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Abstract

This work is devoted to the coupling of two fluid models, susht@o Euler systems in Lagrangian
coordinates, at a fixed interface. We define coupling camstiwhich can be expressed in terms of
continuity of some well chosen variables and then solve tpled Riemann problem. In the present
setting where the interface is characteristic, a particcha@ice of dependent variables which are trans-
mitted ensures the overall conservativity.
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1 Introduction

The problem of coupling two different fluid models at a fixeteiface stems from the need of coupling
thermal-hydraulic models within the frame of a new generatf two-phase flow codes for nuclear
reactors. These codes are generally built upon distincetspdach being devoted to the particular flow
conditions taking place in a given reactor component. Timikition of the whole device thus requires
transient exchange of informations at the interface of tdja@nt components. Let us underline that
the coupling problem actually arises in various other ptaisiettings (see [13] or instance).

Inideal cases, physical arguments, such as the continistynoe primitive quantity, might help defining
the transmission or coupling conditions. Even in this cas#) theoretical considerations and numer-
ical results obtained on some significant tests when cogiitinler systems (see [3]) will prove that
not any coupling based on continuity arguments is feasiiiies also gives rise to interesting questions
(nonunigueness of self-similar solutions) and has led as#dyze the problem in an abstract frame.
The theoretical study of these coupling conditions wasaitgt in the scalar case [12], then for lin-
ear systems and the usual Lagrangian system in [13]. In thtepfiper new coupling conditions have



been formalized which result by expressing that two boungatue problems should be well-posed,
and resume to impose as far as possible the continuity ofdlutien at the interface without impos-
ing the overall conservativity of the coupled model. Fordnygolic systems of conservation laws, the
well-posedness of initial boundary value problems is diffiand the boundary conditions have been
expressed in terms of Riemann problems in [13]. This appréawell suited for the numerical meth-
ods we are interested in implementing and linked to the #teal results concerning the convergence
of the “two-flux method” in the scalar case (see [12], and H63).

In fact this formalism can be well understood in the paricidase of the Euler system in Lagrangian
coordinates since the geometry of characteristics at teefate is fixed and no resonance phenomena
an occur. This enables us to express the coupling conditiotesms of continuity of some variables
and then to solve the coupled Riemann problem in a unique wadkis work we justify the choice of
dependent variables which are transmitted.

This may seem at first glance a rather theoretical exempléh®wone hand, it is indeed a very particular
and very interesting case of coupling to analyze becaudeeddfiecial property thatis an eigenvalue.
On the other hand, the analysis will justify the use of ‘Lagya+projection’ schemes when coupling
systems in Eulerian coordinates at a fixed interface (cf, J@hich means that it provides an useful tool
to couple two Euler systems at a fixed interface (which in tiage is not characteristic). One may then
ask why couple two fluid models with different equations atstat a fixed interface since it may seem
an unphysical example? The answer is that is a simplified hoddehat we get when coupling more
complex models associated to different systems of pde’swhlmsure laws are not strictly compatible,
as will happen for instance in the context of thermal-hyticannodels.The main lines of the present
work were announced in [5].

The outline of the paper is as follows. In Section 2, we inticlthe framework of interface coupling
and define the coupling conditions in terms of traces of gmistof Riemann problems. These condi-
tions are explicited and the coupled Riemann problem isesbfar twop—systems then in Section 3
in the case of two Euler systems in Lagrangian coordinatestié 4 treats the coupling of two sys-
tems of different dimensions: the-system and the Euler system. Section 5 introduces a moreajene
theoretical setting following Després’ formalism (cf])[th order to extend the coupling to more gen-
eral Lagrangian systems. Some changes of variables acelucied in order to express the coupling
conditions and the coupled Riemann problem is solved. 8eweimerical results will illustrate the
theory.

2 The interface coupling approach

2.1 The coupling procedure

We first describe the theoretical settings and precise diatinos.
Let Q) C R? be the set of states and &}, o = L, R, be two smooth functions frof? into R?. Given a
functionug : z € R — ug(z), we want to find a functiom : (z,t) € R x Ry — u(z,t) € £ solution
of

Opu + 0,11 (u) x<0,t>0, ()

=0,
dpu+ 8,fr(u) =0, x>0, t>0, @)

satisfying the initial condition
u(z,0) =up(z), =€eR,

and at the interface = 0, a coupling condition which we now describe.



This coupling condition has been chosen in order to obtagnviell-posed initial boundary-value prob-
lemsinz > 0, ¢t > 0andinz < 0, ¢t > 0. This means that the traeg0—, t) (resp.u(0+, ¢)) should
be an admissible boundary conditioruat 0 for the system inc > 0, ¢ > 0 (resp.u(0+,¢) is an ad-
missible boundary condition at= 0 for the system iz < 0, ¢ > 0). We will assume that the systems
are hyperbolic, i.e. for = L, R, the Jacobian matri¥, (u) = f/ (u) of f,(u) is diagonalizable with
real eigenvalues,, ;(u) and corresponding eigenvectars;(u),1 < k < ¢. Then rigorous ways of
writing the boundary conditions can be found in [9], [14] It most practical way to express them
involves the traces of the solution of a Riemann problem.sTtue introduce the self-similar solution

u(z,t) = Wy(z/t;ur, upg)

of the Riemann problem for the system associated to theffluke. the Cauchy problem with initial
condition

uy,, z=<0,
u(m,O):{ u; x> 0. ®

We set for allb € €,

OL(b) = {W = WL(O—;Ug,b); uy € Q},
Ogr(b) = {w = Wg(0+;b,u,);u, € Q} 4)

and following [8] we define admissible boundary conditiohshe form
u(0_>t) € OL(b(t))> t>0,
and
u(0+,t) € Og(b(t)), t>0,
for (1) and (2) respectively. Hence natural coupling candg for problem (1)—(2) consist in requiring

{ u(0—,t) € Op(u(0+,1)), (5)
u(0+,t) € Or(u(0—,1)).

This means that at each time> 0, there exists some states (¢), us () €  such thatu(0—,t) =

W (0—;u_(t),u(0+,t)) andu(0+,t) = Wgr(0+;u(0—, ), uy (¢)). Using the formulation with Rie-
mann problems to express admissible boundary conditiansie practical and suitable for the numer-
ical approximation of the coupled problem. It is thoroughlgtified in the scalar case and for linear
systems. In [12], devoted to the scalar case, we have shatithils was indeed a reasonable way of
coupling two scalar conservation laws in the sense that,@animgful situations, the coupled prob-
lem has a unique solution and a ‘natural’ numerical upwiniteste (the so called two-flux scheme)
converges to this solution. The case of linear systemsasetden [13].

Condition (5) resumes in a number of cases to the continditiyeosolution at the interface
u(0_7 t) = U.(O—i-, t)a (6)

at least (6) holds true whenever the interface is non cheniatit. Thus we may interpret the coupling
condition as a way of ensuring in a weak sense the continuitiietransmissiorof the conservative
variablesu.

However, when dealing with physical systems, we may preféransmitnot the conservative variables
but otherphysicalvariables. Indeed, define two distinct change of variables

vou=y.(v);a=LR
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from some sef), C R? onto2 such thaty/, (v) is an isomorphism dR?. Then ifc is a given boundary
physicaldata, settind, = ¢ (c), we define

Or(br) = {w =W (0—;uy,br);u € Q},
Or(br) = {w = Wgr(0+;bg,u,);u, € Q}

which are admissible boundary conditions for the systemand (2) respectively. Thus we now require

{ U_(O—,t) € OL(SOL(V(O+7t)))7
u(0+>t) € OR(@R(V(O_vt)))'

Sinceyr,(v(0+,t)) # ¢r(v(0+,t)) = u(0+,t), the boundary sets in (7) and (5) are distinct. Con-
ditions (7) will ensure the transmission physicalvariables and whenever possible their continuity
instead of (6)

(7)

V(O_v t) = V(0+7 t)a (8)
again when the interface is non characteristic.

We will be interested in the sequel in solving tt@upled Riemann proble(d), (2), (3) with coupling
conditions given either by (5) or by (7) for some change ofaldesy,, to be specified.

2.2 Numerical coupling

Let us briefly recall the numerical procedure for the sakeoofigleteness since numerical illustrations
are provided in the following sections. We use a finite volumethod for the discretization of each
system (1), (2). LetAz, At, denote the uniform space and time steps, weuset At/Ax, t, =

n At, n € N, and consider the cellS; . » = (z;, v;+1), with centerr; ., o = (j + 1/2) Az, j € Z.
The initial condition is discretized as usually by

1

0 .

u; 12:—/ uo(z)de, j € Z.
Jj+1/ Az Cyivo

For the numerical coupling, we are given two numerical fluxesgr (g. is consistent witt,,) cor-
responding to 3-point schemes (we assume these schemesrweorne in the scalar case under some
CFL condition), we define the scheme by

u?jll/g = u?_l/g - (ng - gﬁ,j_1> , J<0,n>0, )
+1 .
Wije = Whajp — 4 (g%,j+1 - gﬁg’) , J20n20, (10)

(see also [1] in another context). So we have one fixed interédw = 0 and two fluxesg;, ,. We have
8, = ga(u;?_l/Q, u?H/Q),a =L,j <0,a=R,j>0,and for the fluxes at the interfaage= 0, we
chooseg,, , according to the coupling procedure. The choice

8a0 = ga(uT_L1/27 u?/Q)v a=LR

corresponds to transmit the conservative variableNamely, ifj > 0, the scheme (10) with fluggr
consistent withfr approximates the IBVP (2) with initial condition(z,0) = ug(z),z > 0 and for
boundary condition at = 0, the scheme takasﬁl/z. Sinceg} o # 8k, it is @ nonconservative nu-
merical approach, as for the continuous problem. For exantipd flux at the boundary with Godunov’s
scheme ig}; , = fr(Wg(0+; uﬁl/z, u?/Q)). It has been proved in the scalar case (cf. [12]), that in a
number of practical situations, scheme (9)-(10) convergwards a solution of (1)-(2) satisfying (5).
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0

0

Figure 1: The coupling conditions (5) for thpe-system

We can also transmit thghysicalvariablesv by choosing
8Lo = gL(uE1/z> ‘PL(V?/Q))» 8ro = gR(‘PR(Vr_H/z)» u711/2)

wherevy,, = o' (uf ), v, = o (U ).

