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Abstract

This work is devoted to the coupling of two fluid models, such as two Euler systems in Lagrangian
coordinates, at a fixed interface. We define coupling conditions which can be expressed in terms of
continuity of some well chosen variables and then solve the coupled Riemann problem. In the present
setting where the interface is characteristic, a particular choice of dependent variables which are trans-
mitted ensures the overall conservativity.
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1 Introduction

The problem of coupling two different fluid models at a fixed interface stems from the need of coupling
thermal-hydraulic models within the frame of a new generation of two-phase flow codes for nuclear
reactors. These codes are generally built upon distinct models, each being devoted to the particular flow
conditions taking place in a given reactor component. The simulation of the whole device thus requires
transient exchange of informations at the interface of two adjacent components. Let us underline that
the coupling problem actually arises in various other physical settings (see [13] or instance).
In ideal cases, physical arguments, such as the continuity of some primitive quantity, might help defining
the transmission or coupling conditions. Even in this case,both theoretical considerations and numer-
ical results obtained on some significant tests when coupling Euler systems (see [3]) will prove that
not any coupling based on continuity arguments is feasible.This also gives rise to interesting questions
(nonuniqueness of self-similar solutions) and has led us toanalyze the problem in an abstract frame.
The theoretical study of these coupling conditions was initiated in the scalar case [12], then for lin-
ear systems and the usual Lagrangian system in [13]. In the first paper new coupling conditions have
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been formalized which result by expressing that two boundary value problems should be well-posed,
and resume to impose as far as possible the continuity of the solution at the interface without impos-
ing the overall conservativity of the coupled model. For hyperbolic systems of conservation laws, the
well-posedness of initial boundary value problems is difficult and the boundary conditions have been
expressed in terms of Riemann problems in [13]. This approach is well suited for the numerical meth-
ods we are interested in implementing and linked to the theoretical results concerning the convergence
of the “two-flux method” in the scalar case (see [12], and also[10]).
In fact this formalism can be well understood in the particular case of the Euler system in Lagrangian
coordinates since the geometry of characteristics at the interface is fixed and no resonance phenomena
an occur. This enables us to express the coupling conditionsin terms of continuity of some variables
and then to solve the coupled Riemann problem in a unique way.In this work we justify the choice of
dependent variables which are transmitted.
This may seem at first glance a rather theoretical exemple. Onthe one hand, it is indeed a very particular
and very interesting case of coupling to analyze because of the special property that0 is an eigenvalue.
On the other hand, the analysis will justify the use of ‘Lagrange+projection’ schemes when coupling
systems in Eulerian coordinates at a fixed interface (cf. [6]), which means that it provides an useful tool
to couple two Euler systems at a fixed interface (which in thatcase is not characteristic). One may then
ask why couple two fluid models with different equations of state at a fixed interface since it may seem
an unphysical example? The answer is that is a simplified model of what we get when coupling more
complex models associated to different systems of pde’s whose closure laws are not strictly compatible,
as will happen for instance in the context of thermal-hydraulic models.The main lines of the present
work were announced in [5].

The outline of the paper is as follows. In Section 2, we introduce the framework of interface coupling
and define the coupling conditions in terms of traces of solutions of Riemann problems. These condi-
tions are explicited and the coupled Riemann problem is solved for twop−systems then in Section 3
in the case of two Euler systems in Lagrangian coordinates. Section 4 treats the coupling of two sys-
tems of different dimensions: thep−system and the Euler system. Section 5 introduces a more general
theoretical setting following Després’ formalism (cf. [7]) in order to extend the coupling to more gen-
eral Lagrangian systems. Some changes of variables are introduced in order to express the coupling
conditions and the coupled Riemann problem is solved. Several numerical results will illustrate the
theory.

2 The interface coupling approach

2.1 The coupling procedure

We first describe the theoretical settings and precise our notations.
Let Ω ⊂ R

q be the set of states and letfα, α = L,R, be two smooth functions fromΩ into R
q. Given a

functionu0 : x ∈ R → u0(x), we want to find a functionu : (x, t) ∈ R × R+ → u(x, t) ∈ Ω solution
of

∂tu + ∂xfL(u) = 0, x < 0, t > 0, (1)

∂tu + ∂xfR(u) = 0, x > 0, t > 0, (2)

satisfying the initial condition
u(x, 0) = u0(x), x ∈ R,

and at the interfacex = 0, a coupling condition which we now describe.
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This coupling condition has been chosen in order to obtain two well-posed initial boundary-value prob-
lems inx > 0, t ≥ 0 and inx < 0, t ≥ 0. This means that the traceu(0−, t) (resp.u(0+, t)) should
be an admissible boundary condition atx = 0 for the system inx > 0, t ≥ 0 (resp.u(0+, t) is an ad-
missible boundary condition atx = 0 for the system inx < 0, t ≥ 0). We will assume that the systems
are hyperbolic, i.e. forα = L,R, the Jacobian matrixAα(u) ≡ f ′α(u) of fα(u) is diagonalizable with
real eigenvaluesλα,k(u) and corresponding eigenvectorsrα,k(u), 1 ≤ k ≤ q. Then rigorous ways of
writing the boundary conditions can be found in [9], [14] butthe most practical way to express them
involves the traces of the solution of a Riemann problem. Thus, we introduce the self-similar solution

u(x, t) = Wα(x/t;uL,uR)

of the Riemann problem for the system associated to the fluxfα, i.e. the Cauchy problem with initial
condition

u(x, 0) =

{

uL, x < 0,
uR, x > 0.

