s0),
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u0 > −Φ0(0)

−c0 < u0 < −Φ0(0)u0 > −c0

0

0

0 u

u

u u3
ru3

s

p

p

p

p3
r

p3
s

Γ3(U0)

Γ3(U0)

Γ3(U0)

σ > 0σ > 0

σ > 0

σ < 0

U0

U0

U0

u + c < 0
u + c < 0

u + c > 0

u + c > 0

u = −c(p, s0)u = ρ0u0h0(p)

Figure 2: Signs of the wave speeds of C3(U0).
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we set

u3
min = u3

min(U0) =











u3
s, if u0 ≤ −c0,

u3
r, if − c0 ≤ u0 ≤ −Φ0(0),

u0 + Φ0(0), if u0 ≥ −Φ0(0).

(42)

Then it follows from Propositions 3 and 4 that the part C3
+(U0) of the wave

curve C3(U0) of all states that can be connected to U0 on the left by a (non
trivial) 3-wave whose speed is nonnegative is given by

C3
+(U0) =

{

U ∈ C3(U0); ρ 6= ρ0, u ≥ u3
min(U0)

}

. (43)

3 Some useful sets of the state space.

Consider again the solution W(x/t;UG,UD) of the classical Riemann problem
for the gas dynamics system:











∂tU + ∂xF(U) = 0, x ∈ R, t > 0,

U(x, 0) =

{

UG, if x < 0,

UD, if x > 0.

(44)

For any state U0 of the state space Ω, we introduce the following two sets which
will play an essential role in all the sequel of this paper:

E+(U0) = {W(0−;U,U0);U ∈ Ω} (45)

and
E−(U0) = {W(0+;U0,U);U ∈ Ω} . (46)

In this section, we want to give a characterization and a geometric description
of these sets.

We begin by deriving a necessary and sufficient condition for the solution
W(x/t;UG,UD) to consist of waves with nonnegative velocities. Besides the
trivial case where UG = UD, we need to examine the three following situations:
(i) UG is connected to UD by a (non trivial) 3-wave;
(ii) UG is connected to UD by a (non trivial) 2-contact discontinuity and a
3-wave;
(iii) UG is connected to UD by a (non trivial) 1-wave, a 2-contact discontinuity
and a 3-wave.

The situation (i) corresponds indeed to UG ∈ C3
+(UD) where C3

+(UD) is
defined as in (43).

Next, given a state U0, we look for all states U which can be connected to U0

on the left by a (non trivial) 2-contact discontinuity with a nonnegative speed
and a 3-wave. If we denote by U∗

0 the intermediate state between U and U0, we
know that U and U∗

0 have the same velocity u∗
0 ≥ 0 and the same pressure p∗0

while the density of U is arbitrary. Hence if we introduce the cylindrical surface

S3
+(U0) =

{

U ∈ Ω; Υ = (u, p) ∈ Γ3(U0), ρ 6= ϕ0(p), u ≥ 0
}

, (47)

we find that such states exactly generate the surface S3
+(U0). Therefore the

situation (ii) corresponds to UG ∈ S3
+(UD).
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The situation (iii) is somewhat more complicated to characterize. Suppose
that UG is indeed connected to UD by a 1-wave followed by a 2-contact dis-
continuity and a 3-wave (these two last waves may non exist). First we notice
that, if the 1-wave has a nonnegative speed, we have necessarily

uG ≥ cG.

This is obvious if the 1-wave is a rarefaction and it follows from the Lax entropy
condition if the 1-wave is a shock. Then, by Proposition 1, we know that there
exists a unique state U1

s = U1
s(UG) ∈ C1(UG) which is connected to UG by a

stationary shock. This state U1
s is solution of

u1
s = uG − ΦG(p1

s) = ρGuGhG(p1
s) (48)

and satisfies: u1
s ≤ uG, p1

s ≥ pG (cf. Fig. 3).

0 u

p

Γ1(UG) Γ3(UD)

ΥG

Υ1
s

u = ρGuGhG(p)

Figure 3: The wave curves C1(UG) and C3(UD).

We can now state

Proposition 5 Assume that the solution of the Riemann problem (44) pos-
sesses a 1-wave. A necessary and sufficient condition for this wave to have a
nonnegative speed reads

{

uG ≥ cG,
u1

s ≤ uD + ΦD(p1
s).

(49)

Proof. Suppose first that the 3-wave exists. We thus consider the 3-wave curve
C3(UD). If

uD + ΦD(0) ≤ uG − ΦG(0),

its projection Γ3(UD) onto the (u, p)-plane intersects Γ1(UG) at a point Υ∗ =
(u∗, p∗). Now, using again Proposition 1, the 1-wave has a nonnegative velocity
if and only if the point Υ∗ is located on Γ1(UG) below the projection Υ1

s =
(u1

s, p
1
s) of U1

s onto the (u, p)-plane or equivalently Υ1
s is located above the

curve Γ3(UD) (cf. again Fig. 3), i.e.,

u1
s ≤ uD + ΦD(p1

s).

On the other hand, if

uD + ΦD(0) > uG − ΦG(0),
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Γ3(UD) does not intersect Γ1(UG) and vacuum occurs. However, in this case
where the inequality u1

s ≤ uD +ΦD(p1
s) clearly holds, the 1-wave is a rarefaction

with a nonnegative speed.
Suppose next that the 3-wave does not exist. This means that Υ∗ = ΥD

and again Υ∗ is located below Υ1
s on the curve Γ1(UG) if and only if u1

s ≤
uD + ΦD(p1

s). This proves the result.
Remark 2. Note that a necessary and sufficient condition for the 1-wave

to have a positive speed is given by

{

uG ≥ cG,
u1

s < uD + ΦD(p1
s).

(50)

Indeed, the proof is identical to that of the above result at the only differ-
ence that we have to exclude the case where the 1-wave is a stationary shock
connecting UG and U1 i.e., the case where u1

s = uD + ΦD(p1
s).

Since both u1
s = u1

s(UG) and p1
s = p1

s(UG) are functions of UG, it makes
sense to introduce the subset of Ω

V3
+(UD) = {UG; uG ≥ cG, uG 6= uD + ΦD(pG),

u1
s(UG) ≤ uD + ΦD(p1

s(UG))}.
(51)

Hence the condition
UG ∈ V3

+(UD) (52)

is a necessary and sufficient condition for the (non trivial) 1-wave of the solution
of the Riemann problem (44) to have a nonnegative speed.

We summarize the above results in

Proposition 6 Assume the hypotheses H.1 and H.2. Then a necessary and
sufficient condition for the solution of the Riemann problem (44) to consist of
waves with nonnegative speeds reads:

UG ∈ {UD} ∪ C3
+(UD) ∪ S3

+(UD) ∪ V3
+(UD). (53)

We already know that C3
+(UD) is a curve and S3

+(UD) is a cylindrical surface.
It remains to give a geometric description of the set V3

+(UD). This can be done
fairly easily in the case of a polytropic ideal gas.

Proposition 7 Assume the equation of state (22). Then, for any state U0 ∈ Ω,
the set V3

+(U0) is given by

V3
+(U0) =

{

U ∈ Ω; ρ ≥ R+

0 (u, p), u 6= u0 + Φ0(p), u > 0
}

(54)

where R+

0 is the continuous function defined in the following way:
(i) for u < u0 + Φ0(p), we have

R+

0 (u, p) =
γp

u2
; (55)

(ii) for u > u0 + Φ0(p), ρ = R+
0 (u, p) is the unique solution of

Φ0((1 − µ2)ρu2 − µ2p) −

(

µ2 + (1 + µ2)
p

ρu2

)

u + u0 = 0. (56)
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Proof. For reader’s convenience, we keep the notations UG, UD and U1
s in-

troduced previously. Recall that U1
s belongs to the shock part C1

s (UG) of the
wave curve C1(UG). Hence, the relations (48) become in the case of a polytropic
equation of state (22)

u1
s = uG − (p1

s − pG)

√

1 − µ2

ρG(p1
s + µ2pG)

=
µ2p1

s + pG

p1
s + µ2pG

uG

so that
{

u1
s = (µ2 + (1 + µ2)

pG

ρGu2
G

)uG,

p1
s = (1 − µ2)ρGu2

G − µ2pG.

The first condition (49) uG ≥ cG gives

uG > 0, ρG ≥
γpG

u2
G

.

Thus, given uG > 0, pG > 0, we look for the supplementary constraint imposed
on ρG by the second condition (49) u1

s ≤ uD + ΦD(p1
s). We set

g(ρG) = uD + ΦD(p1
s) − u1

s. (57)

Observe that g is a strictly increasing function. Indeed, since Φ′
D > 0 and

du1
s

dρG

= −
(1 + µ2)pG

ρ2
GuG

< 0,
dp1

s

dρG

= (1 − µ2)u2
G > 0,

we have

g′(ρG) = Φ′
D(p1

s)
dp1

s

dρG

−
du1

s

dρG

> 0.

Let us then compute g(γpG/u2
G). If ρG = γpG/u2

G, we have u1
s = uG and

p1
s = pG so that

g

(

γpG

u2
G

)

= uD + ΦD(pG) − uG.

Assume first that (uG, pG) satisfies uG ≤ uD + ΦD(pG). Then g(γpG/u2
G) ≥ 0

and the second inequality (49) holds as soon as

ρG ≥ R+

D(uG, pG) =
γpG

u2
G

.