2.3 A canonical example: coupling twg—systems

We are going to illustrate the two choices in the couplingcprure on the—system

{ T —0,v =0

O + Ogp = 0, (11)

and then, in the following sections, for the Euler system agilangian coordinates. Note however that
in this latter case, the interface is characteristic antogilrespond to a contact discontinuity. Hence in
general, the coupling does not yield the continuity (6) 9r & will see that it yields the continuity of
a subset of variables.

In (11), x stands for a mass variable denotes the specific volume the velocity, and we assume that
the pressure is a given decreasing functign= p(7). Let us consider the coupling of twe-systems

opu+ 0,f,(u) =0,a=Linzx <0, a=Rinz >0, (12)

where

u (7‘)7‘>0

2 (w) = (—0.p)". p = pr(7). (13)
Fr(w) = (—v,p)7 p = pr(7).

We assume that, < 0,p” > 0, « = L, R. The two systems differ by the pressure lawAn important
feature is that the signs of the two eigenvalues do not depand \(u) = —¢ < 0 < A2(u) = ¢,
¢ = +/—p'(7). Hence in the left (resp. right) half plane, there can be drlyaves (resp2—waves).

We first transmit the conservative variablesv). We denote by’* (u_) the ka—wave curve, i.e., the
set of states that can be connected to a given statby a ka—wave,k = 1,2 (either rarefaction or
admissible shock) relative to the-system with fluxt,, « = L, R. Expressing the coupling conditions
(5) gives (for the left conditiomi(0—,¢) € Or(u(0+,t))) thatu(0—,¢) is connected tax(0+,¢)
by a2L—wave which meansi(0+,¢) € %7(u(0—)) (we use shortened notation f&f?(u(0—,¢))
and similarly (for the right condition) by aR—wave (see Fig. 1). Thua(0+,t) € €7 (u(0-)) N
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1+ wave ¢ (v(0-) 2L wave 1R wave ¢R(((;’£Ot;"t)) 2-R wave
=u ,
=u(0-,1)

1 ¢ (v(O+D) g (v(O0-1) tr
0 X 0

Figure 2: The coupling conditions (7) for tipe-system

%5 (u(0—)) and, since it is well known that the two wave curves interséoily one point in the plane
(1,v), at least away from vacuum (see for instance [11]), it yields

u(0+,t) = u(0—,1). (14)

Now the IBVP’s in both quarter plands < 0,t > 0) and(z > 0,¢ > 0) are also well posed if one
wishes to prescribe a givdm, p) onz = 0 in a weak sense, according to (7). Indeed, by assumption
pl, < 0, hence, we can define its inverse mappip@) for o = L, R. Settingv = (v, p)’, we have an
admissible change of variablas:= ¢, (v) where

(v,p) = @a(v,p) = (1,0) (15)
is simply defined by- = 7,(p) (for instance ifp, (1) = 777, thenr,(p) = p~ /7).
We now transmit this set of variablé¢s, p).

Proposition 1. For the systems (13), the coupling conditions (7) are edgmtdo

{ v(0—,t) = v(0+,1),
p(0—,t) = p(0+, ).

Moreover, the solution of the coupled Riemann problem ((13), (3), (7) exists and is unique

(16)

Proof. Let us express the coupling condition ()(0+,¢) € Ogr(pr(v(0—,t))) andu(0—,t) €
Or(¢r(v(0+,1))), with more preciselyv(0+,t) = (v(0£),p(0+,¢)T and u(0—,t) =
or(v(0—,1)), u(0+,t) = or(v(0+,1)).

Firstu(0+,t) € Or(pr(v(0—,t)) yields thatpr(v(0—,t)) is connected ta(0+,t) = pr(v(0+,1))
by alR—wave. The idea is that we can parametrize the wave curvesand represent them in the
(v,p)—plane (for details concerning the equations of the waveesyrsee [11], Chapter |, section
7). If the 1R—wave curve isgh(u(0-)) = {(1,v);v = U1 r(1)}, letCh(v(0-)) = {(v,p);v =
U1 r(TrR(P))} = {(v,p);pr(v,p) € %é(u(O—))}Z@El(%}%(u(O—))) be its representation in the
(v, p)—coordinates, we then hawg0+,t) € CL(v(0—)) (see Fig. 2).

Similarly, u(0—,t) € Or(ern(v(0+,t))) yields thatu(0—,t) = ¢r(v(0—,t)) is connected to
or(v(0+,t)) by a2L—wave. We parametrize the wave curves jpynd represent them onto the
(v,p)—plane. If the2L—wave curve is€7(u(0-)) = {(r,v);v = Uy r(7)}, let C3(v(0-)) =
{(v,p);v = Vo r(r.(p)} = {(v,p);or(v,p) € CZ(u(0-))}=pr (€7 (u(0-))) be its representa-

tion in the(v, p)—coordinates, we then hawe0+,¢) € C%(v(0—)).
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Figure 3:7,v, p in the transmission ofi = (7, v) left / vsv = (v, p) right for the coupleh—system:
continuity of (7, v) left / vs continuity of(v, p) right (numerical and exact solution)

We havev(0+,t) € Ch(v(0-)) N C2(v(0-)) thusv(0+,t) = v(0—,t) because it is easy to prove
that the two curves intersect at only one point in the plane). Hence we do have continuity of p,
not of 7 sincer (0+,t) = p(0+4, 1)~/ 7% # p(0—, 1)~/ = 7(0—,1).

Under the assumptions made on thgs, existence and uniqueness of the solution of the coupled
Riemann problem, away from vacuum, follow as in the usualcwupled case. d

The solution of a coupled Riemann problem is illustratedigufe 3 for twoy—laws,p, (1) = 777,
v, = 1.4,vp = 1.6.

Remark 1. The choice of the transmitted variables is clearly non umidihe above argument may be
used for any other admissible change of variables of the form (7,v) — v = (v, h (7)) provided

the corresponding functioris,, « = L, R are both strictly increasing or both strictly decreasingpma
pings. It happens that the flux-v, p) in the preceding example may be taken as a set of dependent
variables. It will not be possible in the next example, whise flux is(—wv, p, pv) since it would not
define an admissible change of variables. However, we may todransmit part of the flux variables
(v, p) which will then also yield the transmission @f. Hence, in these particular examples, we are able



to couple the two models by imposing the continuity of the flukich might appear as@nservative
approach. O

3 Coupling two Euler systems in Lagrangian coordinates

3.1 The Euler system

We consider the full Euler system of gas dynamics in Lag@mgbordinates
opu+ 0,f(u) =0 (a7)
where
u=(r,0,e)", f(u) = (~v,p,pv)" (18)

In (17), x stands for a mass variable while in (18)denotes the specific volume,the velocity,e =
€+ %v2 the specific total energy,the specific internal energy. We assume that the pregdara given
function p = p(7,e). We study the coupling of two such systems at the interface 0 which now
happens to be characteristic. It has thus the physicapimtion of a contact discontinuity separating
two fluids with different equations of state

p = palT,€), @ =L, R.

We denote by

fa(u) = (_U>p>pU)T> b= pa(7_7 6)7 o = L>R> (19)
the corresponding flux functions.
Let A(u) be the Jacobian matrix ¢fu)

0 1 0
A(u) = pr —vpe  Pe |
vp; p—v’pe vp:

_ _ 9
Pe = E('R 5)7p7 - or (7_7 5)7 (20)

with the notations

and we note when necessaly, (u) that off,(u), a = L, R. The eigenvalues oA (u) are
A(u) = —C(u) < A2 =0 < A3(u) = C(u),

where
C(u) = v/—pr + pp.

denotes the Lagrangian sound speed. Recall that the riggrectors ofA (u) can be chosen as

-1 Pe -1
ri(u) = ( —C ) , ro(u) = ( 0 ) , r3(u) = ( C ) , (21)
p— Cwv —Dr p+ Cv

while the left eigenvectors are given by

br p br
Li(u) = ﬁ —C —wvp: |, L(u) = % —v |, l3(u)= % C—op: |. (22)
DPe 1 DPe



In this case, the interface= 0 is characteristic = 0 is an eigenvalue oA (u)), and we have for each
system one strictly positive and one strictly negative migkie. We are going to study the coupling
in two cases, transmitting either the conservative vagmljtondition (5)) or the primitive variables
(1,v,p) (condition (7)). To justify the last choice, let be a solution of system (17)-(18) containing
two states separated by a contact discontinuity &t0, u_ = u(0—,¢) anduy = u(0+,¢). Then we
have continuity of the 2-Riemann invariantsy

V- = Uy,
{ p(T—ag—) :p(7—+,€+). (23)

When coupling the two systems (1) and (2) withgiven by (19), we may want to transmit also the
velocity and the pressure. We will show that it correspomnddié coupling conditions (7) expressed in
the primitive variables

v =(r,u,p)L. (24)

Let us describe more precisely the change of variables
u=(r,v,e)l =p,(v). (25)

Sincee = ¢ + %vz, we assume all along this paper that the functipns p,(7,¢) may be inverted in
e = e4(7, p), which is the case for instance for a polytropic ideal gasfatg ay-lawp = (y — 1)7e,
more generally, we assungé > 0.