(3)

We set for allb ∈ Ω,

OL(b) = {w = WL(0−;uℓ,b);uℓ ∈ Ω},
OR(b) = {w = WR(0+;b,ur);ur ∈ Ω} (4)

and following [8] we define admissible boundary conditions of the form

u(0−, t) ∈ OL(b(t)), t > 0,

and
u(0+, t) ∈ OR(b(t)), t > 0,

for (1) and (2) respectively. Hence natural coupling conditions for problem (1)–(2) consist in requiring
{

u(0−, t) ∈ OL(u(0+, t)),
u(0+, t) ∈ OR(u(0−, t)). (5)

This means that at each timet > 0, there exists some statesu−(t),u+(t) ∈ Ω such thatu(0−, t) =
WL(0−;u−(t),u(0+, t)) andu(0+, t) = WR(0+;u(0−, t),u+(t)). Using the formulation with Rie-
mann problems to express admissible boundary conditions ismore practical and suitable for the numer-
ical approximation of the coupled problem. It is thoroughlyjustified in the scalar case and for linear
systems. In [12], devoted to the scalar case, we have shown that this was indeed a reasonable way of
coupling two scalar conservation laws in the sense that, in meaningful situations, the coupled prob-
lem has a unique solution and a ‘natural’ numerical upwind scheme (the so called two-flux scheme)
converges to this solution. The case of linear systems is treated in [13].

Condition (5) resumes in a number of cases to the continuity of the solution at the interface

u(0−, t) = u(0+, t), (6)

at least (6) holds true whenever the interface is non characteristic. Thus we may interpret the coupling
condition as a way of ensuring in a weak sense the continuity or the transmissionof the conservative
variablesu.

However, when dealing with physical systems, we may prefer to transmitnot the conservative variables
but otherphysicalvariables. Indeed, define two distinct change of variables

v → u = ϕα(v);α = L,R
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from some setΩv ⊂ R
q ontoΩ such thatϕ′

α(v) is an isomorphism ofRq. Then ifc is a given boundary
physicaldata, settingbα = ϕα(c), we define

OL(bL) = {w = WL(0−;uℓ,bL);uℓ ∈ Ω},
OR(bR) = {w = WR(0+;bR,ur);ur ∈ Ω}

which are admissible boundary conditions for the systems (1) and (2) respectively. Thus we now require
{

u(0−, t) ∈ OL(ϕL(v(0+, t))),
u(0+, t) ∈ OR(ϕR(v(0−, t))). (7)

SinceϕL(v(0+, t)) 6= ϕR(v(0+, t)) = u(0+, t), the boundary sets in (7) and (5) are distinct. Con-
ditions (7) will ensure the transmission ofphysicalvariables and whenever possible their continuity
instead of (6)

v(0−, t) = v(0+, t), (8)

again when the interface is non characteristic.

We will be interested in the sequel in solving thecoupled Riemann problem(1), (2), (3) with coupling
conditions given either by (5) or by (7) for some change of variablesϕα to be specified.

2.2 Numerical coupling

Let us briefly recall the numerical procedure for the sake of completeness since numerical illustrations
are provided in the following sections. We use a finite volumemethod for the discretization of each
system (1), (2). Let∆x, ∆t, denote the uniform space and time steps, we setµ = ∆t/∆x, tn =
n∆t, n ∈ N, and consider the cellsCj+1/2 = (xj , xj+1), with centerxj+1/2 = (j + 1/2) ∆x, j ∈ Z.
The initial condition is discretized as usually by

u0
j+1/2 =

1

∆x

∫

Cj+1/2

u0(x)dx, j ∈ Z.

For the numerical coupling, we are given two numerical fluxesgL, gR (gα is consistent withfα) cor-
responding to 3-point schemes (we assume these schemes are monotone in the scalar case under some
CFL condition), we define the scheme by

un+1
j−1/2 = un

j−1/2 − µ
(

gn
L,j − gn

L,j−1

)

, j ≤ 0, n ≥ 0, (9)

un+1
j+1/2 = un

j+1/2 − µ
(

gn
R,j+1 − gn

R,j

)

, j ≥ 0, n ≥ 0, (10)

(see also [1] in another context). So we have one fixed interface atx = 0 and two fluxesgn
α,0. We have

gn
α,j = gα(un

j−1/2,u
n
j+1/2), α = L, j < 0, α = R, j > 0, and for the fluxes at the interfacex = 0, we

choosegn
α,0 according to the coupling procedure. The choice

gn
α,0 = gα(un

−1/2,u
n
1/2), α = L,R

corresponds to transmit the conservative variablesu. Namely, if j ≥ 0, the scheme (10) with fluxgR

consistent withfR approximates the IBVP (2) with initial conditionu(x, 0) = u0(x), x > 0 and for
boundary condition atx = 0, the scheme takesun

−1/2. Sincegn
L,0 6= gn

R,0, it is a nonconservative nu-
merical approach, as for the continuous problem. For example, the flux at the boundary with Godunov’s
scheme isgn

R,0 = fR(WR(0+;un
−1/2,u

n
1/2)). It has been proved in the scalar case (cf. [12]), that in a

number of practical situations, scheme (9)-(10) convergestowards a solution of (1)-(2) satisfying (5).
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Figure 1: The coupling conditions (5) for thep−system

We can also transmit thephysicalvariablesv by choosing

gn
L,0 = gL(un

−1/2, ϕL(vn
1/2)), gn

R,0 = gR(ϕR(vn
−1/2),u

n
1/2)

wherevn
1/2 = ϕ−1

R (un
1/2),v

n
−1/2 = ϕ−1

L (un
−1/2).