Assume next uG > uD + ΦD(pG). Since g(ρG) tends obviously to +∞ as ρG

tendto +∞, there exists a unique

ρmin
G = R+

D(uG, pG) >
γpG

u2
G

solution of the nonlinear equation

g(ρG) = uD + ΦD((1 − µ2)ρGu2
G − µ2pG) −

(

µ2 + (1 + µ2)
pG

ρGu2
G

)

uG = 0

and the conditions (49) hold provided that

ρG ≥ R+

D(uG, pG).
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Note that ρmin
G = γpG/u2

G if uG = uD+ΦD(pG) so that the function (uG, pG) 7→
R+

D(uG, pG) is indeed continuous along the curve Γ3(UD).
Remark 3. The proof of the previous result remains valid as far as one can

check that the function g defined by (57) is strictly increasing. Hence a similar
geometric description of the volume V3

+(U0) holds for any equation of state
which ensures this property of the function g. It is not obvious at first glance to
characterize such an equation of state. However, the analogue of Theorem 2 can
be obtained for a larger class than that of polytropic ideal gases. For instance,
this is the case of a stiffened equation of state of Grüneisen type, i.e., of the
form

p = (γ − 1)ρε + c2
ref (ρ − ρref ).

The details are left to the reader.
Similarly, we can obtain a necessary and sufficient condition for the solution

of the Riemann problem (44) to consist of waves with nonpositive speeds. We
first introduce the sets C1

−(U0) as in (39) and

S1
−(U0) =

{

U ∈ Ω; Υ = (u, p) ∈ Γ1(U0), u ≤ 0, ρ 6= ϕ0(p)
}

(58)

Then C1
−(UG) (resp. S1

−(UG)) is the set of all states which can be connected to
UG on the right by a (non trivial) 1-wave with a nonpositive speed (resp. by a
1-wave and a (non trivial) 2-contact discontinuity with a nonpositive speed).

Consider next the states UD which can be connected to UG on the right
by a 1-wave, a 2-contact discontinuity and a 3-wave with a nonpositive speed.
Then we have necessarily uD ≤ −cD and, by Proposition 3, there exists a unique
state U3

s = U3
s(UD) ∈ C3(UD) which is connected to UD by a stationary shock.

This state U3
s is solution of

u3
s = uD + ΦD(p3

s) = ρDuDhD(p3
s). (59)

Now we can prove the analogue of Proposition 5: a necessary and sufficient
condition for the 3-wave of the solution of the Riemann problem (44) to have a
nonpositive speed reads

{

uD ≤ −cD,
u3

s ≥ uG − ΦG(p3
s).

Thus we are led to introduce the volume of Ω (which excludes trivial 3-waves)

V1
−(UG) = {UD; uD ≤ −cD, uD 6= uG − ΦG(pD),

u3
s(UD) ≥ uG − ΦG(p3

s(UD))}.
(60)

and we can state

Proposition 8 Assume the hypotheses H.1 and H.2. Then a necessary and
sufficient condition for the solution of the Riemann problem (44) to consist of
waves with nonpositive speeds is given by

UD ∈ C1
−(UG) ∪ S1

−(UG) ∪ V1
−(UG). (61)

Again the volume V1
−(UG) has a simple geometric description in the case of

a polytropic ideal gas.
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Proposition 9 Assume the equation of state (22). Then, for any state U0 ∈ Ω,
the set V1

−(U0) is given by

V1
−(U0) =

{

U ∈ Ω; ρ ≥ R−
0 (u, p), u 6= u0 − Φ0(p), u < 0

}

(62)

where R−
0 is the continuous function defined in the following way:

(i) for u > u0 − Φ0(p), we have

R−
0 (u, p) =

γp

u2
; (63)

(ii) for u < u0 + Φ0(p), ρ = R−
0 (u, p) is the unique solution of

Φ0((1 − µ2)ρu2 − µ2p) +

(

µ2 + (1 + µ2)
p

ρu2

)

u − u0 = 0. (64)

As a simple application of Propositions 6 and 8, we obtain

Theorem 1 We have for all state U0 of Ω

E+(U0) = {U0} ∪ C3
+(U0) ∪ S3

+(U0) ∪ V3
+(U0) (65)

and
E−(U0) = {U0} ∪ C1

−(U0) ∪ S1
−(U0) ∪ V1

−(U0). (66)

Proof. We check for instance (65). Recall that

E+(U0) = {W(0−;U,U0);U ∈ Ω} .

Now the state X = W(0−;U,U0) belongs to E+(U0) if and only if the solution
W(x/t;X,U0) of the Riemann problem for the pair (X,U0) is the constant
state U0 or consists of waves with nonnegative speeds. Hence (65) follows from
Proposition 6.

Let us go back to the sets OL(VD) and OR(VG) defined by (8) and (9)
respectively. Using (10) and (11) together with (45) and (46), we obtain

{

OL(VD) = Θ−1

L (E+

L (ΘL(VD)),
OR(VG) = Θ−1

R (E−
R (ΘR(VG)).

(67)

Using Theorem 1, the V -state coupling conditions (12),(13) can now be detailed
in an explicit way: this will be done in Section 5.

Let us next introduce the sets

Ê+(U0) = {W(0+;U,U0);U ∈ Ω} (68)

and
Ê−(U0) = {W(0−;U0,U);U ∈ Ω} (69)

which are slight modifications of the sets E±(U0) and will be of constant use in
the next section. We first observe that

Ê±(U0) ⊂ E±(U0).

Indeed, if X = W(0+;U,U0) ∈ Ê+(U0),we have

X = W(0−;X,U0) ∈ E+(U0).

On the other hand, if X = W(0−;U0,U) ∈ Ê−(U0), we obtain

X = W(0+;U0,X) ∈ E−(U0).

Then we can state
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Lemma 2 The set E+(U0) \ Ê+(U0) (resp. E−(U0) \ Ê−(U0)) consists of the
states W(0−;U,U0) (resp. W(0+;U0,U)) associated with a stationary discon-
tinuity.

Proof. Let us characterize the states of E+(U0) \ Ê+(U0), the characterization
of E−(U0) \ Ê−(U0) being similar. We first observe that

W(0+;U,U0) = W(0−;U,U0)

unless W(.;U,U0) presents a stationary discontinuity. Thus assume that the
solution W(.;U,U0) has a stationary 1-shock. In order to check that U =
W(0−;U,U0) ∈ E+(U0) does not belong to Ê+(U0), we prove that there does
not exist any state UG such that

W(0+;UG,U0) = U.

If such a state UG could exist, only two situations would possibly occur:
(i) U is connected to U0 on the left by waves with positive speeds which is
excluded since the 1-wave is a stationary shock;
(ii) U is a sonic state of a rarefaction wave which is again impossible since it
contradicts the Lax entropy conditions for the stationary shock.
This proves our assertion.

In the same way, one can check that, if W(.;U,U0) has a stationary 2-
contact discontinuity or a stationary 3-shock, then W(0−;U,U0) does not be-
long to Ê+(U0).

It follows from Lemma 2 that, for obtaining Ê±(U0) from E±(U0), we
have only to exclude the states corresponding to stationary discontinuity waves.
Therefore we introduce the sets Ĉ3

+(U0), Ŝ
3
+(U0), V̂

3
+(U0) and Ĉ1

−(U0), Ŝ
1
−(U0),

V̂1
−(U0) obtained from C3

+(U0), S3
+(U0) ,V3

+(U0) and C1
−(U0), S1

−(U0), V1
−(U0)

respectively by suppressing these states. First, the wave curve C3(U0) contains
a state which can be connected to U0 by a stationary shock only if u0 < −c0.
Hence, we have by (42),(43)

Ĉ3
+(U0) =

{

U ∈ C3
+(U0); u > u3

s(U0) if u0 < −c0

}

. (70)

Next,we have to exclude from S3
+(U0) the stationary contact discontinuities so

that
Ŝ3

+(U0) =
{

U ∈ S3
+(U0); u > 0

}

. (71)

Then we consider the set V3
+(UD). Using Remark 2, we know that the 1-wave

of W(.;UG,UD) has a positive speed if and only if

{

uG ≥ cG,
u1

s(UG) < uD + ΦD(p1
s(UG)).

In other words, we have

V̂3
+(UD) =

{

UG ∈ V3
+(UD); u1

s(UG) < uD + ΦD(p1
s(UG))

}

. (72)

Similarly, we introduce the sets

Ĉ1
−(U0) =

{

U ∈ C1
−(U0); u < u1

s(U0) if u0 > c0

}

, (73)
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Ŝ1
−(U0) =

{

U ∈ S1
−(U0); u < 0

}

(74)

and
V̂1
−(UG) =

{

UD ∈ V1
−(UG); u3

s(UD) > uG − ΦG(p3
s(UD))

}

. (75)

Now, we deduce from Theorem 1

Theorem 2 We have

Ê+(U0) = {U0} ∪ Ĉ3
+(U0) ∪ Ŝ3

+(U0) ∪ V̂3
+(U0). (76)

and
Ê−(U0) = {U0} ∪ Ĉ1

−(U0) ∪ Ŝ1
−(U0) ∪ V̂1

−(U0). (77)

In the case of a polytropic ideal gas, we have the following geometric de-
scriptions of the sets V̂3

+(U0) and V̂1
−(U0).

Proposition 10 Assume the equation of state (22). Then, V̂3
+(U0) is the set

of all states U ∈ Ω which satisfy

u > 0,

{

ρ ≥
γp

u2
, if u < u0 + Φ0(p),

ρ > R+

0 (u, p), if u > u0 + Φ0(p),
(78)

while V̂1
−(U0) is the set of all states U ∈ Ω which satisfy

u < 0,

{

ρ ≥
γp

u2
, if u > u0 − Φ0(p),

ρ > R−
0 (u, p), if u < u0 − Φ0(p).