3.2 Coupled Riemann problem with transmission of primitivevariables

This case is easier to deal with. Indeed, the Riemann probber(l7)-(18) is usually solved using
primitive variables because the ‘projection’ of the waveves on thev, p)-plane are easily expressed.
Moreover, this choice is consistent with what we have donihénisentropic case for the—system.
Finally this choice appears fairly natural from a physiaaihp of view since Proposition 2 below shows
that it corresponds tansmitp, v which are naturally transmitted when the two laws coincide.

Let u; andug be two given states. We denote i (u.,) the 1—wave curve consisting of states
u which can be connected to;, on the right by a either a—shock or al—rarefaction wave cor-
responding to the equation of stgte= pr(7,<). Similarly, given a right statei, we denote by
(fg’(uR), the (backwardB—wave curve consisting of left stateswhich can be connected o by a
3—shock or a3—rarefaction wave corresponding to the equation of state py,(7,<). We denote by
ChL(vy) and C3 (vg) the ‘projections’ (in a sense to be precised below) onto(the)-plane of the
wave curvesti(uz) and@; (ug) respectively. In facCi (vy) is the projection of thé—wave curve
curveyp, 1 (¢ (uyr)) expressed in primitive variables= (7, v, p)* on the(v, p)-plane:

v (Gi(ur)) = {v = (1,v,p)"; a(v) € Ci(ur)}
and ' '
CZa(VL) = {(U>p)7 (7—7U>p)T € (10;1(%(;(11[/))}
Similar definitions for the backward wave cur@, (vg) are in order.

We then make the following hypothesis

{ for any pair of stateg'uy, u,.), the curves (26)

CL(vy) andC3 (v,) may intersect at one point at most.



This assumption simply guarantees that the Riemann prohksma unique solution. It can also be
expressed in terms of monotonicity of the correspondingesyras illustrated in Figure €., is de-
creasing an€C? increasing, and we refer to [15] for precise assumptiongieretjuation of state which
ensure this property (see however Remark 2 below).

Proposition 2. Assume the hypothesis (26). Then, in the case (24), the iogugpbdnditions (7) lead to
v(0—,t) = v(0+,1),
27
{ sosh s @0
In addition, the coupled Riemann problem has a unique solyaway fom vacuum).
Proof. By using the structure of the solution of the whole Riemanobfam for the gas dynamics
equations with pressure lawy, let us show that the condition(0—,t) € Or(¢r(v(0+,t))) means

that
(v,p)(0—,t) € C3 (v(0+,1)). (28)

Let us first precise the states that are involved in the abxpeessions:
v(0+,t) = (7(0+, 1), 0(0+, ), p(0+,1))"

o1 (v(04,1)) = (1(0+, ), v(0+, 1), e(04, )T
wheree(0+,t) = e (7(0+, 1), p(0+,t)) + v(0+,¢)? /2

u(0—,t) = (1(0—,t),v(0—,t),e(0—,t))"

andp(0—,t) = pr(7(0—,t),e(0—,t) — v(0—,1)2/2).
Then, by definition of the admissible 98t there exists a staie_ < {2 such that

u(0—,t) = Wr(0—;u_, or(v(0+,1))).

The L—Riemann problem betweea_ and ¢, (v(0+,t)) is thus built with alL—wave between
u_ and u(0—,t), a 2—contact discontinuity att = 0 betweenu(0—,¢) and a stateu} and a
3L—wave betweent} andyy (v(0+,1)). This yields thafv’, p%) = (v(0—,), p(0—,)) and thus,
after projection on thev, p)—plane, (v, p)(0—,t)) belongs toC? (v(0+)). Similarly, the condition
u(0+,t) € Or(¢r(v(0—,t))) means that

(v,p)(0+,t) € Ci(v(0-)). (29)

If (26) holds, and away from vacuum, the cun@$,(v(0—)) and C? (v(0+)) intersect at only one
point in the (v, p)—plane (see Figure 6 left); then (28)-(29) imply that p)(0+,¢) and (v, p)(0—,t)
must necessarily coincide since, in the p)—plane, both(v, p)(0+,¢) and (v, p)(0—,t) lie on both
curves, which proves the lemma.

Finally, we can solve the coupled Riemann problem followtimg usual procedure, by solving first the
systems of equations obtained by intersection of the prejiecurves (see [11]). The solution exists (if
no vacuum appears) and is unique. O

The result is illustrated in Figure 4 on a coupled Riemanilgr for twoy—laws,y;, = 1.4,yg = 1.6.

Remark 2. The curve%}z(ug) is tangent atu, to the eigenvectorp;(u,) = (—1,—Cgr,pr —
Crv)T(u,). In primitive variables, the curveo,'(€4(u,)) is tangent togh (ve)~H(rg1(uy)) =

10
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Figure 4.7, v, p for the coupled Riemann problem for Euler system with traesion ofv = (7, v, p):
discontinuity ofr, continuity ofv, p atx =0

(—1,—Cg, C%)T (uy) which is the 1-eigenvector in primitive variables and, bgjgction on the(v, p)-
plane,CL(v,) is tangent tq—Cg, C%)T (u,) or equivalently toq—1, Cr ) at state(vy, p). Similarly,
%3 (v,) is tangent tq1, Oy, )T at state(v,., p,.). The vectord—1, Cr )T and(1, Oy, )T are not colin-
ear. Thus hypothesis (26) is satisfied at least for nearlayesstry, u,.). It may be globally satisfied for
‘standard’ equations of state. O

3.3 Transmission of conservative variables. The polytrogiideal gas case

As already observed, the above derivation of the couplinglition in primitive variables was made
easy by the usual way of solving the classical Riemann prnoltethe (v, p)—plane. If we now want to
transmit the conservative variables, we must interprettipling conditionsi(0—, ¢) € O (u(0+,t))
and u(0+,t) € Ogr(u(0—,t)) in terms of conservative variablgs, u,e). Again, the solution of
the L—Riemann problem between a state andu(0+,t) is made of al L—wave betweeru_ and

u(0—,t), a2L—contact discontinuity at = 0 betweenu(0—,¢) and a statmﬁf) and a3L—wave

betweeme) andu(0+,t) (see Figure 5, left).

We first make the simplifying assumption that the two pressaws arey—laws:
Pa = (Yo — De/T, 7o > 1. (30)
We get that(vﬁf),pf)) = (v(0—,t),p(0—,t)), more precisely
US_L) =v(0—,1) (31)

and
pr(u) = pr(u(0-,¢)) (32)

and thus(y, — 1) /75 = (v, — 1)e(0—, ) /7(0—, ), which implies

ES_L) ~e(0—,1) (33)
T_E_L) B T(O_at) .

Following the usual way of solving the Riemann problem, wejgct’ the condition
ul” € €3 (u(0+)) (34)

on the(v, p)—plane.
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3+ wave 3-R wave
1-L wave u(o-,t) US.L) 1-R wave u® u(o+,t)

u(0+,t)
u(0-,1t) u+
0

0

Figure 5: Coupling conditions (5) for Euler system:
u(0—,t) € Or(u(0+,t)) (on the left),u(0+,t) € Or(u(0—,t))(on the right)

Similarly, the solution of theR—Riemann problem betweea(0—,¢) and a statei; is made of a
1R—wave betweem(0—,¢) and a state'™™ | a2R—contact discontinuity at = 0 betweenu™ and
u(0+,t) and a3R—wave betweem(0+, t) andu+ (see Figure 5, right). This yields th@t(_R),p(_R)) =

(v(0+,1),p(0+,t)), more precisely

o = v(0+, 1) (35)
and
pr(®™) = pp(u(0+,1)) (36)
and thus
e e(0+t) -
B r(04,t)
Again we ‘project’ the condition
u® e gh(u(0-)) (38)

on the(v, p)—plane. Thus we have to meet the conditions

M"(0-) = (0(0—, ), pr(u(0—,1))) € CL(v(0+))
and

ME0+) = (v(0+,1), pr(u(0+,1))) € CL(v(0-))

and we can no longer intersect the two curves in order to shlv@roblem. Figure 6 left (resp. right)
illustrates the position of the projected wave curves wiendoupling conditions (7) (resp. (5)) are
satisfied. Indeed, at the difference with the previous csinee

Cx(v(0-)) = {(v,p); (1,0,9)" € i (€R(u(0-))},

in the (v, p)—plane, the curveCk(v(0—) starts from pointM (0—) = (v(0—,t), pr(u(0—,1))),

and not fromM*~(0—) = (v(0—,t),pr(u(0—,1))) (see Figure 6 right), an@3 (v(0+)) starts from
ME(0+) = (v(0+,t), pr(u(0+,t))). The intersection of the two curves does not solve the prolaie
it did before.