2.3 A canonical example: coupling twop−systems

We are going to illustrate the two choices in the coupling procedure on thep−system
{

∂tτ − ∂xv = 0,
∂tv + ∂xp = 0,

(11)

and then, in the following sections, for the Euler system in Lagrangian coordinates. Note however that
in this latter case, the interface is characteristic and will correspond to a contact discontinuity. Hence in
general, the coupling does not yield the continuity (6) or (8), we will see that it yields the continuity of
a subset of variables.

In (11),x stands for a mass variable,τ denotes the specific volume,v the velocity, and we assume that
the pressurep is a given decreasing functionp = p(τ). Let us consider the coupling of twop−systems

∂tu + ∂xfα(u) = 0, α = L inx < 0, α = R inx > 0, (12)

where






u = (τ, v)T , τ > 0
fL(u) = (−v, p)T , p = pL(τ),
fR(u) = (−v, p)T , p = pR(τ).

(13)

We assume thatp′α < 0, p′′α > 0, α = L,R. The two systems differ by the pressure lawp. An important
feature is that the signs of the two eigenvalues do not dependon u: λ1(u) = −c < 0 < λ2(u) = c,
c =

√

−p′(τ). Hence in the left (resp. right) half plane, there can be only1−waves (resp.2−waves).

We first transmit the conservative variables(τ, v). We denote byC k
α (u−) thekα−wave curve, i.e., the

set of states that can be connected to a given stateu− by akα−wave,k = 1, 2 (either rarefaction or
admissible shock) relative to thep−system with fluxfα, α = L,R. Expressing the coupling conditions
(5) gives (for the left conditionu(0−, t) ∈ OL(u(0+, t))) that u(0−, t) is connected tou(0+, t)
by a 2L−wave which meansu(0+, t) ∈ C 2

L(u(0−)) (we use shortened notation forC 2
L(u(0−, t))

and similarly (for the right condition) by a1R−wave (see Fig. 1). Thusu(0+, t) ∈ C 2
L(u(0−)) ∩
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Figure 2: The coupling conditions (7) for thep−system

C 1
R(u(0−)) and, since it is well known that the two wave curves intersectat only one point in the plane

(τ, v), at least away from vacuum (see for instance [11]), it yields

u(0+, t) = u(0−, t). (14)

Now the IBVP’s in both quarter planes(x < 0, t > 0) and(x > 0, t > 0) are also well posed if one
wishes to prescribe a given(v, p) on x = 0 in a weak sense, according to (7). Indeed, by assumption
p′α < 0, hence, we can define its inverse mappingτα(p) for α = L,R. Settingv = (v, p)T , we have an
admissible change of variables:u = ϕα(v) where

(v, p) → ϕα(v, p) ≡ (τ, v) (15)

is simply defined byτ = τα(p) (for instance ifpα(τ) = τ−γα , thenτα(p) = p−1/γα).

We now transmit this set of variables(v, p).

Proposition 1.For the systems (13), the coupling conditions (7) are equivalent to
{

v(0−, t) = v(0+, t),
p(0−, t) = p(0+, t).

(16)

Moreover, the solution of the coupled Riemann problem (12),(13), (3), (7) exists and is unique.

Proof. Let us express the coupling condition (7):u(0+, t) ∈ OR(ϕR(v(0−, t))) and u(0−, t) ∈
OL(ϕL(v(0+, t))), with more precisely v(0±, t) = (v(0±), p(0±, t))T and u(0−, t) =
ϕL(v(0−, t)), u(0+, t) = ϕR(v(0+, t)).

Firstu(0+, t) ∈ OR(ϕR(v(0−, t)) yields thatϕR(v(0−, t)) is connected tou(0+, t) = ϕR(v(0+, t))
by a 1R−wave. The idea is that we can parametrize the wave curves byp and represent them in the
(v, p)−plane (for details concerning the equations of the wave-curves, see [11], Chapter I, section
7). If the 1R−wave curve isC 1

R(u(0−)) = {(τ, v); v = Ψ1,R(τ)}, let C̃1
R(v(0−)) = {(v, p); v =

Ψ1,R(τR(p))} = {(v, p);ϕR(v, p) ∈ C 1
R(u(0−))}=ϕ−1

R (C 1
R(u(0−))) be its representation in the

(v, p)−coordinates, we then havev(0+, t) ∈ C̃1
R(v(0−)) (see Fig. 2).