(79)

4 Solutions of the coupled Riemann problem which

are V-continuous at the interface.

Let us go back to the V-coupled Riemann problem: we want to solve Eqs.
(1),(2) with the V-coupling conditions (12),(13) and the initial condition (14).
We look for self-similar solutions U = U(x, t) which consist of constant states
separated by L-waves 4 with negative speeds, by R-waves with positive speeds
and eventually by a stationary discontinuity at x = 0. In this section, we restrict
ourselves to search for solutions such that V is continuous at the interface x = 0,
i.e., which satisfy the constraint (5).

It will be convenient to set

VG = Θ−1

L (UG), VD = Θ−1

R (UD) (80)

and, for simplicity, we will use the notations

Ê−
L (VG) = Ê−

L (ΘL(VG)), Ê+

R (VD) = Ê+

R (ΘR(VD))

and similar ones for the various sets of the state space introduced above. Then
we look for a self-similar function V = V(x/t) which is continuous at x = 0

4By α-waves, α = L, R, we mean waves corresponding to the equation of state p = pα(ρ, ε).
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and such that V(0) is connected to VG on the right by L-waves while V(0) is
connected to VD on the left by R-waves. In other words,we have

V(0) ∈ Ê−
L (VG) ∩ Ê+

R (VD). (81)

Conversely, given V0 in this subset (81) of ΩV , there exists by construction at
least one solution V = V(x/t) to the V-coupled Riemann problem such that V
is continuous at x = 0 and satisfies V(0) = V0.

A first step in the construction of such a solution consists in characterizing
the set (81). Using (76) and (77), we know that

Ê+

R (VD) = {VD} ∪ Ĉ3
R,+(VD) ∪ Ŝ3

R,+(VD) ∪ V̂3
R,+(VD)

and
Ê−

L (VG) = {VG} ∪ Ĉ1
L,−(VG) ∪ Ŝ1

L,−(VG) ∪ V̂1
L,−(VG).

We observe that

Ŝ3
R,+(VD) ∪ V̂3

R,+(VD) ⊂ {V ∈ ΩV ; u > 0} ,

Ŝ1
L,−(VG) ∪ V̂1

L,−(VG) ⊂ {V ∈ ΩV ; u < 0}

and therefore
(

Ŝ3
R,+(VD) ∪ V̂3

R,+(VD)
)

∩
(

Ŝ1
L,−(VG) ∪ V̂1

L,−(VG)
)

= ∅

Hence, besides the trivial case VG = VD for which the solution V of the coupled
Riemann problem is the constant state VG = VD, we have only to consider the
cases corresponding to

V(0) = VG ∈ Ĉ3
R,+(VD) ∪ Ŝ3

R,+(VD) ∪ V̂3
R,+(VD) (82)

or
V(0) = VD ∈ Ĉ1

L,−(VG) ∪ Ŝ1
L,−(VG) ∪ V̂1

L,−(VG) (83)

and

V(0) ∈ Ĉ1
L,−(VG) ∩

(

Ĉ3
R,+(VD) ∪ Ŝ3

R,+(VD) ∪ V̂3
R,+(VD)

)

6= ∅ (84)

or

V(0) ∈ Ĉ3
R,+(VD) ∩

(

Ĉ1
L,−(VG) ∪ Ŝ1

L,−(VG) ∪ V̂1
L,−(VG)

)

6= ∅. (85)

In the case (82) the solution V of the coupled Riemann problem coincides with
that of the R-Riemann problem ZR(.;VG,VD), i.e., the solution consists of
constant states separated by R-waves with nonnegative speeds5 (see Fig. 4).
Similarly, in the case (83), the solution V of the coupled Riemann problem
coincides with that of the L-Riemann problem ZL(.;VG,VD), i.e., the solution
consists of constant states separated by L-waves with nonpositive speeds.

On the other hand, the cases (84) and (85) correspond to a nontrivial coupled
solution. Let us detail the various situations encountered in the case (84).

(i) The case Ĉ1
L,−(VG) ∩ Ĉ3

R,+(VD) 6= ∅.
The solution of the V-coupled Riemann problem then consists of three constant
states separated by a 1-L-wave with a nonpositive speed and a 3-R-wave with
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Figure 4: The case (82).

0 x
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VG VD

1-L-wave
3-R-wave

Figure 5: The case Ĉ1
L,−(VG) ∩ Ĉ3

R,+(VD) 6= ∅.

a nonnegative speed. Such a solution is necessarily unique since a 1-wave curve
and a 3-wave curve can intersect at only one point (cf Fig. 5).

(ii) The case Ĉ1
L,−(VG) ∩ Ŝ3

R,+(VD) 6= ∅.
Here the solution of the V-coupled Riemann problem consists of four constant
states separated by a 1-L-wave with a nonpositive speed and a 2-R-contact
discontinuity and a 3-R-wave with positive speeds. Since the curves Γ1

L(VG)

and Γ3
R(VD) are transverse at their intersection point, the curve Ĉ1

L,−(VG) is

transverse to the surface Ŝ3
R,+(VD) which implies that such a solution is again

necessarily unique (cf Fig. 6).

0 x

t

VG VD

1-L-wave
2-R-contact discontinuity

3-R-wave

Figure 6: The case Ĉ1
L,−(VG) ∩ Ŝ3

R,+(VD) 6= ∅.

(iii) The case Ĉ1
L,−(VG) ∩ V̂3

R,+(VD) 6= ∅.

5In this section, we have to exclude stationary discontinuity waves. In particular, the 1-R
wave must have here a positive speed if it is a shock!
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A solution of the V-coupled Riemann problem consists here of five constant
states separated by a 1-L-wave with a nonpositive speed and a 1-R-wave with
a nonnegative speed followed by a 2-R-contact discontinuity and a 3-R-wave.
Since the intersection of the curve Ĉ1

L,−(VG) and the volume V̂3
R,+(VD) is in

general a part of the curve we find that such a solution is not unique. Indeed,
we obtain a one-parameter family of solutions of the coupled Riemann problem
(cf Fig. 7).

0 x

t

VG VD

1-L-wave
1-R-wave

2-R-contact discontinuity

3-R-wave

Figure 7: The case Ĉ1
L,−(VG) ∩ V̂3

R,+(VD) 6= ∅.

Note that the case (85) leads to the symmetric situation.
To summarize, we observe that the solution of the coupled Riemann problem

which is V-continuous at the interface is not unique in general. On the one hand,
the cases Ĉ1

L,−(VG)∩ V̂3
R,+(VD) 6= ∅ or Ĉ3

R,+(VD)∩ V̂1
L,−(VG) 6= ∅ lead to one-

parameter families of solutions. On the other hand, for a given pair (VG,VD),
different cases may apply so that we obtain different types of solutions. Such a
situation will be indeed encountered in Section 7.

Nevertheless we can prove a simple and useful result of existence and unique-
ness of subsonic V-continuous solutions. By a subsonic solution, we mean a
solution which satisfies

|u(x, t)| <

{

cL(x, t), if x < 0,

cR(x, t), if x > 0.
(86)

Let us write the Euler system of gas dynamics equations in the nonconservative
form

∂tV + Bα(V)∂xV = 0, α = L, R. (87)

Denoting by rα(V) the eigenvector of Bα(V) associated with the eigenvalue u,
we can now state

Theorem 3 Assume that we may choose rα(V) independently of α. Then,
given a pair (VG,VD) such that

|uG| < cL,G, |uD| < cR,D, (88)

there exists a unique subsonic V-continuous solution of the corresponding V-
coupled Riemann problem.

Proof. Let Z(x, t) be a subsonic V-continuous solution; we observe that Z
cannot have a 1-wave with a nonnegative speed or a 3-wave with a nonpositive
speed. This is obvious if the wave is a rarefaction and again it follows from the
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Lax entropy condition if the wave is a shock. Now, using the above results, we
know that the solution Z is necessarily of one of the forms corresponding to the
cases (i) and (ii) or to the symmetric cases. Hence we have only two classes of
possible solutions. Each of them consists of four constant states separated by a
1-L wave (with a nonpositive speed), a 2-contact discontinuity which can be a
L-wave (solution 1) or a R-wave (solution 2) and a 3-R wave (with a nonnegative
speed); some of these waves may non exist (cf Fig. 8).

Solution 1 Solution 2

00 xx

tt

VGVG VDVD

1-L-wave
1-L-wave

2-L-contact 2-R-contact
discontinuity discontinuity

3-R-wave 3-R-wave

Figure 8: Two possible solutions.

We now prove that, under the hypotheses of the theorem, there exists among
these two classes a unique solution of the coupled Riemann problem. Let

V = Ψi
α(ε;V0)

be a parametrization of the wave curve Ci
α(V0); then a solution of the class 1 is

given by
VD = Ψ3

R(ε1
3; Ψ

2
L(ε1

2; Ψ
1
L(ε1

1;VG)))

while a solution of class 2 is obtained through

VD = Ψ3
R(ε2

3; Ψ
2
R(ε2

2; Ψ
1
L(ε2

1;VG))).

The triple (εk
1 , εk

2 , εk
3) characterizes a solution of the class k, k=1,2. Next we

notice that the wave curve C2
α(V0) may be defined by

dΨ2
α

dε
= rα(Ψ2

α), ε = u − u0.