In fact, the(v, p)— plane is not well suited, singeis no longer a transmitted variable. For twe laws,
because of (33)-(37), we can think of the plamer = ¢/7), sincer is a variable independent of the

12



PRu(

pr(u(

v :
v(0-)  v(0+)

v(0-) = v(0+)

Figure 6: projection of the wave curves: transmissior ¢feft) - transmission ofx (right),
with Ch— = Ch(v(0-)), €+ = G} (v(0+))

pressure law. Following the above arguments and projectmthe (v, 7)—plane will lead to intersect

two curves. More precisely,
Proposition 3. Assuming (30), the coupling conditions (5) lead to

{ v(0—,t) = v(0+,1), (39)
g 13
;(0_775) - ;(O"ht)
Proof.Define
w = (r,0,m)"
where .
T=—, (40)

then the mapping by u = ¢(w), and let
Ch(w(0-)) = {(v,m); (r,v,m)" € 5! (€x(u(0-)))}

with a similar definition for the backward cur\éZ(w(0+)). The projection on thé¢v, 7)—plane of

(34), (38) together with (31), (37) (33), (37) then yields

(W(0—, 1), 7(0—, 1)) € C.r (w(04))
(v(0+,1), 1(0+, 1)) € Ch(w(0-)).

~ 3
Now, assuming (26) implies th&},(w(0—)) and C (w(0+)) intersect at only one point, since the
change of variables preserves the respective monotonicity of the curves. We get

v(0—,t) = v(0+,1)
{ 7(0—, 1) = 7(0+, 1), (41)

13
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Figure 7:7, v, p in the transmission ofi = (7,v,e) vs.v = (7, v, p) for Euler system:
Discontinuity ofr — Continuity ofv — Continuity ofp for v / Discontinuity ofp for u

which is the desired result.

The coupled Riemann problem is then solved as before sinamaw@arametrize each wave curve by
m instead ofp. d

A coupled Riemann problem is illustrated in Figure 7 wheretiansmissions of conservative and of
physical variables are compared.

We can easily extend the result to the case of pressure lawes whn be written as a function of one
dependent variable = 7 (7, <) i.e. such that

Pa(T,€) = Do (7(T,€)).
The above argument will show th@t, ) is continuous at the interface= 0.

Consider now two thermally perfect gases, such that RT'(¢) (T is the temperature). The pressure
law is of the following form

p:p(T,E) :ﬁ(TﬂT) (42)
with againm = ¢/7 and satisfies the identity

P = —TPr + TDr

We have thus

_br_ P
Pe Dr
or we can also write
pr _ T(e)
Cpe T'(e)

If this quantity is independent of the closure law, we cartidlas dependent variable and conclude that
it will be continuous at the interface together with the witp

Remark 3. Assuming ay—law yields that the eigenvectog(u) in (21) can be chosen &8,0,¢/7)7 =
(1,0,7)T. Thus the functionry(u) does not depend on the pressure law and (39) means that
rr,2(u(0—,t)) = rgro(u(0+,t)). In the linearized approach, linearizing the left problemug—, ¢)

and the right problem ai(0+, t), and coupling these two problems, the necessary condid®) of

[13] requiringdim £ = 1 is indeed satisfied sincB = [rrirr2] N [rrorr 3] = Rrps = Rrro,
where the notatiofr,, ;r,, ;] denotes the vector space spanned by the veetors, ;.

The above section brings some precisions to the correspgséiction (Section 4) of [13] where it was
not specified that the coupling was achieved in primitivealzdes. d
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3.4 Transmission of conservative variables. The general sa

Let us first see that the velocity needs not be continuous daergl pressure laws. Assume first that
v 18 continuous at the interface
v(0+,t) = v(0—,1).

If, for instance, the3L—wave in the L—Riemann problem and theR—wave in the R—Riemann
problem are both shocks (see Figure 5), we get from the Resfirgoniot relations concerning the
3L—shock

pr(u(0—,1)) = pr(u(0+,1))
and
pr(u(0—,1)) = pr(u(0+,1)).
For instance to get the first formula, we write the Rankingybhiot relation concerning thgd.—shock

— 03,0 (0(0+, 1) — i) + (pr((0+, 1)) — pr(uk) =0,

with the invariance of, p at the contact discontinuity

ol = v(0-,1), pr(ul) = pr(u(0-,1))

(similarly the 1 R—shock relation for the second formula). Consider for inséatwo pressure laws of
Griineisen type

- S S _
pa(7—> 5) - (701 1)7_ + da(T Tref,oz% a = Lv R (43)
For (43), the continuity opr andp;, yields
€ € 9 1 1
a 1)(= ) - — V7 fe% - =V, = L7
Oa =D O0+,8) = Z0-0) + (g~ =) =® @ = LR
which implies, as soon as
d? d?
L R (44)

yv—1" yp—1
that£(0—,t) = £(0+,¢) and7(0—,t) = 7(0+,¢) so that

e(0—,t) = e(0+,t), 7(0—,t) = 7(0+,1).

Remark 4. Thus, in the case (44), it shows that the velocity need notdiruous, and if the
velocity is continuous, the whole state is continuous at ititerface u(0—,¢) = u(0+,¢) (but
pr(u(0—,t)) # pr(u(0+,t))). That may happen with particular given stateg, ug. Indeed if the
coupled Riemann problem is solved witi{0—,¢) = u(0+,t) notedu(0) = (70, vo, €p), then since
u(0) = u(0-) € %} (uz) andu(0) = u(04+) € €p(ug), it imposes that the two curves & in-
tersect, not only their projection on a plane. For instatioe,projection of these curves on the plane
(v,e/7) determinegvg, €9 /70), their projection on the plang-, v) determinegy, vg) . Assumeu(0)

is completely determined. Then the Hugoniot cur¥és(r, p) = 0 are hyperbolas (cf. [11], Chapter
Il, Section 2, Example 2.2) and may be parametrizeg:by = h,(p; 74, p.) for an Hugoniot curve
with centera. This provides two relationsy = hr(pr(uo);7r,pr) = hr(pr(w);7r,pr) Where
L = pL(uL),pR = pR(uR). Henceuy,, ugr should be such thdtTL,pL) and (TR,pR) satisfy the
identity 2z (pr.(10); 71, pr) = hr(pr(W0); TR, PR)- O
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/P E) PO P u(©+)

p, (U(0-)
PR(U(0-) ~ pgu(o+))

PR PR(U(0+)

v(O—)¥ v(0+)

v(0-) (04)

Figure 8: Coupled Riemann problem, projection of th(g wavees!
general case (left), special case (right), with— = CL(v(0-)), C3+ = C3 (v(0+))

We consider in Figure 8 states and wave curves corresportding coupled Riemann problem
for which the 3L— and thel1R—waves are both shocks (cf. Figure 5). The poMt (0—) =
(v(0—,t),pr(u(0—,1))) (resp. ME(0+) = (v(0+,t), pr(u(0+,t)))) is the projection ofu(0—,)
(resp.u(0+,1)). In the above mentionned particular case, the cupéuy,) andC%(ug) intersect at
a point for which the states(0—, ¢), u(0+, ¢) do coincide. The two cases are illustrated in Figure 8.
If now ) ) )
di = i = d , (45)

-1 w—-1 ~-1
we notice that the above computations only give one relafioking (7,¢/7)(0+,¢) and
(1,¢/7)(0—,t). However, we can prove

Proposition 4. Assuming (43) with (45), the coupling conditions (5) lead to

v(0—, 1) d:2 v(01+, t), 2 1 46
ERE S ENE S

Proof. Note that for twoy—laws (@2 = 0), we have indeed seen that the coupling yields the corginuit
of v andm = £ by projecting on thgv, m) —plane. Assuming (43) and (45), we note that the quantity

1 d?
p+—
Yo — 1( Tref,o

Wa

)

now plays a particular role since it satisfes

€ 2 1
W, = — + A
Cr (ya—l)T

and thus does not depend onif (45) holds, let us note itv. We can project on thév,w)— plane,
parametrize the projected wave curvesudbgincep — w is an isomorphism and following the same
arguments as in the proof of Proposition 3, obtain the caritirof v andw at the interface. O
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Again, assuming (43) yields that the eigenveatgiu) in (21) is parallel to(1,0, —w)” and does not
depend on the pressure law. Then (46) implies that(u(0—, t)) = rg2(u(0+,t))( cf. Remark 3).

Remark 5. We can try to explicit the quantities which are transmittetha interface for more general
pressure laws, since, in a heuristic way, we can say that ¢aamtities are transmitted’. In fact these
quantities are not explicit physical quantities in generalparticular the velocity is not necessarily
continuous. For more general pressure laws, assumingdtance thatr, v,¢)(0—,t) is known, and
for some given, the usual ‘projection’ on the, p plane, assuming that the ‘projected’ curves can be
parametrized by, provides a system of two equations in three unknogms, ¢)(0+,¢), which can

be interpreted as the intersection of two surfaceRipheuristically, this gives a curve. In the case we
have already considered of twe-laws (30), in variablesv = (7, v, ), easy computations show that
this curve is a straight line (39) intersection of two plgnerallel to the axis-. In case (43)-(44), we
can say that the intersection of the curve with plat@+,t) = v(0—, ) is a point, so that the curve is
not contained in this plane. To explicit the transmittedrgityg means to find a change of variables, say
w € R? such that in these variables, the curve is a line parallehtaxis, sayi; so that the quantities
(w1, wy) are continuous. We have been able to find it for (43)-(45). dhepled Riemann problem can
then be solved, however the physical meaning of the tramssoniss not clear. O

4 Coupling Lagrangian systems of different dimensions

4.1 Thep—system and the Euler system

We consider the@—system (11) in the left half-plane and the Euler system inr&agian coordinates
(18) in the right half-plane (using in this section capitgtérs to distinguish the variables of the larger
system)

811 8 . . T . T .
E + %fL(u) - O,ZL' < 07 u= (T7U) ) fL(u) - (_va) D= pL(T)v
ou 0 T T
5 + O_xFR(U) =0,2>0, U= (r,v,e)’, Fr(U) = (—v,p,pv)" ,p = pr(T,£).