Similarly, u(0−, t) ∈ OL(ϕL(v(0+, t))) yields thatu(0−, t) = ϕL(v(0−, t)) is connected to
ϕL(v(0+, t)) by a 2L−wave. We parametrize the wave curves byp and represent them onto the
(v, p)−plane. If the2L−wave curve isC 2

L(u(0−)) = {(τ, v); v = Ψ2,L(τ)}, let C̃2
L(v(0−)) =

{(v, p); v = Ψ2,L(τL(p))} = {(v, p);ϕL(v, p) ∈ C 2
L(u(0−))}=ϕ−1

L (C 2
L(u(0−))) be its representa-

tion in the(v, p)−coordinates, we then havev(0+, t) ∈ C̃2
L(v(0−)).
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Figure 3:τ, v, p in the transmission ofu = (τ, v) left / vs v = (v, p) right for the coupledp−system:
continuity of(τ, v) left / vs continuity of(v, p) right (numerical and exact solution)

We havev(0+, t) ∈ C̃1
R(v(0−)) ∩ C̃2

L(v(0−)) thusv(0+, t) = v(0−, t) because it is easy to prove
that the two curves intersect at only one point in the plane(v, p). Hence we do have continuity ofv, p,
not of τ sinceτ(0+, t) = p(0+, t)−1/γR 6= p(0−, t)−1/γL = τ(0−, t).
Under the assumptions made on thepα’s, existence and uniqueness of the solution of the coupled
Riemann problem, away from vacuum, follow as in the usual noncoupled case. �

The solution of a coupled Riemann problem is illustrated in Figure 3 for twoγ−laws,pα(τ) = τ−γα ,
γL = 1.4, γR = 1.6.

Remark 1. The choice of the transmitted variables is clearly non unique. The above argument may be
used for any other admissible change of variables of the formu = (τ, v) → v = (v, hα(τ)) provided
the corresponding functionshα, α = L,R are both strictly increasing or both strictly decreasing map-
pings. It happens that the flux(−v, p) in the preceding example may be taken as a set of dependent
variables. It will not be possible in the next example, wherethe flux is(−v, p, pv) since it would not
define an admissible change of variables. However, we may want to transmit part of the flux variables
(v, p) which will then also yield the transmission ofvp. Hence, in these particular examples, we are able
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to couple the two models by imposing the continuity of the flux, which might appear as aconservative
approach. �

3 Coupling two Euler systems in Lagrangian coordinates

3.1 The Euler system

We consider the full Euler system of gas dynamics in Lagrangian coordinates

∂tu + ∂xf(u) = 0 (17)

where
u = (τ, v, e)T , f(u) = (−v, p, pv)T . (18)

In (17),x stands for a mass variable while in (18),τ denotes the specific volume,v the velocity,e =
ε+ 1

2v
2 the specific total energy,ε the specific internal energy. We assume that the pressurep is a given

function p = p(τ, ε). We study the coupling of two such systems at the interfacex = 0 which now
happens to be characteristic. It has thus the physical interpretation of a contact discontinuity separating
two fluids with different equations of state

p = pα(τ, ε), α = L,R.

We denote by
fα(u) = (−v, p, pv)T , p = pα(τ, ε), α = L,R, (19)

the corresponding flux functions.

Let A(u) be the Jacobian matrix off(u)

A(u) =





0 −1 0
pτ −vpε pε

vpτ p− v2pε vpε



 ,

with the notations

pε =
∂p

∂ε
(τ, ε), pτ =

∂p

∂τ
(τ, ε), (20)

and we note when necessaryAα(u) that offα(u), α = L,R. The eigenvalues ofA(u) are

λ1(u) = −C(u) < λ2 = 0 < λ3(u) = C(u),

where
C(u) =

√−pτ + ppε

denotes the Lagrangian sound speed. Recall that the right eigenvectors ofA(u) can be chosen as

r1(u) =





−1
−C

p− Cv



 , r2(u) =





pε

0
−pτ



 , r3(u) =





−1
C

p+ Cv



 , (21)

while the left eigenvectors are given by

l1(u) = 1
2C2





pτ

−C − vpε

pε



 , l2(u) = 1
C2





p
−v
1



 , l3(u) = 1
2C2





pτ

C − vpε

pε



 . (22)
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In this case, the interfacex = 0 is characteristic (λ = 0 is an eigenvalue ofA(u)), and we have for each
system one strictly positive and one strictly negative eigenvalue. We are going to study the coupling
in two cases, transmitting either the conservative variables (condition (5)) or the primitive variables
(τ, v, p) (condition (7)). To justify the last choice, letu be a solution of system (17)-(18) containing
two states separated by a contact discontinuity atx = 0, u− ≡ u(0−, t) andu+ ≡ u(0+, t). Then we
have continuity of the 2-Riemann invariantsv, p

{

v− = v+,
p(τ−, ε−) = p(τ+, ε+).

(23)

When coupling the two systems (1) and (2) withfα given by (19), we may want to transmit also the
velocity and the pressure. We will show that it corresponds to the coupling conditions (7) expressed in
the primitive variables

v = (τ, v, p)T . (24)

Let us describe more precisely the change of variables

u = (τ, v, e)T = ϕα(v). (25)

Sincee = ε + 1
2v

2, we assume all along this paper that the functionsp = pα(τ, ε) may be inverted in
ε = εα(τ, p), which is the case for instance for a polytropic ideal gas satisfying aγ-law p = (γ− 1)τε,
more generally, we assume∂p

∂ε > 0.