If we assume that rL = rR, we obtain

Ψ2
L(ε;V0) = Ψ2

R(ε;V0) = Ψ2(ε;V0)

so that we have to look for a solution given by

VD = Ψ3
R(ε3; Ψ

2(ε2; Ψ
1
L(ε1;VG))) (89)

Clearly there exists a unique triple (ε1, ε2, ε3) solution of (89). On the other
hand, it follows from the hypothesis (88) that the 1-L wave has a nonpositive
speed while the 3-R wave has a nonnegative speed so that the constructed
solution is indeed a solution of the V-coupled Riemann problem and is subsonic.
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It remains to check whether we can choose rα(V) independently of α or not.
In the case where V = (ρ, u, p)T , we have

r(V) = (1, 0, 0)T

and Theorem 3 applies independently of the equation of state. However, this
is no longer true if V = (ρ, ρu, ρe)T or V = (ρ, u, h)T . Being more specific, we
asume that each equation of state is of Grüneisen type, i.e.,

p = (γ − 1)ρε + c2
ref (ρ − ρref ).

Then it is a simple matter to check that we have for V = (ρ, ρu, ρe)T

r(V) =

(

1, u,
u2

2
−

c2
ref

γ − 1

)T

and for V = (ρ, u, h)T

r(V) =

(

1, 0,
ρ

h + c2
ref/(γ − 1)

)T

.

In these two latter cases, we find that r(V) depends only on c2
ref/(γ − 1) so

that Theorem 3 applies in particular for polytropic equations of state but not
for general Grüneisen ones.

As a final remark, it is worthwile to notice that, expressed in the variables
U, all the previous solutions present in general an additional stationary discon-
tinuity at x = 0.

5 The V-coupling conditions.

We pass to the construction of discontinuous solutions of the V-coupled Rie-
mann problem. We begin with the stationary solutions. Clearly the function

U(x, t) =

{

UG, if x < 0,

UD, if x > 0,
t > 0

is a stationary solution of the V-coupled Riemann problem if and only if the
pair (VG,VD) defined by (80) satisfies the V-coupling conditions

{

VG ∈ OL(VD),
VD ∈ OR(VG).

(90)

As a first remark, we note that each of the above coupling conditions (90) can
be expressed in a fairly simple form which will be of constant use later on.

Lemma 3 We have VG ∈ OL(VD) if and only if

VG = ZL(0−;VG,VD) (91)

and similarly we have VD ∈ OR(VG) if and only if

VD = ZR(0+;VG,VD). (92)
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Proof. We prove only the first assertion. Recall that

OL(VD) = {ZL(0−;V,VG); V ∈ ΩV } .

Hence the if part of the result is obvious. Conversely, if VG = ZL(0−;V,VD)
for some V ∈ ΩV , the function defined by

{

VG, if x/t < 0,

VG = ZL(x/t;V,VD), if x/t ≥ 0

is clearly the solution ZL(x/t;VG,VD) of the L-Riemann problem associated
with the pair (VG,VD) so that VG = ZL(0−;VG,VD).

Now, using (67) and Theorem 1, the conditions (90) read

VG ∈ {VD} ∪ C3
L,+(VD) ∪ S3

L,+(VD) ∪ V3
L,+(VD),

VD ∈ {VG} ∪ C1
R,−(VG) ∪ S1

R,−(VG) ∪ V1
R,−(VG).

If we exclude the trivial case VG = VD, we have only to consider the following
situations:

VG ∈ C3
L,+(VD), VD ∈ C1

R,−(VG), (93)

VG ∈ C3
L,+(VD), VD ∈ S1

R,−(VG) or VG ∈ S3
L,+(VD), VD ∈ C1

R,−(VG), (94)

VG ∈ S3
L,+(VD), VD ∈ S1

R,−(VG), (95)

VG ∈ C3
L,+(VD), VD ∈ V1

R,−(VG) or VG ∈ V3
L,+(VD), VD ∈ C1

R,−(VG), (96)

VG ∈ S3
L,+(VD), VD ∈ V1

R,−(VG) or VG ∈ V3
L,+(VD), VD ∈ S1

R,−(VG), (97)

VG ∈ V3
L,+(VD), VD ∈ V1

R,−(VG). (98)

Consider first the situation (93). It implies that the wave curves C3
L,+(VD)

and C1
R,−(VG) intersect and the states VG and VD belong to the intersection.

Indeed such wave curves can intersect at one point at most which yields VG =
VD: we find again the trivial case.

In order to study the situations (94)-(98), we need to specify the variables
V. We first consider the case where

V = (ρ, u, p)T . (99)

Let us first analyze the situation (94) where for instance VG ∈ C3
L,+(VD), VD ∈

S1
R,−(VG). Since u and p are components of V, we may project onto the (u, p)-

plane to obtain

ΥG = (uG, pG) ∈
{

Υ ∈ Γ3
L(VD); u ≥ u3

L,min(VD)
}

,

ΥD = (uD, pD) ∈
{

Υ ∈ Γ1
R(VG); u ≤ 0

}

.

Again two such curves Γ3
L(VD) and Γ1

R(VG) of the (u, p)-plane can intersect at
only one point which yields

uG = uD, pG = pD.
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In addition, since VG ∈ C3
L(VD), we find

ρG = ϕL,D(pG) = ϕL,D(pD) = ρD.

and therefore VG = VD. The same conclusion clearly holds when VG ∈
S3

L,+(VD),VD ∈ C1
R,−(VG). Hence (94) reduces to the trivial case.

We pass to the situation (95). By projection onto the (u, p)-space, we find
here

ΥG ∈
{

Υ ∈ Γ3
L(VD); u ≥ 0

}

and
ΥD ∈

{

Υ ∈ Γ1
R(VG); u ≤ 0

}

.

which yields
uG = uD = 0, pG = pD.

Since ρG and ρD are arbitrary, the situation (95) corresponds to a stationary
contact discontinuity.

The situations (96),(97) and (98) are addressed in the next result: using the
characterizations of the sets C3

L,+(VD), S3
L,+(VD), V3

L,+(VD) and C1
R,−(VG),

S1
R,−(VG), V1

R,−(VG), we can easily prove

Theorem 4 Assume the hypothesis (99). The coupling constraints (90) hold if
and only if the pair (VG,VD) satisfies one of the five following conditions:
(i) VG = VD (the trivial case);
(ii) uG = uD = 0, pG = pD (stationary contact discontinuity);
(iii) we have on the one hand (VG ∈ C3

L,+(VD) ∪ S3
L,+(VD))

uG = uD + ΦL,D(pG)

with either
u3

L,min(VD) ≤ uG < 0, ρG = ϕL,D(pG)

or
uG ≥ 0, ρG > 0 arbitrary

and on the other hand (VD ∈ V1
R,−(VG))

uD ≤ −cR,D, u3
R,s(VD) ≥ uG − ΦR,G(p3

R,s(VD));

(iv)(the symmetric situation) we have on the one hand

uD = uG − ΦR,G(pD)

with either (VD ∈ C1
R,−(VG) ∪ S1

R,−(VG))

0 < uD ≤ u1
R,max(VG), ρD = ϕR,G(pD)

or
uD ≤ 0, ρD > 0 arbitrary

and on the other hand (VG ∈ V3
L,+(VD))

uG ≥ cR,G, u1
L,s(VG) ≤ uD + ΦL,D(p1

L,s(VG));

(v) we have (VD ∈ V1
R,−(VG),VG ∈ V3

L,+(VD))

{

uD ≤ −cR,D, u3
R,s(VD) ≥ uG − ΦR,G(p3

R,s(VD)),

uG ≥ cR,G, u1
L,s(VG) ≤ uD + ΦL,D(p1

L,s(VG)).
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Remark 4. In the case of polytropic equations of state

pα(ρ, ε) = (γα − 1)ρε, α = L, R, (100)

we may apply Propositions 7 and 9: using obvious notations, the conditions
VD ∈ C1

R,−(VG) and VG ∈ V3
L,+(VD) take respectively the simple forms

uD < 0, ρD ≥ R−
R,G(uD, pD)

and
uG > 0, ρG ≥ R+

L,D(uG, pG).

Let us now briefly discuss the case of a more general choice of variables V.
If p is not a transmitted variable at the interface, i.e., p is not a variable of V,
the projection onto the (u, p)-plane is no longer suitable. Indeed,consider for
instance the sitution (94) and more specifically the case

VG ∈ C3
L,+(VD), VD ∈ S1

R,−(VG). (101)

By projection onto the (u, p)-plane, we obtain in particular

(uG, pL(VG)) ∈ Γ3
L(VD), (uD, pR(VD)) ∈ Γ1

R(VG). (102)

But now, the curve Γ1
R(VG) is issued from the point (uG, pR(VG)) while Γ3

L(VD)
is issued from (uD, pL(VD)) and the properties (102) do not imply at least in
general pL(VG) = pR(VD). In fact, in order to obtain simple results, we are
led as in [?] to restrict ourselves to the case where the equations of state are of
the form

pα(ρ, ε) = χα(π(V)), α = L, R (103)

for some thermodynamic variable π(V) independent of the pressure laws. We
will assume for simplicity that π(V) is a positive function and, for any α = L, R,
χα is a strictly increasing function from R+ onto itself. As a consequence, we
can invert each mapping π 7→ pα = χα(π) and moreover π and pα decrease or
increase simultaneously.

For the choices V = U = (ρ, ρu, ρe)T and V = (ρ, u, h)T that we have in
mind, this property (103) holds for polytropic equations of state (100). Indeed,
we can take in the first case

π(V) = ρε = ρ(e −
1

2
u2), χα(π) = (γα − 1)π

and in the second case

π(V) = ρh, χα(π) =
γα − 1

γα

π.