The dimensions of the two systems are now different, but Hysipal context helps to give a meaning
to the coupling since some state variables such as the spegitimer, velocity v or pressure are
defined for each model. Hence, we write coupling conditisisgithe variablegv, p) that are common
to the two systems and which we have seen are good candidatestli. The idea is to reconstruct the
missing variable for the smaller system in such a way that &g transmit (i.e. have continuity of) the
velocity and the pressure.

Indeed, we can lif = (v, p)” by reconstructing when we transmit from the left to the right
v=(v,p)" = L(v) = (r,0,p)",7 = 71(p), (47)

wherep — 77,(p) is the inverse opy, (7). And we easily projecV when we transmit from the right to
the left
V = (1,0,p)" = P(V) = (v.p)". (48)

The coupling conditions naturally write

{0 < OupulPvioe ) @9)
U(0+1) € Onlpr(L(v(0-,1)).
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Figure 9:7, v, p for the transmission of = (v, p), p-system inx < 0 and Euler system im > 0

Herepr(v) = uandyr(V) = U are the previously defined admissible change of variab®&sgtid
(25).

Proposition 5. Defining £, P by (47) and (48), the coupling conditions (49) lead to

v(0—,t) = v(0+,1),
{ p(0—.,t) = p(0+,1). (50)

and the solution of the coupled Riemann problem is unique

Proof. We express the Riemann problems associated to (49) usingitiadlesy andp. Firstv(0—, )

is connected tdP(V(0+,t)) by a2L—wave for thep—system. ThenC(v(0—,¢)) is connected to
V(0+,t) by alR—wave for the Euler system, we project the correspondiRg-wave curve on the
(v, p)—plane and its intersection with ti¥d,—wave curve for the—system has only one intersection
point, so thaw (0—,¢) = P(V(0+,t)) and the result follows. We have implicitly assumed in thegpro
that the analogous of (26) holds. O

The result is illustrated in Figure 9 with-a-law p(7) = 77, pr(1,e) = (v — 1)e/7, with y = 1.4.
We note thatr is discontinuous whereas the continuityuop atx = 0 is indeed ensured.

We may also interpret the above coupling procedure by augingethe dimension of the smaller system
in order to couple systems of the same dimension.

4.2 Interpretation

In fact the previous approach of liftingt projection can be interpreted by adding an equation to the
small system with two conservation laws

or v _,

ot oxr

ov Op

T 51
5 T B2 0, (51)
op , Ov

E_p(T)%_(L

which we write
N sV

ot T
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whereV = (7,v,p)T. Only the third equation is in non conservative form, busitiearly redundant
sincep = p(7), so the matrixB(V) of the system

0 -1 0
Bv)=(0o o0 1
0 —p'(r) 0

is non invertible. We have added to the existing eigenvalies: —c, \3 = ¢, ¢ = /—p/(7), a new

eigenvalue which is precisely, = 0. The eigenvectors (in variablég) ares, = (1,0,0)7,s; =
(1,¢,—c*)7,s3 = (1, —c, —c?)T. These eigenvectors are presently the eigenvectors ofahéxrof the
full Euler system written in primitive variable¥ = (7, v, p)”, only with C? = pp. — p,. In fact, the
corresponding third equation for the full Euler system iimitive variables is

% + (ppe _pr)% =0.
The Riemann invariants associated to O@are

The only nonconservative product in the third equation &j ¢an be defined through the first conserva-
tive equations. Indeed,andp are continuous acrosa-discontinuity and ifv andp are discontinuous
across d — or 3—wave, the produqb’(r)% is naturally defined by
ov ov
J— / —_ = 2_
P(r) ox 7 ox
if o is the speed of propagation of the discontinuity, since we hdp] = o2[v], where[.] denotes as
usual the jump. So the augmentedsystem (51) is a barotropic Euler system in which= 0.

We can define uniquely a solution of the Riemann problem foby §ad initial datdV 7, = (71, v, pr)7,
Vi = (7r,vr,pr)’. The initial data are supposed to satigfy= p(7), i.e.,pr, = p(7L),pr =
p(Tr) but it is not necessary in what follows. A priori, the solutioonsists of al—wave between
V1, and some stat®;, a2— discontinuity betwee’VV; and some stat® 7, and a3—wave between
V% and V. Sincewv, p are continuous across the-discontinuity i.e.,z = 0, the common value
(v*, p*) is determined as usual by the intersection of the projedfdhe 1— and3—wave curves on the
(v, p)—plane and it is the intermediate state in the solution of ttreerfann problem for the—system
(solved in variable(v, p) by parametrizing the wave curves byas we have seen in section 1.3, for
the data(vr,pr), (vr,pr)). Now we havep* = p(7*) so thatV is continuous,W (0+; V1, Vg) =
(7_*’ U*,p*)T.

The coupling of (51) inc < 0 with the Euler system (17) im > 0 is done through the condition

{ V(0—,t) € OL(V(0+,1))

U(0+,) € Or(er(V(0—,1))). (52)

Proposition 6. The coupling conditions (52) are equivalent to (50).

Proof. Expressing the conditio’V (0—,t) € Or(V(0+,t)) gives that(v(0—,t), p(0—,t)) belongs

to the projection on thév, p)—plane of the (backward)—wave curve, the projection passes through
(v(0+4,t),p(0+,t)). Note that the given value(0+,t) does not satisfyy = p(7), but as we have
noticed above, it does not prevent from solving the Riemanhlpm for system (51).

Similarly expressing the conditiol (0+,¢) € Or(pr(V(0—,t))) gives that(v(0+,t), p(0+,¢)) be-
longs to the projection of the—wave curve througliv(0—,t), p(0—, t)). Again, the two curves inter-
sect at only one point in th@, p)—plane. O

If the initial states satisfy;, = pr(71), pr = pr(7r) the two solutions of the coupled Riemann
problem satisfying (52) or (50) coincide.
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4.3 Another interpretation: coupling of the isentropic and full sytems

We now consider the—system in the left half-plane as the isentropic model of gasrhics, thus
augmented by% = 0 and we write

or v _,

ot oxr

ov  Op

Tt 53
o s =0 (53)
0s

ET

assuming

p = p(7, 50)

for some fixed valuesy of the specific entropy angd = p(t, s) is the equation of state of the fluid
expressed in terms af and s. For instance for a perfect gas, we haye,s) = (v — 1) exp((s —

80)/01,)7'_7.
We then consider the coupled problem

oW 0
ot + 8_xFL(W) =0, z <0,
(54)
ou 0
eI —
ot + o7 r(U)=0, z >0,
where
W = (T7v73)T7 U - (7—71)76)T7
and

FL(W) = (—v,p,0)", Fr(U) = (~v,p,p)",
and the systems have now the same size.

We setW = (v, p, s), and define an admissible change of variallésy /(W) = W. More precisely
Y (W) = W = (v,71,(p),s)T is an admissible change of variables for (53) with pressamepl =
pr(7) andr (p) its inverse. Now, for the Euler system, the mappWig= (7, v, p)T — U = pr(V) =
(t,v,e)T is an admissible change of variables, &Wd= (v, p, s)” — Gr(W) =V = (,v,p)7 too,
when assuming = s(7, p) satisfiesd, s # 0. For instance, in the case ofya-law, we have seen that
pr(7,s) = (yr — D)7 "R exp((s — s0)/Cy) thussg(r,p) = s¢ + Cylog(pm7®/(yr — 1)). Thus we
can writeU = or(Gr(W)) = ¢r(W)) and it is admissible.

For the coupling problem (54), we take the following cougloonditions

{ W(0_7 t) € OL(E/}L(YV(O"’_? t)))? (55)
U(0+7 t) € OR(¢R(W(O_> t)))>

whereW (0-+) = (£) "' (U(0+)) = (v(0+), p(0+), 5(0+))", with p(0+) = pr(7(0+),£(0+)), and

W(0-) = () " (W(0-)) = (v(0-),p(0-),s(0-))" with p(0—) = pr(r(0-)). Again (55) are

equivalent to (50). Note that the precise valugpfioes not matter since the variabldoes not appear

in the equation fopy, nor in the coupling condition.
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5 Extension to general Lagrangian systems

We want to extend the coupling to more general systems indoagan coordinates, by transmission
of a set of variables which corresponds(top) when restricting to Euler system. We first recall the
common algebraic structure of all these systems which allas\vto treat their coupling from a general
point of view. This is followed by some technical computationvhich are required in order to define
the transmitted variables.

5.1 The form of general Lagrangian systems

We consider systems gfconservation laws in Lagrangian coordinatess{jll stands for a mass vari-
able)
dru + O,f(u) =0, (56)

which meet some common properties (we refer to [7] for a thetalescription):

e they are endowed with a strictly convex entrogiyr), with null associated entropy flux, so that
for smooth solutions
atS =0.

e uis made ofy — 1 — d statevariables and velocityvariablesU. The last component af is the
total energy which we will denote

1
uqzezs+§]U\2

where the internal energyis astatevariable, thers is also astatevariable. We will assume that
s(u), satisfiesg—Z(u) = s.(u) < 0. The model is then calledfuid model

e Galilean invariance,

e reversibility in time for smooths solutions.

Then, they can be written in a canonical forf¥ : u — ¥(u) € R~ 3B € M(R?1) such that
Fu) = (BU(), 5 ()" BY(w)", 57)

moreoverB is a symmetriconstantg—1) x (¢—1) matrix. Finally the spectrum df (u) is symmetric:

if A(u) is an eigenvalue so isA(u). In the sequel we will write\ in order to shorten the notations.
Again we refer to [7] for a detailed proof. From now on, we assuhese results and we derive some
of the properties needed in the following computations.