3.2 Coupled Riemann problem with transmission of primitivevariables

This case is easier to deal with. Indeed, the Riemann problemfor (17)-(18) is usually solved using
primitive variables because the ‘projection’ of the wave curves on the(v, p)-plane are easily expressed.
Moreover, this choice is consistent with what we have done inthe isentropic case for thep−system.
Finally this choice appears fairly natural from a physical point of view since Proposition 2 below shows
that it corresponds totransmitp, v which are naturally transmitted when the two laws coincide.
Let uL and uR be two given states. We denote byC 1

R(uL) the 1−wave curve consisting of states
u which can be connected touL on the right by a either a1−shock or a1−rarefaction wave cor-
responding to the equation of statep = pR(τ, ε). Similarly, given a right stateuR, we denote by
Č 3

L(uR), the (backward)3−wave curve consisting of left statesu which can be connected touR by a
3−shock or a3−rarefaction wave corresponding to the equation of statep = pL(τ, ε). We denote by
C1

R(vL) andČ3
L(vR) the ‘projections’ (in a sense to be precised below) onto the(v, p)-plane of the

wave curvesC 1
R(uL) andČ 3

L(uR) respectively. In factCi
α(vL) is the projection of thei−wave curve

curveϕ−1
α (C i(uL)) expressed in primitive variablesv = (τ, v, p)T on the(v, p)-plane:

ϕ−1
α (C i

α(uL)) =
{

v = (τ, v, p)T ;ϕα(v) ∈ C
i
α(uL)

}

and
Ci

α(vL) =
{

(v, p); (τ, v, p)T ∈ ϕ−1
α (C i

α(uL))
}

.

Similar definitions for the backward wave curvěCi
α(vR) are in order.

We then make the following hypothesis

{

for any pair of states(uℓ,ur), the curves
C1

R(vℓ) andČ3
L(vr) may intersect at one point at most.

(26)

9



This assumption simply guarantees that the Riemann problemhas a unique solution. It can also be
expressed in terms of monotonicity of the corresponding curves, as illustrated in Figure 6,C1

α is de-
creasing anďC3

α increasing, and we refer to [15] for precise assumptions on the equation of state which
ensure this property (see however Remark 2 below).

Proposition 2.Assume the hypothesis (26). Then, in the case (24), the coupling conditions (7) lead to
{

v(0−, t) = v(0+, t),
p(0−, t) = p(0+, t).

(27)

In addition, the coupled Riemann problem has a unique solution (away fom vacuum).

Proof. By using the structure of the solution of the whole Riemann problem for the gas dynamics
equations with pressure lawpL, let us show that the conditionu(0−, t) ∈ OL(ϕL(v(0+, t))) means
that

(v, p)(0−, t) ∈ Č3
L(v(0+, t)). (28)

Let us first precise the states that are involved in the above expressions:

v(0+, t) = (τ(0+, t), v(0+, t), p(0+, t))T

ϕL(v(0+, t)) = (τ(0+, t), v(0+, t), e(0+, t))T

wheree(0+, t) = εL(τ(0+, t), p(0+, t)) + v(0+, t)2/2

u(0−, t) = (τ(0−, t), v(0−, t), e(0−, t))T

andp(0−, t) = pL(τ(0−, t), e(0−, t) − v(0−, t)2/2).
Then, by definition of the admissible setOL, there exists a stateu− ∈ Ω such that

u(0−, t) = WL(0−;u−, ϕL(v(0+, t))).

The L−Riemann problem betweenu− and ϕL(v(0+, t)) is thus built with a1L−wave between
u− and u(0−, t), a 2−contact discontinuity atx = 0 betweenu(0−, t) and a stateuL

+ and a
3L−wave betweenuL

+ andϕL(v(0+, t)). This yields that(vL
+, p

L
+) = (v(0−, t), p(0−, t)) and thus,

after projection on the(v, p)−plane,(v, p)(0−, t)) belongs toČ3
L(v(0+)). Similarly, the condition

u(0+, t) ∈ OR(ϕR(v(0−, t))) means that

(v, p)(0+, t) ∈ C1
R(v(0−)). (29)

If (26) holds, and away from vacuum, the curvesC1
R(v(0−)) andČ3

L(v(0+)) intersect at only one
point in the(v, p)−plane (see Figure 6 left); then (28)-(29) imply that(v, p)(0+, t) and(v, p)(0−, t)
must necessarily coincide since, in the(v, p)−plane, both(v, p)(0+, t) and(v, p)(0−, t) lie on both
curves, which proves the lemma.

Finally, we can solve the coupled Riemann problem followingthe usual procedure, by solving first the
systems of equations obtained by intersection of the projected curves (see [11]). The solution exists (if
no vacuum appears) and is unique. �

The result is illustrated in Figure 4 on a coupled Riemann problem for twoγ−laws,γL = 1.4, γR = 1.6.