Note however that this is not true of equations of state of Grüneisen type.
Now, if (103) holds, we can project the coupling constraints onto the (u, π)-

plane. If we set for any state V0 and any α = L, R

Φ̃α,0(π) = Φα,0(χα(π)), ϕ̃α,0(π) = ϕα,0(χα(π)), (104)

we obtain a parametric representation of the curve C1
α(V0) (resp. C3

α(V0))
{

u = u0 − Φ̃α,0(π) (resp. u = u0 + Φ̃α,0(π)),
ρ = ϕ̃α,0(π), p = χα(π)
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so that the projection Γ̃1
α(V0) (resp. Γ̃3

α(V0)) of C1
α(V0) (resp. C3

α(V0)) is
obtained as

Γ̃1
α(V0) =

{

(u, π); u = u0 − Φ̃α,0(π)
}

(105)

(resp. as

Γ̃3
α(V0) =

{

(u, π); u = u0 + Φ̃α,0(π)
}

)

. (106)

From now on, we assume the hypothesis (103). Consider again the situation
(101). By projection onto the (u, π)-plane, we obtain

(uG, πG) ∈ Γ̃3
L(VD), (uD, πD) ∈ Γ̃1

R(VG). (107)

Clearly the curves Γ̃3
L(VD) and Γ̃1

R(VG) intersect at one point at most so that
(107) yields

uG = uD, πG = πD

and in addition
ρG = ϕ̃L,D(πG) = ϕ̃L,D(πD) = ρD.

Here again, the situation (101) (and also (94)) reduces to the trivial case.
If we turn to the situation (95), we now obtain

{

(uG, πG) ∈ Γ̃3
L(VD), uG ≥ 0,

(uD, πD) ∈ Γ̃1
R(VG), uD ≤ 0,

which yields
uG = uD = 0, πG = πD.

In other words, we get the continuity of the velocity u and of the thermodynamic
variable π at the interface but not the continuity of the pressure p. In fact, we
obtain only

χ−1

L (pG) = χ−1

R (pD)

which gives for polytropic gases

pG

γL − 1
=

pD

γR − 1
if V = (ρ, ρu, ρe)T

and
γL

γL − 1
pG =

γR

γR − 1
pD if V = (ρ, u, h)T .

On the other hand the conditions (iii),(iv) and (v) of Theorem 4 remain
unchanged.

6 Solutions of the coupled Riemann problem which

are V-discontinuous at the interface.

We now look for nonstationary solutions V = V(x/t) of the V-coupled Riemann
problem which are discontinuous at the interface x = 0. For simplicity, we set

V± = V(0±).
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Such solutions are characterized by the following properties (see also Fig. 9 and
Fig. 10):
(i) the pair (V−,V+) satisfies the coupling constraints

{

V− ∈ OL(V+),
V+ ∈ OR(V−);

(108)

(ii) the waves of the solution ZL(.;VG,V−) of the L-Riemann problem associ-
ated with the initial pair (VG,V−) have nonpositive velocities;
(iii) the waves of the solution ZR(.;V+,VD) of the R-Riemann problem asso-
ciated with the initial pair (V+,VD) have nonnegative velocities.

{ { 

0 x

t

V− V+

VG VD

Stationary
discontinuity

L-waves R-waves

Figure 9: Generic form of V-discontinuous solutions of the coupled Riemann
problem.

We want to find all the possible forms of these discontinuous solutions. We
begin with

Lemma 4 We have
{

V− = ZL(0−;VG,V+),
V+ = ZR(0+;V−,VD).

(109)

Proof. Since
OL(V+) = {ZL(0−;V,V+); V ∈ ΩV } ,

the property V− ∈ OL(V+) exactly means that the waves of ZL(.;V−,V+)
have nonnegative speeds, the first assertion (109) follows from the first coupling
constraint (108) and the property (ii). The second assertion (109) follows from
the second coupling constraint (108) and the property (iii).

Let us then give some easy consequences of the previous lemma.

Lemma 5 Assume that ZL(.;V−,V+) possesses a 1-wave. Then:
(i) if λ1

L(VG) = uG − cL,G ≥ 0, we have V− = VG;
(ii) if λ1

L(VG) < 0, ZL(.;VG,V−) has a 1-rarefaction wave and V− is a sonic
state of this 1-wave.

Proof. If λ1
L(VG) ≥ 0, ZL(.;VG,V−) is a constant function (cf. Fig. 10)

and we have V− = VG. On the other hand, if λ1
L(VG) < 0, ZL(.;VG,V−)

possesses a 1-wave whose speed is nonpositive . This 1-wave must fit the 1-wave
of ZL(.;V−,V+) whose speed is nonnegative in order to form the 1-wave of
ZL(.;VG,V+). Hence this 1-wave is a rarefaction and V− is the sonic state of
this rarefaction wave.

Similarly, we can state
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Figure 10: Generic forms of ZL(.;VG,V+) and ZR(.;V−,VD).

Lemma 6 Assume that ZR(.;V−,V+) possesses a 3-wave. Then:
(i) if λ3

R(VD) = uD + cR,D ≤ 0, we have V+ = VD;
(ii) if λ3

R(VD) > 0, ZR(.;V+,VD) has a 3-rarefaction wave and V+ is a sonic
state of this 3-wave.

Let us detail the four possible cases.
6.1. ZL(.;V−,V+) has a 1-wave and ZR(.;V−,V+) has a 3-wave.

We obtain here

V− =

{

VG, if λ1
L(VG) ≥ 0,

the sonic state of C1
L,r(VG), if λ1

L(VG) < 0

and

V+ =

{

VD, if λ3
R(VD) ≤ 0,

the sonic state of C3
R,r(VD), if λ3

R(VD) > 0.

Note that V− and V+ are then uniquely determined. It remains to check that
the pair (V−,V+) satisfies the coupling constraints (108). The first coupling
constraint V− ∈ OL(V+) holds if and only if the 1-wave of ZL(.;V−,V+) has
a nonnegative speed, i.e., by Proposition 5, if and only if

u− ≥ cL(p−, s−)

and
u1

L,s(V−) ≤ u+ + ΦL,V+
(p1

L,s(V−)). (110)

Since by Lemma 4

u− ≥ cL(p−, s−) =

{

uG − cL,G ≥ 0, if V− = VG,

0, if V− is the sonic state of the 1-wave,

we have only to check the condition (110).
Similarly, we obtain that the second coupling constraint V+ ∈ OR(V−)

holds if and only if the condition

u3
R,s(V+) ≥ u− − ΦR,V−

(p3
R,s(V+)). (111)

More precisely, the corresponding possible solutions are of the following
forms.
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6.1.a. When λ1
L(VG) ≥ 0, λ3

R(VD) ≤ 0, the solution is stationary: the
states VG and VD are separated by a stationary discontinuity (cf. Section 5).

6.1.b. Otherwise, the solution consists of one composite wave which sepa-
rates the states VG and VD: this wave may have three admissible forms (see
Fig. 11):

(i) for λ1
L(VG) < 0, λ3

R(VD) ≤ 0, the wave is composed of a 1-L rarefaction
followed by a stationary discontinuity in which case V− is the sonic state of the
1-L rarefaction and V+ = VD;

(ii) for λ1
L(VG) ≥ 0, λ3

R(VD) > 0, the wave is composed of a stationary
discontinuity followed by a 3-R rarefaction: here V− = VG and V+ is the sonic
state of the 3-R rarefaction;

(iii) for λ1
L(VG) < 0, λ3

R(VD) > 0, the wave is composed of a 1-L rarefaction
followed by a stationary discontinuity and a 3-rarefaction so that V− (resp. V+)
is the sonic state of the 1-L rarefaction (resp. the 3-R rarefaction).

000 xxx

t t t

(i) (ii) (iii)

V− V− V+V+

VG VD

V+ = VD V− = VG

Figure 11: Case 6.1.b.

6.2. ZL(.;V−,V+) has a 1-wave and ZR(.;V−,V+) has no 3-wave.
Then we have

V− =

{

VG, if λ1
L(VG) ≥ 0,

the sonic state of C1
L,r(VG), if λ1

L(VG) < 0

and
V+ = ZR(0+;V−,VD)

so that the pair (V−,V+) is again uniquely determined. Since the latter condi-
tion implies V+ ∈ OR(V−), we obtain here that the coupling constraints (108)
resume to V− ∈ OL(V+) or equivalently to the condition (110). On the other
hand, we observe that ZR(0+;V−,VD) can be arbitrary.

We find solutions of the following forms.
6.2.a. For λ1

L(VG) ≥ 0, the states VG and VD are separated by a stationary
discontinuity and at most three R-waves namely the waves of ZR(.;VG,VD)
whose speeds are nonnegative. Note that the stationary discontinuity may form
a composite wave with either a stationary discontinuity wave of ZR(.;VG,VD)
or a rarefaction wave of ZR(.;VG,VD) which has a sonic state (see Fig. 12).

6.2.b. For λ1
L(VG) < 0, the states VG and VD are separated by a composite

wave formed by a 1-L rarefaction and a stationary discontinuity followed by at
most three R-waves (see Fig. 13).

33



0 x

t

VG

VD

stationary
discontinuity

1-R-wave

2-R-contact
discontinuity

3-R-wave

Figure 12: Case 6.2.a.
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Figure 13: Case 6.2.b.

Hence, in this case 6.2, the solution consists of at most five states (including
VG and VD) separated by four waves, the first one being a stationary discon-
tinuity or a composite wave whose right edge is stationary.