The first consequence of the last result is that there is ammwenber, sapm, of eigenvalues\; # 0
and we can number the spectrum as followg: = 0 with multiplicity ¢ — 2m and Ay, -, A, <
0, A1, -+, Aam > 0.
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5.1.1 Number of transmitted variables

Since the interface is characteristic, we cannot expeatahénuity ofu at the coupling interface. As
illustrated by the case of the Euler system, a reduced nuofliponlinear) functions ofi are expected
to be continuous. The aim of this section is to provide theeni@tin order to derive the required set
of these functions with linear independent gradients wilaich Riemann invariants associated to the
eigenvalue).

First note that (57) implies that a solution which is assunoede discontinuous across= 0 satisfies
B[¥] = 0 and one could say th& ¥ aretransmittedvariables. Howevet3 is not inversible as we will
see, and we want to ‘extract’ more explicit informations aedine independent transmitted variables
from theseq — 1 relations, by some change of variables (the analogous for Euler system). In
particular, the number of thesmnsmittedvariables depends on the dimensionkef B and thus on
the multiplicity of the eigenvalue 0 df (u).

The set of variable¥ is derived from the polar variables which we precise now. Vilenged other
sets of variables which we introduce together with sometiwots. For the set of conservative variables
u and fluxf(u), we distinguish the last component

u= (uq_l,e)T, f(u) = (fq—l(u)va(u))T’

whereu,_; = (uy,ug,---,uq—1)". We should writeu = (ul ,,e)” but we will skip the inte-
rior transpose marl” in order to lighten the notations. Thus Després’ resulsgapt we can write
f,-1(u) = BY(u), fe(u) = —3 U7 BY¥(u) so that the system (56) writes
Oug—1 + B0, ¥(u) =0, (58)
e + 0 (— 3V (u)TBY(u)) = 0.
u)

The system is endowed with an entrogywith s.(
symmetrize the system (see [11])

< 0, and we define the entropy variables that

T

u*

S/(u)T = (3u17 e 73uq,1786)

and (cf. [7])¥(u) in (58), is in fact derived from the entropy variables

\I](u) — (Sﬂ7...7%;1)T. (59)

Se Se

Note that we identify the derivative of scalar functionsalwed in the definition of polar variables (such
ass’(u)) with a1l x ¢ matrix (line vector). We also consider the change of vaeiabl

vV = (u1>u27 e 7uq—1>S)T = (uq—lvs)T'

Then since agais.(u) < 0, v — e(v) = ¢ + [U|?/2 is a convex entropy for the system in variables
(see the details in [11] chapter Il, Section 1 for the Eulesteyn) and we define the conjugate function
or polar variables by

V= (V)" = (en, s euynes) = (v (60)

Lemma 1. Letv; _, be defined by (60). Then we have the identity

Vp—1 = —¥(u(v)) (61)
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whereV is defined by (59).

Proof. Indeed, we can write(v(u)) = e = ug, S0 thate’(v)v/(u) = (0,...,0,1). Then the last
component gives, = (s.) ! while for theq — 1 first components, for which; = u;, we get

Z de(v) v, @ﬁ—e .
\<ia_y Ovi Ouj  OsOu, vj T CsSu; = Us
so thate,; = —essu; = —(s¢)~ 'su;, which in view of (59), gives (61). -

Thus, from (58), we can write for smooth solutions

B 0 .
8tV— <O O) amV =0 (62)

(in fact, only the last equation is not satisfied by discamiis solutions). Now multiplying this equation
by the matrixv*'(v) = €¢”(v), we get the system satisfied oy

ohv* —e'(v) (ﬁ 8) 0,v* = 0.

It is not difficult to prove thain — v* is an admissible change of variables, hence the matri€¢&a)

ande”(v) <§ 8) are similar. This implies the following result.

Lemma 2. 0 is an eigenvalue of multiplicity — 2m — 1 of B. MoreoverB hasm negative andn
positive eigenvalues.

Proof Since B is symmetric,B is diagonalizable. Assume 0 is an eigenvalue of multigli¢itof B.
Letry,---r, bek independent eigenvectossRY~! of B associated to the eigenvalue O (i.e. a basis of
kerB) andt; = (r!',0)” € R%. Then ther; are independent eigenvectors of the augmented matrix

- (B 0
B:<0 0) (63)

and thus ok”(v) B. Now the vectorr, = (0, ---,0,1)" is also an eigenvector of the matix associ-
ated to 0 and thus af’ (V)B ('associated to the eigenvalue 0). The- 1 vectorsr; andr, are clearly
linearly independent. We have assumed at the beginningtbanatrixf’(u) (and thuse”(v)B) has
q — 2m null eigenvalues, hende+ 1 < g — 2m. Letr be another eigenvector of (v) B associated to

0, sincee” (v) is invertible, it is an eigenvector d#, we can choosé € ryi.e.r = (ri,---,rq1,0)".
Then, (r1,---,7,-1)T is clearly an eigenvector aB and thus a combination of the which yields
k+1=q—2m.

The diagonalization of the matrifX (u) gives a diagonal matrix, sal(u), with m negative,m posi-
tive and(q — 2m) O entries, and thus its signature(is, m). The matrices” (u(v)) ande” (v)B are
similar. The matrixe” is symmetric positive definite, we may define its square mmte”!/2, which is
symmetric positive definite too, with inversé—1/2 thene””'/2Be”'/2 is similar toe” (v) B. The sym-
metric matrixe”/2Be”"1/2 is associated to a quadratic form Bfi which has thus the same signature
(m,m) as D(u). Thene”'/2Be"'/? has the same signature &5 Indeed, the numbers of eigenval-
ues that are positive, negative, or 0 do not change undergrwemce transformation (by Sylvester's
inertial law). Finally if the signature of3 is (m,m) so is that of B. That argument also proves that
dim kerB = q— 2m — 1. O
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5.1.2 Choice of transmitted variables

We are looking for still another set of variables built frarm for which theg — 1 first jump relations in
the original system or equivalently in system (5B)v_,] = B[¥] = 0, will give the conservation of
precisely2m independent quantities, say;, , i.e.,2m = ¢ — (k + 1) Riemann invariants associated
to the eigenvalu@ of multiplicity £ + 1

[Wam] = 0.

These quantities, correspondingutq or rather combinations af, p for the Euler system, are meant
to be transmitted in the coupling which will follow.
More precisely, the aim of this section is to prove that trestists a change of variablésr;., wa,,, €),
which will be defined below, such that the weak solutions efdhiginal model (56), (57) equivalently
solve the system

8twk = 07

8tw2m — MamW;m = 0, (64)

1 * *
e + ax(—imeMme) =0,
wherelM is a diagonal invertible matrix anet* is a linear combination o . The interest of this change
of variables lies in the fact that;, , is the set o2m Riemann invariants we are looking for. Indeed,

the matrix M is constant, diagonal and invertible, hence if a solutiodiggontinuous across = 0
(contact discontinuity corresponding to the eigenvalue 0), the jump condition yields

M[w3,] =0 < [wy,] =0

and provides the set of transmission relations we are Igokin

We ‘decouple’ partly the system by diagonalizifiyy The spectruns of Bis S = {0, p;,1 < i <
2m} with multiplicity % for the eigenvalue 0 and the other eigenvalues satisfying 0. SinceB €
M(R?~1) is symmetric, there exists an orthogonal matixsatisfyingOO” = I,_; and

OBOT = diag(0;, M) = A

with M € M(R?*™) a constant diagonal matrix/ = diag(u;), havingm entriesy; < 0 andm
entriesy; > 0. Then we define the orthogonal matfixe M(R?), QQT = I, by

0 0
°= (0 1);

w = Qv = (Wi, Wam, s) .. (65)

and set

We adopt the notation: given a vectgr € R?%, y = (yi1,yo, ..yj)T corresponds to the partition
(i1,42,..,i;) of (1,2,..,q), (31,42, ..,i;) € (N*)7, i1 + iz + ... +i; = ¢. Also for the particular partition
(k,2m, 1), (¥)2m = Yam. With this convention, sinc@BQ” = diag (0, M, 0), we get from (62)

that smooth solutions satisfy

ath = 07
E?thm - M@x(Qv*)gm = 0, (66)
atS =0.

Again, since) has constant entries, only the last equation is not satisfietiscontinuous solutions.

24



We now introduce

wh= Qv = (OV;—M 3*) = (Wl:7wzm7 3*) (67)
so that (66) writes
ath =0,
atVV2m - Ma’cw;m =0, (68)
E?ts =0.

Let us check the following.

Lemma 3. The mappingy — £(w) = e(QT'w) is strictly convex and’ (w)T = w*.

Proof. We use the formula to express the derivative of a compounctibum It gives (using the differ-
ential form fore”)
E"(w) (w1, wa) = €' (QTw) - (T wy, 0 wy)

or using the matrix form for the Hessiafi(w), £”(w) = Qe”(QTw)QT which proves the convexity
of £ sincee” (v) is positive definite. O

Observe that (w(v)) = e(QTw(v)) = e(v). Then& is an entropy for system (68) and the polar
variable&’(w) is in factw™* = Qv*, i.e.

E'w)T =av*

(the similarity transformatiof2 commutes with the conjugate). Indeed, for &ny RY, the linear form
&' (w) satisfies

E'(w) -h=¢(Q"w) - QTh
and if we identify both€’(w) ande’(v) with line vectors inR?, it gives

E'w) = (QTw) = Qe (v)T = Qv*.