Remark 2. The curveC 1
R(uℓ) is tangent atuℓ to the eigenvectorrR,1(uℓ) = (−1,−CR, pR −

CRv)
T (uℓ). In primitive variables, the curveϕ−1

R (C 1
R(uℓ)) is tangent toϕ′

R(vℓ)
−1(rR,1(uℓ)) =

10
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Figure 4:τ, v, p for the coupled Riemann problem for Euler system with transmission ofv = (τ, v, p):
discontinuity ofτ , continuity ofv, p atx = 0

(−1,−CR, C
2
R)T (uℓ) which is the 1-eigenvector in primitive variables and, by projection on the(v, p)-

plane,C1
R(vℓ) is tangent to(−CR, C

2
R)T (uℓ) or equivalently to(−1, CR,ℓ)

T at state(vℓ, pℓ). Similarly,
Č 3

L(vr) is tangent to(1, CL,r)
T at state(vr, pr). The vectors(−1, CR,ℓ)

T and(1, CL,r)
T are not colin-

ear. Thus hypothesis (26) is satisfied at least for nearbye states(uℓ,ur). It may be globally satisfied for
‘standard’ equations of state. �

3.3 Transmission of conservative variables. The polytropic ideal gas case

As already observed, the above derivation of the coupling condition in primitive variables was made
easy by the usual way of solving the classical Riemann problem in the(v, p)−plane. If we now want to
transmit the conservative variables, we must interpret thecoupling conditionsu(0−, t) ∈ OL(u(0+, t))
and u(0+, t) ∈ OR(u(0−, t)) in terms of conservative variables(τ, u, e). Again, the solution of
theL−Riemann problem between a stateu− andu(0+, t) is made of a1L−wave betweenu− and

u(0−, t), a 2L−contact discontinuity atx = 0 betweenu(0−, t) and a stateu(L)
+ and a3L−wave

betweenu(L)
+ andu(0+, t) (see Figure 5, left).

We first make the simplifying assumption that the two pressure laws areγ−laws:

pα = (γα − 1)ε/τ, γα > 1. (30)

We get that(v(L)
+ , p

(L)
+ ) = (v(0−, t), p(0−, t)), more precisely

v
(L)
+ = v(0−, t) (31)

and
pL(u

(L)
+ ) = pL(u(0−, t)) (32)

and thus(γL − 1)ε
(L)
+ /τ

(L)
+ = (γL − 1)ε(0−, t)/τ(0−, t), which implies

ε
(L)
+

τ
(L)
+

=
ε(0−, t)
τ(0−, t) . (33)

Following the usual way of solving the Riemann problem, we ‘project’ the condition

u
(L)
+ ∈ Č

3
L(u(0+)) (34)

on the(v, p)−plane.
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Figure 5: Coupling conditions (5) for Euler system:
u(0−, t) ∈ OL(u(0+, t)) (on the left),u(0+, t) ∈ OR(u(0−, t))(on the right)

Similarly, the solution of theR−Riemann problem betweenu(0−, t) and a stateu+ is made of a

1R−wave betweenu(0−, t) and a stateu(R)
− , a2R−contact discontinuity atx = 0 betweenu(R)

− and

u(0+, t) and a3R−wave betweenu(0+, t) andu+ (see Figure 5, right). This yields that(v
(R)
− , p

(R)
− ) =

(v(0+, t), p(0+, t)), more precisely

v
(R)
− = v(0+, t) (35)

and
pR(u

(R)
− ) = pR(u(0+, t)) (36)

and thus
ε
(R)
−

τ
(R)
−

=
ε(0+, t)

τ(0+, t)
. (37)

Again we ‘project’ the condition
u

(R)
− ∈ C

1
R(u(0−)) (38)

on the(v, p)−plane. Thus we have to meet the conditions

ML(0−) = (v(0−, t), pL(u(0−, t))) ∈ Č3
L(v(0+))

and
MR(0+) = (v(0+, t), pR(u(0+, t))) ∈ C1

R(v(0−))

and we can no longer intersect the two curves in order to solvethe problem. Figure 6 left (resp. right)
illustrates the position of the projected wave curves when the coupling conditions (7) (resp. (5)) are
satisfied. Indeed, at the difference with the previous case,since

C1
R(v(0−)) =

{

(v, p); (τ, v, p)T ∈ ϕ−1
R (C 1

R(u(0−)))
}

,

in the (v, p)−plane, the curveC1
R(v(0−) starts from pointMR(0−) = (v(0−, t), pR(u(0−, t))),

and not fromML(0−) = (v(0−, t), pL(u(0−, t))) (see Figure 6 right), anďC3
L(v(0+)) starts from

ML(0+) = (v(0+, t), pL(u(0+, t))). The intersection of the two curves does not solve the problem as
it did before.

In fact, the(v, p)− plane is not well suited, sincep is no longer a transmitted variable. For twoγ−laws,
because of (33)-(37), we can think of the plane(v, π = ε/τ), sinceπ is a variable independent of the
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Figure 6: projection of the wave curves: transmission ofv (left) - transmission ofu (right),
with C1

R− = C1
R(v(0−)), Č3

L+ = Č3
L(v(0+))

pressure law. Following the above arguments and projectingon the(v, π)−plane will lead to intersect
two curves. More precisely,

Proposition 3.Assuming (30), the coupling conditions (5) lead to
{

v(0−, t) = v(0+, t),
ε

τ
(0−, t) =

ε

τ
(0+, t).