6.3. ZL(.;V−,V+) has no 1-wave and ZR(.;V−,V+) has a 3-wave.
This is the symmetric situation of the previous one. Here we have

V+ =

{

VD, if λ3
R(VD) ≤ 0,

the sonic state of C3
R,r(VD), if λ3

R(VD) > 0.

and
V− = ZL(0−;VG,V+)

The coupling constraints (108) resume in this case to V+ ∈ OR(V−) or equiv-
alently to the condition(111). We obtain possible solutions of the forms

6.3.a. For λ3
R(VD) ≤ 0, the states VG and VD are separated by at most

three L-waves, namely the waves of ZL(.;VG,VD) whose speeds are nonpositive,
followed by a stationary discontinuity.

6.3.b. For λ3
R(VD) > 0, the states VG and VD are separated by at most

three L-waves followed by a composite wave formed by a stationary discontinuity
and a 3-R rarefaction wave.

6.4. ZL(.;V−,V+) has no 1-wave and ZR(.;V−,V+) has no 3-wave.
We find here

Υ− ∈ Γ3
L(V+), Υ+ ∈ Γ1

R(V−).

Now, as in Section 5, we need to specify the variables V.
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If (99) holds, we use again the fact that the curves Γ3
L(V+) and Γ1

R(V−)
intersect at one point at most to obtain

u− = u+, p− = p+.

Hence ZL(.;V−,V+) consists in a 2-L contact discontinuity whose speed u− =
u+ is nonnegative while ZR(.;V−,V+) consists in a 2-R contact discontinuity
whose speed u− = u+ is nonpositive. Then we have u− = u+ = 0 and in
addition V− ∈ C1

L(VG) and V+ ∈ C3
R(VD). On the other hand, since V− =

ZL(0−;V−,V+) (resp. V+ = ZR(0+;V−,V+)), we get V− ∈ OL(V+) (resp.
V+ ∈ OR(V−)) and the coupling constraints are automatically satisfied.

We turn to a more general choice of the variables V. Again we assume the
hypothesis (103). Since ZL(.;V−,V+) has no 1-wave and ZR(.;V−,V+) has
no 3-wave, we have respectively

u− = u+ + ΦL,V+
(pL(V−)) = u+ + ΦL,V+

(χL(π(V−)))

and
u+ = u− − ΦR,V−

(pR(V+)) = u− − ΦR,V−
(χR(π(V+))).

In other words, setting π± = π(V±), we get

u− = u+ + Φ̃L,V+
(π−)

and
u+ = u− − Φ̃R,V−

(π+).

Hence, by projection onto the (u, π)-plane, we obtain here

(u−, π−) ∈ Γ̃3
L(V+), (u+, π+) ∈ Γ̃1

R(V−)

which yields
u− = u+, π− = π+.

and therefore

pα(V−) = χα(π−) = χα(π+) = pα(V+), α = L, R.

Again, we find that, for α = L, R, Zα(.;V−,V+) consists of a 2-α-contact
discontinuity whose velocity is u− = u+. Thus we have u− = u+ = 0 so that
V− = ZL(0−;V−,V+), V+ = ZR(0+;V−,V+) and the coupling constraints
(108) still hold.

If we suppose that either (99) or (103) holds, the solution of the coupled
Riemann problem consists in general of the four states VG, V−, V+ and VD

separated by a 1-L wave, a stationary contact discontinuity and a 3-R wave
(the 1-L wave and the 3-R wave may non exist). Such a solution, see Fig. 14,
is uniquely determined. Indeed, assuming for instance the hypothesis (99), we
obtain

0 = u− = uG − ΦL,G(p−),

0 = u+ = uD + ΦR,D(p+)

so that p = p− = p+ satisfies

ΦL,G(p) = uG, ΦR,D(p) = uD
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which uniquely defines the pressure p (under the compatibility condition

Φ−1

L,G(uG) = Φ−1

R,D(−uD)).

On the other hand, we have

ρ− = ϕL,G(p), ρ+ = ϕR,D(p).

0 x

t

VG VD

V− V+

stationary
discontinuity

1-L-wave
3-R-wave

Figure 14: The case with four states.

As a consequence of the above description of all possible solutions of the
coupled Riemann problem which are V-discontinuous at x = 0, we note that
there exists a fairly limited number of types of such solutions. Moreover, we
can state

Theorem 5 The V-coupled Riemann problem has at most one solution which
is V-discontinuous at the interface x = 0.

7 An example of solution of the V-coupled Rie-

mann problem.

It seems hopeless or at least fairly complicated to obtain explicit solutions to
the V-coupled Riemann problem for any pair (UG,UD) ∈ Ω2. Nevertheless,
in order to illustrate the results of the previous sections, we want to construct
explicitly these solutions in the special case

uG = uD = u0 (112)

This corresponds to the propagation of a matter wave through the interface.
This case can also serve as a benchmark for testing the numerical methods of
coupling.

Just for specificity we assume

pG ≥ pD, (113)

the case pG ≤ pD being analyzed analogously, and we suppose that the hy-
pothesis (99) holds, i.e., V = (ρ, u, p)T . We consider the curves Γ1

L(VG) and
Γ3

R(VD) of the (u, p)-plane which intersect at point Υ∗ = (u∗, p∗). If pG = pD,
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we note that Υ∗ = ΥG = ΥD and the solution of the coupled-Riemann problem
Z(.;VG,VD) is a contact discontinuity:

Z(x/t;VG,VD) =

{

VG, if x/t < u0,

VD, if x/t > u0.

This is obvious if u0 6= 0 and it follows from Theorem 4 (conditions (ii)) if
u0 = 0.

From now on, we assume pG > pD. We introduce a self-similar function V =
V(x/t) which can be viewed as a first candidate for the solution Z(x/t;VG,VD)
of the V-coupled Riemann problem. Setting

ρ∗G = ϕL,G(p∗), ρ∗D = ϕR,D(p∗), V∗
G = (ρ∗G, u∗, p∗)T , V∗

D = (ρ∗D, u∗, p∗)T ,

this function consists of the constant states VG, V∗
G, V∗

D and VD separated by a
1-L rarefaction wave whose extreme speeds are σ1 < σ2, a contact discontinuity
with speed u∗ and a 3-R shock wave with speed σ3 (see Fig. 15).
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Figure 15: The initial example.

Note that this function is indeed solution of the V-coupled Riemann problem
when σ2 ≤ 0 < σ3. For σ2 > 0 or σ3 < 06, this solution is no longer admissible.
We are thus led to distinguish several cases depending on the signs of σ1, σ2

and σ3.
7.1. The case σ1 ≥ 0.

If σ1 = uG−cL,G = u0−cL,G ≥ 0, we expect the solution of the coupled Riemann
problem to coincide with VG in the quadrant (x > 0, t > 0). We thus consider
the solution Ṽ = ZR(.;VG,VD) of the R-Riemann problem. We denote by
Υ̃∗ = (ũ∗, p̃∗) the intersection point of the curves Γ1

R(VG) and Γ3
R(VD). Clearly

we have
u∗ > u0 > 0, ũ∗ > u0 > 0.

This function Ṽ again consists of constant states VG, Ṽ
∗

G, Ṽ
∗

D and VD sep-
arated by a 1-R rarefaction wave whose extreme speeds are σ̃1 < σ̃2, a 2-R
contact discontinuity with velocity ũ∗ and a 3-R shock wave with speed σ̃3 (see
Fig. 16).

7.1.1. The case σ1 ≥ 0, σ̃1 ≥ 0.
A solution of the coupled Riemann problem is that of the R-Riemann problem,
i.e.,

Z(.;VG,VD) = ZR(.;VG,VD)

6When σ3 = 0, we need to check whether the pair (V∗

D
, VD) satisfies the coupling con-

straints or not.
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Figure 16: The case 7.1: σ1 ≥ 0.

Indeed, this corresponds to the case VG ∈ V3
R(VD).

7.1.2. The case σ1 ≥ 0, σ̃1 < 0, σ̃2 ≥ 0.
We postulate here that a solution of the coupled Riemann problem is given by

Z(x/t;VG,VD) =

{

VG, if x/t < 0,

Ṽ(x/t) = ZR(x/t;VG,VD), if x/t > 0.
(114)

It consists of the four states VG, Ṽ
∗

G, Ṽ
∗

D and VD separated by a composite
wave formed of a stationary discontinuity and a 1-R rarefaction, a 2-R contact
discontinuity and a 3-R shock. This function is discontinuous at x = 0 with

Z(0−) = VG, Z(0+) = Ṽ(0).

Note that Ṽ(0) is the sonic state of the 1-R rarefaction wave. This is in fact a
solution of the form considered in Paragraph 6.2.a (see Fig. 17).
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Ṽ(0)
Γ1

L(VG)

Γ1
R(VG)

Γ3
R(VD)

Figure 17:

It remains to check that VG and Ṽ(0) satisfy the coupling constraints. On
the one hand, we observe (cf. Fig. 17) that the solution of the L-Riemann
problem ZL(.;VG, Ṽ(0)) contains necessarily a 1- wave. On the other hand,
Ṽ(0) is connected to VG by a 1-R wave so that ZR(.;VG, Ṽ(0)) has no 3-wave.
In addition, we have by construction Ṽ(0) = ZR(0;VG,VD). Hence, by the
results of Paragraph 6.2, we have only to verify the constraint VG ∈ OL(Ṽ(0)).
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Since the conditions σ̃1 < 0 ≤ σ1 mean

u0 − cR,G < 0 ≤ u0 − cL,G,

we obtain (cf. again Fig. 17) that Υ̃(0) is located below ΥG on the curve Γ1
R(VG)

and therefore that the 1-wave of ZL(.;VG, Ṽ(0)) is a rarefaction whose speed
is nonnegative which yields

ZL(0;VG, Ṽ(0)) = VG

and the desired property follows.
7.1.3. The case σ1 ≥ 0, σ̃2 < 0.