Let us now consider the system satisfied by the set of vagaifle= (w,_1, ¢)?, replacing the equation
on the entropy by the original equation im. It can be checked that® is also an admissible change
of variables and smooth solutions of (66) solve the energyaton. In order to express the flux in
terms ofw¢, we notice that since” = Q7w* and¥” BV = vi_,TOTAOV;_,, we get¥’ BY =
w;_lTAw;_1 = w3, T Mw3, because of the specific form af= diag (0, M). Thus, in variables

w® = (wg_1, e)T = (Wg, Wo, e)T (69)
we get as expected the system (64)

ang = 0,
8tw2m — MamW;m = 0,

1 * *
de + aw(—imeMme) =0.
System (64) is nowequivalento the initial one (they have the same smooth and discontimaolutions)
since the last equation is now also satisfied by discontissolutions of (56), (57). Ang/5, . is indeed

the set o2m Riemann invariants we are looking for, while theomponents ofv;, ands are common
Riemann invariants for the other characteristic fielgs# 0.
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5.1.3 Choice of coupling variables

The ‘final’ set of variables we are going to use for coupling is
z = (Wka W;ma e)T' (70)

Let us check first that it is indeed admissible. The resulti®previous section prove that it is sufficient
to ask for the transmission ®f3, , since bothw;, ande are free of constraints at the interface.

Lemma 4. The mappingy — z defines an admissible change of variables.

Proof. Recall thatw, z are defined byw = (wx, wan,, s)? andz = (wy, w3,,,e)T, with e = £(w)
strictly convex. Hence it is enough to prove that #e x 2m matrix V., w3, = ((Qws,, ; W5y, ;)i.7)
is invertible. We havew* = &'(w)T, thus(w*) (w) = £”(w). Let us write€” (w) in blocks corre-
sponding to the the partitiork(2m, 1), i.e. to the decomposition @9 in R* x R?™ x R

Eyr  Erom  Era
g//(w) = E2m,k E2m,2m E2m,1
Eix  Eiom  Ein

The matrix corresponding ®©,,,, w3, is the2m x 2m diagonal blockEy,, 2,,, extracted fron€” (w)
which is symmetric positive definite. This means tigt,, 2,,,(w) is the restriction o£”(w) to the
subspacgr = (0, r2,,,0), o2, € R?™} and thus is invertible. O

Example. Let us explicit the above computations for the Euler systers, (1,v,e)”, v = (1,v,s)7,
Se = %, u* = %(p, —0, )T, 0 = (p, —0)T,v* = (—p,v, T)T, k = 0,m = 1, then

0 1 -1 0 1 -1 1
p=(3 )= (0 )o-5(001),
so thatw = Qv = (%(—T + v), %(T +v),s)T and the components af; = —O¥ = %(v +

p,v—p)T are indeed 0-Riemann invariants. The malftbx, >, Which is the first x 2 diagonal block
OTe"(v)220, extracted fron€” (w) = QTe” (v)Q, is given by
> _1/1+ Cc? 1-C?
2m,2m—2 1_C2 1—|—C2 :

Indeed,e/(v)T = v* = (—p,v,T)7 so that

—0p O
e//(v)z2 _ < . p 1) :

with —0,p(7, s) = C2. O

5.2 The coupling of general Lagrangian systems

We now consider the coupling of two general systems (1)(2ref), are of the form (57) with the
same matrixB but with two distinct entropy functions involved in the défiion (59) of W.

Thus, following the previous study, we start from two syssemmich we can write in the equivalent form
(64) with the set (69) of variables® = (w,_1,¢)T, each system is endowed with a strictly convex
entropy functions;, = s;(w°), sg = sg(w®), and we have = @ + e with (1, s) — e(7, s) strictly
convex. We want to express the coupling condition in the 6} ¢f variablesz = (wy, w3, e)”
which means that we want teansmitws,_ . Note that considered as functionmfws;,, depends on the
choice of the closure relation.
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5.2.1 The coupling conditions expressed in variables

Recalling (7), we write

{ We(0_7 t) € OL((PL(Z(0+7 t)))? (71)

W8(0+7 t) € OR(@R(Z(O_> t)))>

wherew® = o.(z) inz < 0, w® = pg(z) inz > 0. We aim to prove that (71) gives the continuity of
w5, (for the Euler system, this means the continuity@ndp ) at the interface.
This result is stated in the following proposition. It wilebestablished for entropy functions close
enough so that the following assumption is true: given, dor= L, R, a basis of eigenvectors
(r§)1<j<q Of the Jacobian matrig, and (r$,,,)1<;<2m the corresponding basis Bf>™, the vectors
(C s T s s TR o TR 1 0 TR 0 s s T 0, ) Sl fOrm @ basis ofR?™. The vectors will in
fact be expressed as functionsvof.

Proposition 7. The coupling conditions (71) lead to the continuityvaf,, at the interface: = 0.

The proof relies on some more technical lemmas.

Lemma 5. Given a state,, IetCJLF(z) be defined as the projection (on t¢,,— hyperplane) of the set
of states that can be connectedgg(z) by (at most)m L—waves associated to positive eigenvalues
AJL, Jj€{m+1,---,2m} and similarlyC(z) as the projection of the set of states to whigf(z) can
be connected by (at most) R—waves associated to negative eigenvaw?sj € {1,---,m}. Then
(71) implies

wh,(0—,t) € CL(2(0+,1)), W,,(04,t) € Cr(z(0—,1)).

Proof. By definition of the admissible sé;, there exists a staw@® < 2 such that

W@(o_’ t) = WL(0_7 We—7 SOL(Z(O—F? t)))
The L—Riemann problem between® andy (z(0+,t)) is thus built with a succession of (at most)
m L—waves (with negative speed) betweefi andw®(0—,t), a 0—contact discontinuity at = 0
betweerw®(0—,¢) and a statevi’L and (at most)n L—waves (with positive speed) betwewriL and

¢ (z(0+,t)). This yields that
* e, L *
W2m(w+ ) = W2m(0_7 t),

and thus, after projection dk*™ (thew3,, — hyperplane)ws, . (0—, t) belongs to the se&€} (z(0+, 1)),
defined as the projection (on the; — hyperplane) of the set of states that can be connected to
©r,(z(0+,t)) by L—waves associated to positive eigenval&%sj e{m+1,---,2m}.

Similarly by definition of the admissible sély, there exists a stat@® < €2 such that
We(0+> t) = WR(O_H @R(Z(O_v t))» Wj—)

The R—Riemann problem betweepr (z(0—,t)) andw<_is thus built with a succession of (at most)

R—waves betweem(z(0—, ¢)) and a statav®", a0—contact discontinuity at = 0 betweenw®"
andw*(0+,¢) and (at mostjn R—waves betweew*(0+, ¢) andw¢ . This yields that

W (W) = W, (0+,1),

and thus, after projection &?™ (thews,, — hyperplane)ws,, (0+, ) belongs to the sl (z(0—,1))
defined as the projection of the set of states to whigtiz(0—,¢)) can be connected big—waves
associated to negative eigenvaluds j € {1,---,m}. O
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However, the proof of the continuity of5,, at0 supposes that we can parametrize correctly the pro-
jection of the wave curve€%(z(0—,t)) or Cf (z(0+,t)), at least locally. For instance, for the Euler
system, we are able to parametrize the projection of the waxees in the(v, p)—plane in the form

v = ®(p). The parametization is proved in the following lemma whereugse the same notations as
those introduced in Lemma 5.

Lemma 6. For given states® characterized byt = (wif, w3, *, e*)7, the curveCp(z~) can be

parametrized fof~ = (fj‘) e R™, \gj—y small enough by
Won(E7) = Wi+ &l (z7) + O0(EP);
j=1
similarly C} (z*) can be parametrized fgr = (") € R™, || small enough, by

Wzm(f—’_ W2m + Z ] j2m +O(’§+‘)
j=m+1

Proof. Let us first consider a discontinuous solution of (64). lisfigs the following jump conditions

—O’[Wk] = 0,
—0[Wam] — M[ws3,)]

—ole] = 5w}, " Mw,

0, (72)
| =
in particular[ws, ] = —o M ~![ws,,] with M diagonal.

A shock corresponds necessarily tg-acharacteristic field associated to a non null eigenvalye
Jj € {1,---,2m}. Assume first, only in order to simplify the presentatioratthll the corresponding
fields are genuinely nonlinear (GNL). We know that the jump] is an eigenvector say; of the matrix

noted in a shortened wady®

1
D¢ =D(w®,wS) = / D(w® + s(wl —w<))ds
0

corresponding to the eigenvalae

Note that the choice of variableskind of decouples the system in three subsystems,
owy = 0,
OiW5,, — Eom om MOyws5,, = 0, (73)
dre + 9y (— 1w2mTMw2m) =0.