(39)

Proof.Define
w = (τ, v, π)T

where
π =

ε

τ
, (40)

then the mapping̃ϕ by u = ϕ̃(w), and let

C̃1
R(w(0−)) =

{

(v, π); (τ, v, π)T ∈ ϕ̃−1
R (C 1

R(u(0−)))
}

with a similar definition for the backward curvẽ̌C
3

L(w(0+)). The projection on the(v, π)−plane of
(34), (38) together with (31), (37) (33), (37) then yields

(v(0−, t), π(0−, t)) ∈ ˇ̃
C

3

L(w(0+))

(v(0+, t), π(0+, t)) ∈ C̃1
R(w(0−)).

Now, assuming (26) implies that̃C1
R(w(0−)) and ˇ̃

C
3

L(w(0+)) intersect at only one point, since the
change of variablesπ preserves the respective monotonicity of the curves. We get

{

v(0−, t) = v(0+, t)
π(0−, t) = π(0+, t),

(41)
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Figure 7:τ, v, p in the transmission ofu = (τ, v, e) vs.v = (τ, v, p) for Euler system:
Discontinuity ofτ – Continuity ofv – Continuity ofp for v / Discontinuity ofp for u

which is the desired result.
The coupled Riemann problem is then solved as before since wecan parametrize each wave curve by
π instead ofp. �

A coupled Riemann problem is illustrated in Figure 7 where the transmissions of conservative and of
physical variables are compared.

We can easily extend the result to the case of pressure laws which can be written as a function of one
dependent variableπ = π(τ, ε) i.e. such that

pα(τ, ε) = pα(π(τ, ε)).

The above argument will show that(v, π) is continuous at the interfacex = 0.

Consider now two thermally perfect gases, such thatpτ = RT (ε) (T is the temperature). The pressure
law is of the following form

p = p(τ, ε) = p̃(τ, π) (42)

with againπ = ε/τ and satisfies the identity

p = −τ p̃τ + πp̃π

We have thus
−pτ

pε
=

p

p̃π

or we can also write

−pτ

pε
=

T (ε)

τT ′(ε)

If this quantity is independent of the closure law, we can take it as dependent variable and conclude that
it will be continuous at the interface together with the velocity.

Remark 3.Assuming aγ−law yields that the eigenvectorr2(u) in (21) can be chosen as(1, 0, ε/τ)T =
(1, 0, π)T . Thus the functionr2(u) does not depend on the pressure law and (39) means that
rL,2(u(0−, t)) = rR,2(u(0+, t)). In the linearized approach, linearizing the left problem at u(0−, t)
and the right problem atu(0+, t), and coupling these two problems, the necessary condition (3.19) of
[13] requiringdimE = 1 is indeed satisfied sinceE = [rR,1rR,2] ∩ [rL,2rL,3] = RrL,2 = RrR,2,
where the notation[rα,irα,j ] denotes the vector space spanned by the vectorsrα,i, rα,j .

The above section brings some precisions to the corresponding section (Section 4) of [13] where it was
not specified that the coupling was achieved in primitive variables. �
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3.4 Transmission of conservative variables. The general case

Let us first see that the velocity needs not be continuous for general pressure laws. Assume first that
v is continuous at the interface

v(0+, t) = v(0−, t).
If, for instance, the3L−wave in theL−Riemann problem and the1R−wave in theR−Riemann
problem are both shocks (see Figure 5), we get from the Rankine-Hugoniot relations concerning the
3L−shock

pL(u(0−, t)) = pL(u(0+, t))

and
pR(u(0−, t)) = pR(u(0+, t)).

For instance to get the first formula, we write the Rankine-Hugoniot relation concerning the3L−shock

−σ3,L(v(0+, t) − v
(L)
+ ) + (pL(u(0+, t)) − pL(uL

+) = 0,

with the invariance ofv, p at the contact discontinuity

v
(L)
+ = v(0−, t), pL(uL

+) = pL(u(0−, t))

(similarly the1R−shock relation for the second formula). Consider for instance two pressure laws of
Grüneisen type

pα(τ, ε) = (γα − 1)
ε

τ
+ d2

α(
1

τ
− 1

τref,α
), α = L,R. (43)

For (43), the continuity ofpR andpL yields

(γα − 1)
( ε

τ
(0+, t) − ε

τ
(0−, t)

)

+ d2
α

( 1

τ(0+, t)
− 1

τ(0−, t)
)

= 0, α = L,R

which implies, as soon as
d2

L

γL − 1
6= d2

R

γR − 1
, (44)

that ε
τ (0−, t) = ε

τ (0+, t) andτ(0−, t) = τ(0+, t) so that

ε(0−, t) = ε(0+, t), τ(0−, t) = τ(0+, t).

Remark 4. Thus, in the case (44), it shows that the velocity need not be continuous, and if the
velocity is continuous, the whole state is continuous at theinterface u(0−, t) = u(0+, t) (but
pL(u(0−, t)) 6= pR(u(0+, t))). That may happen with particular given statesuL,uR. Indeed if the
coupled Riemann problem is solved withu(0−, t) = u(0+, t) notedu(0) = (τ0, v0, e0), then since
u(0) = u(0−) ∈ C 1