Again we postulate that the solution is given by (114), i.e., it consists here of the

four states VG, Ṽ
∗

G, Ṽ
∗

D and VD separated by a stationary discontinuity and
a 1-R rarefaction, a 2-R contact discontinuity and a 3-R shock. This function
is still discontinuous at x = 0:

Z(0−) = VG, Z(0+) = Ṽ
∗

G.
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In order to check that this discontinuity satisfies the coupling constraints, we
argue exactly as in Paragraph 7.1.2. We observe (cf. Fig. 18) that ZL(.;VG, Ṽ

∗

G)

contains necessarily a 1-wave and Ṽ
∗

G is connected to VG by a 1-R wave. Since

Ṽ
∗

G = ZR(0+;VG,VD), we have only to check VG ∈ OL(Ṽ
∗

G). This follows at
once from

ZL(0−;VG, Ṽ
∗

G) = VG.

7.2. The case σ1 < 0, σ2 ≥ 0.
From now on we suppose σ1 = u0 − cL,G < 0 and in this subsection we consider
the case

σ2 = u∗ − cL(p∗, sG) ≥ 0.

Then we expect the solution Z(.;VG,VD) of the coupled Riemann problem to
coincide with the function V in the quadrant (x < 0, t > 0). Note that V(0) is
the sonic state of a 1-L rarefaction, i.e.,

u(0) = cL(p∗, sG).
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Thus we introduce the function V̌ = ZR(.;V(0),VD), i.e., the solution of
the Riemann problem associated with the pair (V(0),VD). We denote by
Υ̌∗ = (ǔ∗, p̌∗) the intersection point of the curves Γ1

R(V(0)) and Γ3
R(VD). This

function V̌ consists of constant states V(0), V̌(0)∗, V̌
∗

D and VD separated by a
1-R rarefaction wave with end speeds σ̌1 < σ̌2, a 2-R contact discontinuity with
speed ǔ∗ and a 3-R shock wave with speed σ̌3. Then we observe that

σ̌1 = u(0) − cR(p(0), sG) = cL(p(0), sG) − cR(p(0), sG).

Hence the sign of σ̌1 depends on the sound speeds cL and cR. Again we distin-
guish several subcases according to the signs of σ̌1 and σ̌2.

7.2.1. The case σ1 < 0, σ2 ≥ 0, σ̌1 > 0.
This subcase corresponds to

cL(p(0), sG) > cR(p(0), sG).

A possible solution of the coupled Riemann problem then consists of the five
constant states VG, V(0), V̌(0)∗, V̌

∗

D and VD separated by a 1-L rarefaction
wave whose end speeds are σ1 and 0, a 1-R rarefaction wave whose end velocities
are σ̌1 and σ̌2, a 2-R contact discontinuity with speed ǔ∗ and a 3-R shock wave
with speed σ̌3. Such a solution is V-continuous at x = 0 and corresponds to
the case (iii) of Section 4. Indeed, we have clearly V(0) ∈ Ĉ1

L,−(VG) while

the condition σ̌1 = u0 − cR(p(0), sG) > 0 implies V(0) ∈ V̂3
R,+(VD) so that

V(0) ∈ Ĉ1
L,−(VG) ∩ V̂3

R,+(VD) as expected.
However, we know from the general study of Section 4 that in such a case

there exists a one-parameter family of solutions. In fact, this family can be
constructed in the following way. Choose any state V(ξ), σ1 < ξ < 0, of the
1-L rarefaction wave such that in addition

u(ξ) − cR(p(ξ), sG) > 0.

This latter condition holds at least for |ξ| small enough. Then we have V(ξ) ∈
Ĉ1

L,−(VG) ∩ V̂3
R,+(VD) and the function

Z(x/t;VG,VD) =











V(x/t), if x/t ≤ ξ,

V(ξ), if ξ ≤ x/t ≤ 0,

ZR(x/t;V(ξ),VD), if x/t ≥ 0

is clearly a solution of the coupled Riemann problem. Moreover, for

u0 − cR,G > 0,

we can even take ξ = σ1 so that Z(x/t;VG,VD) = ZR(x/t;VG,VD). This
corresponds to the case VG ∈ V̂3

R,+(VD) (cf. (82)).
7.2.2. The case σ1 < 0, σ2 ≥ 0, σ̌1 < 0, σ̌2 ≥ 0.

Let us now suppose σ̌1 < 0 ≤ σ̌2, i.e.,

cL(p(0), sG) < cR(p(0), sG), ǔ∗ ≥ cR(p̌(0)∗, sG).

We postulate here that a solution Z(.;VG,VD) of the coupled Riemann problem

consists of the four states VG, V̌(0)∗, V̌
∗

D and VD separated by a composite
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wave formed of a 1-L rarefaction wave with end speeds σ1 and 0, a stationary
discontinuity and a 1-R rarefaction wave with end speeds 0 and σ̌2, by a 2-R
contact discontinuity with speed ǔ∗ and a 3-R shock wave with speed σ̌3. This
function is discontinuous at x = 0:

Z(0−) = V(0), Z(0+) = V̌(0).

Again we have to check the coupling constraints. On the one hand, V̌(0) is
connected to V(0) by a 1-R rarefaction wave (cf. Fig. 20) and we have by
construction

V̌(0) = ZR(0+;V(0),VD)

which proves that V̌(0) ∈ OR(V(0)) On the other hand, in order to check that
V(0) ∈ OL(V̌(0)) or equivalently by Lemma 3 that

V(0) = ZL(0−;V(0), V̌(0)),

we remark that ZL(.;V(0), V̌(0)) possesses a 1-wave which is a rarefaction whose
speed is nonnegative (cf. Fig. 20). Hence the discontinuity is admissible. Again
this is the situation encountered in the case 6.2 of Section 6: ZL(.;V(0), V̌(0))
has a 1-wave while ZR(.;V(0), V̌(0)) has no 3-wave.
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7.2.3. The case σ1 < 0, σ2 ≥ 0, σ̌2 < 0.
Let us now assume σ̌2 < 0, i.e.,

ǔ∗ < cR(p̌∗, sG).
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We first notice that ǔ∗ > 0. Indeed, since σ2 is ≥ 0, the point Υ∗ is located below
Υ(0) on the curve Γ1

L(VG) which means that Υ(0) is located above Γ3
R(VD).

Hence the point Υ̌∗ is located below Υ(0) on the curve Γ1
R(V(0)) so that (cf.

Fig. 21)
ǔ∗ > u(0) = cL(p(0), sG) > 0.

We thus postulate that a solution Z(.;VG,VD) of the coupled Riemann problem

consists of the four states VG, V̌(0)∗, V̌
∗

D and VD separated by a composite
wave formed of a 1-L rarefaction wave with end speeds σ1 and 0 and of a
stationary discontinuity, by a 2-R contact discontinuity with speed ǔ∗ and a
3-R shock wave with speed σ̌3. Again the proposed solution is discontinuous at
x = 0 with

Z(0−) = V(0), Z(0+) = V̌(0)∗

and we have to check the coupling constraints. This is done along the same
lines as in the previous case. The state V̌(0)∗ is connected to V(0) by a 1-R
rarefaction wave and we have by construction

V̌(0)∗ = ZR(0+;V(0),VD)

so that V̌(0)∗ ∈ OR(V(0)). In addition ZL(.;V(0), V̌(0)∗) has a 1-rarefaction
wave whose speed is nonnegative which yields

V(0) = ZL(0;V(0), V̌(0)∗)

or equivalently V(0) ∈ OL(V̌(0)∗). The discontinuity is therefore admissible.
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7.3. The case σ2 < 0, σ3 > 0.
A solution of the V-coupled Riemann problem is clearly the function V intro-
duced at the beginning of this section.

7.4. The case σ3 ≤ 0.
Let us finally assume σ3 ≤ 0. Then it seems fairly natural to look for a solution
of the coupled Riemann problem which coincides with VD in the quadrant
(x > 0, t > 0). We thus introduce the solution V̄ = ZL(.;VG,VD) of the L-
Riemann problem. We denote by Ῡ∗ = (ū∗, p̄∗) the intersection point of the
curves Γ1

L(VG) and Γ3
L(VD). Again the function V̄ consists of four constant

states VG, V̄
∗
G, V̄

∗
D and VD separated by a 1-L rarefaction wave with end
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speeds σ̄1 and σ̄2, by a 2-L contact discontinuity with speed ū∗ and a 3-L shock
wave with speed σ̄3. Note that

σ̄1 = σ1 = uG − cL,G < 0.
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Again we have to distinguish several cases according to the sign of σ̄3.
7.4.1. The case σ3 ≤ 0, σ̄3 ≤ 0.

When σ̄3 is nonpositive, an admissible solution of the V-coupled Riemann prob-
lem is obviously the solution of the L-Riemann problem ZL(.;VG,VD).

7.4.2. The case σ3 ≤ 0, σ̄3 > 0.
This is by far the most complex case. Let us first derive some consequences of
the double inequality σ3 ≤ 0 < σ̄3. We begin by characterizing the states V∗

D

and V̄
∗
D. Recall that the intersection point Υ∗ = (u∗, p∗) of the curves Γ1

L(VG)
and Γ3

R(VD) is given by

u∗ = u0 − ΦL,G(p∗) = u0 + ΦR,D(p∗).