The matrixD*(z) of this quasilinear systertyz + D*(z)0d,z = 0 is (in block of sizes corresponding
to the decompositiop = k + 2m + 1)

0 0 0
D*(Z) = 0 _E2m,2mM 0]. (74)
0 Biom 0

The Jacobian matrix of system (64), no®d is similar toD* and has the same structure in blocks as
D*(z)

0 0 0
D(We) = O —MEQQO O . (75)
0 BiomEomom 0
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Hence, given the structure dD(w®) (see (75)), this eigenvectar; of D¢ has the formr; =
(Og, rijm,rj,e)T. Now, by (74), (75), the matrices extracted frdbnandD* are given byD3, o, =
—E2m72mM andnggm = —MEQm’Qm, we write

* _ -1 _ —1ne e _ e e Wz
[WZm] =—-oM [Wzm] =-M D2m,2mrj,2m - E2m,2mrj,2m =Tjom

with shorthand notations expressing thas, = E5, .15 ,,, is an eigenvector db3,,, ..
Thus we can parametrize the-shock curve in a decoupled way. For a given left state cheniaed

byz™ = (w, ,w5,,~, e~)T, the curve (thg —shock curve) of states which can be connectezitdy

a j—shock can be parametrized in variableand for|¢|, small enough{ < 0 (this results from Lax
entropy condition) and we may write

Wk(&) = _7
{ Wi (€) = Wy~ + Exjom(z™) + O(E2) (76)

and the last equation of (72) which we write

_ 1 x T *
6(5) =e + %[W%n MWZm]‘

Now, a j—rarefaction curve, where the indgxcorresponds again to a non null eigenvalig j €

{1,---,2m}, is (in variablez) an integral curve of ;(z) and thus satisfies
d&Wk = 0,
77
{ deW3,, = Tjom(2(E)), (77)

together with
d¢s = 0.

For a given left state™ = (w, , w3,,~,e")7, the curve of states which can be connectedtdy a
j—rarefaction can be parametrized for- 0 small enough by

wi(§) = wy,
Wi, (E7) = W5, +Erjom(z7) + O(€?) (78)
e(§) = E(wy , w3, (£),s7).

E(w) is a function ofw = (wy, wam, s)?, and we have seen th&t,,, w3, is invertible, hence the
notation& (wy, w3, , s) is a short way of writingg (wy,, wa, (W3,,), s).

Now if a characteristic field sayf, is linearly degenerate (LD), the result still holds sinee turve of
states which can be connectedztoby a j—contact discontinuity is also an integral curvergfz) that
can be parametrized in the same way.

Thus, for a given left state™ = (w, ,w3,,”,e”), the curveC,(z~) projection of the set of states
to whichp,(z™) can be connected by (at most) R—waves,j—rarefaction,j—shock (if thej—field

is GNL) or j—contact discontinuity (if it is LD), each associated to aateg eigenvalue)\f, Jj €

{1,--,m}, can be parametrized fgr = (§;) € R™, [¢; | small enough by

Wzm(g_) = ng_ + ij_rf2m(z_) + O(’S_yz)

i=1
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Similarly, for C} (z™) projection of the set of states to whigh,(z") can be connected by (at most)
L—waves,j—rarefaction orj—shock orj—contact discontinuity, each associated to a positive eigen
value !, j € {1,---,m} can be parametrized fgr = (¢) € R™, |¢ | small enough, by

W;m(f—’_ W2m + Z j ]2m +O(’§+‘)
j=m+1

which ends the proof of the lemma. O

Proof of proposition 7. We apply the above results 3 = z(0+,¢),z~ = z(0—, t), and assume that
(z(0+,1)),1 < j <m,rk, (z(0—,t)),m+ 1 < j < 2m are linearly independent. We write

sz 7,2m
w040 = W5, 0, 0) b S & e (a(0-0) +O( P 79
Wi (0=, 1) = w3, (00, 8) + 3257, 1 &1k, (2 (0+ t)) + O([€ ).
AssumeS = (£7,£7) is non null. This would imply
moo¢- 2m £+
Z Ej|r§?2m(z(0_vt)) = - Z |£| j2m( (O+ t)) +O(|£|)
j=1 j=m+1

This holds for any¥ # 0 small enough, letting tends ta), this yields that some of the vectarﬁgm, 1<
i<m andr] am, M+1 < j < 2m are linearly dependent in contradiction with our assunmptidence
§ =0andws, (0—,t) = ws, (0+,t), which concludes the proof.

The fact that the vectors?,, , (z(0+,1)),1 < j < m, rfy, (2(0—,1)),m + 1 < j < 2m are linearly
independent can be proved, by some technical continuityneegt, using the fact that we have assumed
that the entropy laws are close enough so that the eigemsedtg, (z),1 < j < m,rf,, (z),m+1 <
j < 2m are independent. Indeed, due to the coupling condition, rwmvkthatz(O— t) andz(0+,1¢)
are connected by, — (or equivalentlyR—) waves, hence, with a possible changeij¢—|?) we can

take all the eigenvectors evaluated at the same state, t) (or z(0—, t)). O

5.2.2 The coupled Riemann problem

We are given two nearby constant state$ or equivalentlyz, = (w,f,wzmi, et), wherew® =

¢r(z—), wi = ¢r(z4), and we want to solve the coupled Riemann problem i.e. (6#) wi =
s,(w®), orin variablez, e (7,s) in x < 0, sp = sgp(w®) oreg(r, s), in x > 0, the initial condition

wé,inz <0
w(z,0) = { w, inz > 0. (80)

together with the coupling conditions (71).
Theorem 1.Assuming the above hypothesis, the coupled Riemann profena unique solution.
Proof. We try to connect the states by a succession of elementargswéat mostyn L—waves, each

associated to a negative eigenvak§e< 0,7 €{1,---,m}, betweerw® andw®(0—), a ‘discontinu-
tity’ at the interfacer = 0 betweenw®(0—) andw*®(0+) satisfying the coupling conditions (71) and
(at mostym R—waves, each associated to a positive eigenv}ajﬁe 0,7 € {m+1,---,2m} between

w(0+) andw¥.

Following the proof of proposition 7, we intend to ‘projecth thews, , hyperplane since the discon-
tinutity between the state“(0—) andw®(0+) is characterized by, (0—) = w3, (0+4). This gives
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2m unknown quantities¢;)i1<;<2m Characterizing the componenss; , of the intermediate constant
states, sayv; ,, between the.—waves (inz < 0) or R—waves (inz > 0). These quantities are ob-
tained by writing the&m equations expressing thal;* belongs to thg —wave curve throughvj_l,* or

w¢, ;. according to whethejis in {1,..m} or {m + 1, .., 2m}). Using the parametrization of Lemma

6, it results in

{ W3, (0, )

w3, (0+,1)

(Whm) ™+ 32701 65T am (2(0—,8)) + 0(|E )

8
(Wh)* + S0 6B, (a(0+, 1) + O(JE[2). (81)

Now, since thém vectorSrﬁm(z(O—, t)), erm(z(OJr, t)) are independent, thanks to the inverse map-
ping theorem, we conclude that theexist and are unique far™ sufficiently close.

We already know that ther;, are constant across the non 0 characteristic fieldswhuis—) = w,,
wi(0+) = w; . If there were only rarefactions, we could conclude thatiso is constant so that
s..(0—) = s7, sr(0+) = s%, in that case the solution is thoroughly determined. Howefrere have a
j—discontinuity, we know from the last equation in (72) thasiin fact completely determined by the
w5,,, components which are already known, so that, in that cas¢tte@rgument is completed. [

Note that the coupling we have performed is conservativeyning that
fr(u(0—,1)) = fr(u(0+,1)).

Indeed, at the interface, (64) shows that is conserved (the corresponding flux is null) whilg,,
beeing continuous, the remaining components of the leftreyid fluxes are equal. This also holds in
conservative variables since constant linear combinations of the above varial@esm continuous
at the interface.

5.3 Conclusion and perspective

We have been able to explicit coupling conditiongphysicalvariables and then to solve the coupled
Riemann problem in a unique way for a rather wide class of ygtems whose equations are written
in Lagrangian coordinates. Since the interface is chanatite only the Riemann invariants of the
eigenvalue\ = 0 are constant.

Let us note byW, r(&;u_, uy) this solution of the coupled Riemann problem. It can be used a
building block for a numerical scheme. Indeed, we can defi@®@dunov scheme with numerical flux
g¥9d(u, v) with (see (9)(10)) the usual Godunov schemes in each hatespa

{ gf;%d(uj_l/2,uj+1/2) = gEOd(uj—1/2>uj+1/2), Jj<0 (82)
g7 i (w10, wj41/2) = 857 (w110, Wj41/2), >0

wheregG°? denotes the Godunov flux fér, which involves usual (i.e., uncoupled) Riemann problems
and again two fluxes at the interfage= 0

{ g (uy o1y ) = FL(WL R(0—5u_y 9,1y 2)), (83)
God+ _ .
grr  (u_iy2,u1y2) = fR(WL R(0O+5u_1/2,u1/2)).

The variablesw3,, involved in these fluxes coincide. For instance, for the Lidtaler sys-
tem, the flux is(—v,p,pv)” so that the two fluxes do coincidl, (Wi zr(0—;u_q/0,uy)) =
frR(Wpr r(0—; U_j/,Uy/2)) = (—vo, po, povo)” if vg, po denotes the common velocity and presure
of the statéeW, g(0—;u_;/5,1y/2).
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The above analysis can also be used for the coupling of twerEyistems (in Eulerian coordinates)
in primitive variables using a Lagrange+projection scheinethe Lagrangian step, we solve the
Lagrangian system on one time step with some two-flux methbidhwensures the transmission of
v, p and then project back on the Eulerian grid, thus the Lageangiep ensures the continuity of the
Riemann invariantsvs, , i.e. ofv, p for the usual Euler system. A special treatment of the ptigjec

step (with mean pressure projection) will preserve thidioaity. This has been performed and the cor-
responding scheme is used for the coupling of two Euler sysigith differenty—law (we refer to [4]).

This work falls within the scope of an ingoing joint reseapiogram on multiphase flows between
CEA and University Pierre et Marie Curie—Paris 6 (see [2}hmframework of the Neptune project.
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