Since VD and V∗
D are connected by a shock, we have p∗ ≥ pD which yields

u∗ = u0 +

√

(p∗ − pD)

(

1

ρD

− hR,D(p∗)

)

(115)

and

ρ∗D =
1

hR,D(p∗)
> ρD. (116)

In a similar manner, the intersection point Ῡ∗ = (ū∗, p̄∗) of the curves Γ1
L(VG)

and Γ3
L(VD) is given by

u∗ = u0 − ΦL,G(p∗) = u0 + ΦL,D(p∗).

We have p̄∗ > pD and

ū∗ = u0 +

√

(p̄∗ − pD)

(

1

ρD

− hL,D(p̄∗)

)

, (117)

ρ̄∗D =
1

hL,D(p̄∗)
> ρD. (118)
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Next, since

σ3 =
ρDuD − ρ∗Du∗

D

ρD − ρ∗D
=

ρDu0 − ρ∗Du∗

ρD − ρ∗D
,

the inequality σ3 ≤ 0 reads

u∗ ≤
ρD

ρ∗D
u0

and by (115),(116)

u0 +

√

(p∗ − pD)

(

1

ρD

− hR,D(p∗)

)

≤ ρDhR,D(p∗)u0

or equivalently

−(1 − ρDhR,D(p∗))u0 ≥

√

1

ρD

(p∗ − pD)(1 − ρDhR,D(p∗)).

As u0 is < 0, we obtain

σ3 ≤ 0 ⇔
p∗ − pD

1 − ρDhR,D(p∗)
≤ ρDu2

0.

On the other hand, since

σ̄3 =
ρDuD − ρ̄∗Dū∗

D

ρD − ρ̄∗D
=

ρDu0 − ρ̄∗Dū∗

ρD − ρ̄∗D
,

the inequality σ̄3 > 0 gives

ū∗ >
ρD

ρ̄∗D
u0

and by (117), (118)

u0 +

√

(p̄∗ − pD)

(

1

ρD

− hL,D(p̄∗)

)

> ρDhL,D(p̄∗)u0

so that

σ̄3 > 0 ⇔
p̄∗ − pD

1 − ρDhL,D(p̄∗)
> ρDu2

0.

Hence the double inequality σ3 ≤ 0 < σ̄3 implies

p∗ − pD

1 − ρDhR,D(p∗)
<

p̄∗ − pD

1 − ρDhL,D(p̄∗)
. (119)

Now, for the sake of simplicity, it is convenient to suppose that the equations
of state p = pα(ρ, ε), α = L, R, satisfy the following hypothesis:

H.3. For any state V0, we have either
{

ΦL,0(p) > ΦR,0(p), if p > p0,

ΦL,0(p) < ΦR,0(p), if p < p0

(120)

or
{

ΦL,0(p) < ΦR,0(p), if p > p0,

ΦL,0(p) > ΦR,0(p), if p < p0

(121)
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In other words, for any i ∈ {1, 3}, the curves Γi
L(V0) and Γi

R(V0) intersect
only at the point Υ0 = (u0, p0). In fact, it is an easy matter to check that this
hypothesis is indeed satisfied for polytropic equations of state (100): (120) holds
for γR > γL while (121) holds for γL > γR.

Using hypothesis H.3, we now check that the inequality (119) implies that
the curve Γ3

L(VD) is located above Γ3
R(VD) for p > pD (or u > u0). Let us

assume on the contrary that Γ3
R(VD) is located above Γ3

L(VD) for p > pD, i.e.,

ΦL,D(p) =

√

(p − pD)

(

1

ρD

− hL,D(p)

)

> ΦR,D(p) =

√

(p − pD)

(

1

ρD

− hR,D(p)

)

or equivalently
hR,D(p) > hL,D(p), p > pD. (122)

Then we have p̄∗ < p∗ (cf. Fig. 22)
On the other hand, using (122), we obtain

p − pD

1 − ρDhL,D(p)
<

p − pD

1 − ρDhR,D(p)
, p > pD.

Since the function hL,D is strictly convex, the function p 7→
p − pD

1 − ρDhL,D(p)
is

monotonically increasing so that

p̄∗ − pD

1 − ρDhL,D(p̄∗)
<

p∗ − pD

1 − ρDhL,D(p∗)
<

p∗ − pD

1 − ρDhR,D(p∗)

which contradicts the inequality (119). We have thus proved our assertion from
which it follows that

ū∗ < u∗ < σ3 ≤ 0

(cf. Fig. 23).

0 u

p

u∗ū∗u0

ΥG

ΥD

Υ∗

Ῡ∗

Γ1
L(VG)

Γ3
R(VD)

Γ3
L(VD)

Figure 23:

Therefore it appears fairly natural to look for a solution Z = Z(.;VG,VD) of
the coupled Riemann problem that consists of the four constant states VG, V̄

∗
G,
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V̄
∗
D and VD separated by a 1-L rarefaction wave with end speeds σ̄1 and σ̄2, by

a 2-L contact discontinuity with speed ū∗ < 0 and by a stationary discontinuity.
This function is discontinuous at x = 0:

Z(0−) = V̄
∗
D, Z(0+) = VD.

Again we need to check the coupling constraints. We first observe that V̄
∗
D is

connected to VD by a 3-L shock wave with speed σ̄3 > 0 which yields

V̄
∗
D = ZL(0−; V̄

∗
D,VD) ⇔ V̄

∗
D ∈ OL(VD).

It remains only to check the property

VD = ZR(0+; V̄
∗
D,VD) ⇔ VD ∈ OR(V̄

∗
D). (123)

We notice (cf. Fig. 24) that ZR(.; V̄
∗
D,VD) consists of a 1-rarefaction wave, a

2-contact discontinuity and a 3-shock wave. Then (123) holds if and only if the
speed of this 3-shock is nonpositive and, by the results of Section 3, if and only
if the following conditions are satisfied:

u0 ≤ −cR,D,

u3
s ≥ ū∗ − ΦR,V̄

∗

D
(p3

s) (124)

where p3
s < pD is the solution of the equation

ρDu0hR,D(p) = u0 + ΦR,D(p)

while u3
s is given by

u3
s = u0 + ΦR,D(p3

s).

By the Lax entropy condition, we have

u0 + cR,D < σ3 < 0

so that we need only to check the condition (124). Setting

Υ3
s = (u3

s, p
3
s) ∈ Γ3

R(VD),

it amounts to check that the intersection point ¯̄Υ∗ of the curves Γ1
R(V̄

∗
D) and

Γ3
R(VD) is located below Υ3

s on Γ3
R(VD). Now, using the assumption H.3, we

have already seen that ΦL,D(p) < ΦR,D(p) for p > pD which means that (121)
indeed holds. Hence we obtain for p < p̄∗

ū∗ − ΦR,V̄
∗

D
(p) > ū∗ − ΦL,V̄

∗

D
(p) = u0 − ΦL,G(p)

or equivalently that Γ1
R(V̄

∗
D) is above Γ1

L(VG) for p < p̄∗. The point ¯̄Υ∗ is
therefore located above Υ∗ on the curve Γ3

R(VD). On the other hand, since σ3

is < 0, the point Υ∗ is below Υ3
s on Γ3

R(VD). Then, provided that the equations
of state are close enough so that the curves Γ1

L(VG) and Γ1
R(V̄

∗
D) are close

enough, ¯̄Υ∗ is located between the points Υ∗ and Υ3
s on the curve Γ3

R(VD) and
the proposed function Z is indeed a solution of the coupled Riemann problem.
Note that this solution corresponds to the case 6.3.a of Section 6.

However, if ¯̄Υ∗ is located above Υ3
s on Γ3

R(VD), the discontinuity at x = 0
is no longer admissible: the construction of a solution of the coupled Riemann
problem still remains an open question.
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Figure 24:

8 Conclusion.

We have studied in this paper a fairly general method of coupling two Euler
systems provided with different equations of state. We have been able to char-
acterize the coupling conditions and to detail all the possible solutions of the
coupled Riemann problem (CRP). As an application, we have solved this CRP
when uG = uD except in one single case. However several problems still remain
open concerning the existence and uniqueness of the solution of the CPR. On
the one hand, we conjecture that the CPR possesses at least one global solu-
tion. A first step in this direction would consist in obtaining this existence for
sufficiently close initial data VG and VD. Recall that such an existence re-
sult of V-continuous subsonic solutions has been obtain in Theorem 3. On the
other hand, concerning uniqueness, we have observed that there exists at most
a V-discontinuous solution but that this is not true of V-continuous solutions.
Indeed, in one case, we have obtained the existence of one-parameter continuum
of solutions (cf. the case (iii) of section 4). Hence two open natural questions
arise :
(i) Is it possible for a CRP to have a V-discontinuous solution together with a
V-continuous one ?
(ii) When the CRP has several solutions, does there exist a criterion for selecting
the natural one in some appropriate sense ?

In fact, this paper constitutes only one step in the analysis of the coupling of
more general nonlinear hyperbolic systems. In particular, it remains to extend
our results to complex coupling problems encountered in Thermohydraulics. A
natural and useful extension would be the analysis of the coupling of homoge-
neous equilibrium and homogeneous relaxation models as those considered in
[ACC+06a] where phase-transitions liquid-vapor should be taken into account
(see [Cae06] for preliminary results).
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