L(uL) andu(0) = u(0+) ∈ Č 3
R(uR), it imposes that the two curves inR3 in-

tersect, not only their projection on a plane. For instance,the projection of these curves on the plane
(v, ε/τ) determines(v0, ε0/τ0), their projection on the plane(τ, v) determines(τ0, v0) . Assumeu(0)
is completely determined. Then the Hugoniot curvesHα(τ, p) = 0 are hyperbolas (cf. [11], Chapter
II, Section 2, Example 2.2) and may be parametrized byp: τ = hα(p; τa, pa) for an Hugoniot curve
with centera. This provides two relationsτ0 = hL(pL(u0); τL, pL) = hR(pR(u0); τR, pR) where
pL = pL(uL), pR = pR(uR). HenceuL,uR should be such that(τL, pL) and (τR, pR) satisfy the
identityhL(pL(u0); τL, pL) = hR(pR(u0); τR, pR). �
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L(v(0+))

We consider in Figure 8 states and wave curves correspondingto a coupled Riemann problem
for which the 3L− and the1R−waves are both shocks (cf. Figure 5). The pointML(0−) =
(v(0−, t), pL(u(0−, t))) (resp.MR(0+) = (v(0+, t), pR(u(0+, t)))) is the projection ofu(0−, t)
(resp.u(0+, t)). In the above mentionned particular case, the curvesC1

L(uL) andČ3
R(uR) intersect at

a point for which the statesu(0−, t),u(0+, t) do coincide. The two cases are illustrated in Figure 8.

If now
d2

L

γL − 1
=

d2
R

γR − 1
≡ d2

γ − 1
, (45)

we notice that the above computations only give one relationlinking (τ, ε/τ)(0+, t) and
(τ, ε/τ)(0−, t). However, we can prove

Proposition 4.Assuming (43) with (45), the coupling conditions (5) lead to






v(0−, t) = v(0+, t),
( ε

τ
+ (

d2

γ − 1
)
1

τ

)

(0−, t) =
( ε

τ
+ (

d2

γ − 1
)
1

τ

)

(0+, t).
(46)

Proof. Note that for twoγ−laws (d2
α = 0), we have indeed seen that the coupling yields the continuity

of v andπ = ε
τ by projecting on the(v, π)−plane. Assuming (43) and (45), we note that the quantity

ωα ≡ 1

γα − 1
(p +

d2
α

τref,α
)

now plays a particular role since it satisfes

ωα =
ε

τ
+ (

d2
α

γα − 1
)
1

τ

and thus does not depend onα if (45) holds, let us note itω. We can project on the(v, ω)− plane,
parametrize the projected wave curves byω sincep → ω is an isomorphism and following the same
arguments as in the proof of Proposition 3, obtain the continuity of v andω at the interface. �
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Again, assuming (43) yields that the eigenvectorr2(u) in (21) is parallel to(1, 0,−ω)T and does not
depend on the pressure law. Then (46) implies thatrL,2(u(0−, t)) = rR,2(u(0+, t))( cf. Remark 3).

Remark 5. We can try to explicit the quantities which are transmitted at the interface for more general
pressure laws, since, in a heuristic way, we can say that ‘twoquantities are transmitted’. In fact these
quantities are not explicit physical quantities in general, in particular the velocity is not necessarily
continuous. For more general pressure laws, assuming for instance that(τ, v, ε)(0−, t) is known, and
for some givent, the usual ‘projection’ on thev, p plane, assuming that the ‘projected’ curves can be
parametrized byp, provides a system of two equations in three unknowns(τ, v, ε)(0+, t), which can
be interpreted as the intersection of two surfaces inR

3, heuristically, this gives a curve. In the case we
have already considered of twoγ−laws (30), in variablesw = (τ, v, π), easy computations show that
this curve is a straight line (39) intersection of two planes, parallel to the axisτ . In case (43)-(44), we
can say that the intersection of the curve with planev(0+, t) = v(0−, t) is a point, so that the curve is
not contained in this plane. To explicit the transmitted quantity means to find a change of variables, say
w̃ ∈ R

3 such that in these variables, the curve is a line parallel to one axis, saỹw3 so that the quantities
(w̃1, w̃2) are continuous. We have been able to find it for (43)-(45). Thecoupled Riemann problem can
then be solved, however the physical meaning of the transmission is not clear. �

4 Coupling Lagrangian systems of different dimensions

4.1 Thep−system and the Euler system

We consider thep−system (11) in the left half-plane and the Euler system in Lagrangian coordinates
(18) in the right half-plane (using in this section capital letters to distinguish the variables of the larger
system)

∂u

∂t
+

∂

∂x
fL(u) = 0, x < 0, u = (τ, v)T , fL(u) = (−v, p)T , p = pL(τ),

∂U

∂t
+

∂

∂x
FR(U) = 0, x > 0, U = (τ, v, e)T , FR(U) = (−v, p, pv)T , p = pR(τ, ε).

The dimensions of the two systems are now different, but the physical context helps to give a meaning
to the coupling since some state variables such as the specific volumeτ , velocity v or pressurep are
defined for each model. Hence, we write coupling conditions using the variables(v, p) that are common
to the two systems and which we have seen are good candidates for both. The idea is to reconstruct the
missing variable for the smaller system in such a way that we may transmit (i.e. have continuity of) the
velocity and the pressure.

Indeed, we can liftv = (v, p)T by reconstructingτ when we transmit from the left to the right

v = (v, p)T → L(v) = (τ, v, p)T , τ = τL(p), (47)

wherep → τL(p) is the inverse ofpL(τ). And we easily projectV when we transmit from the right to
the left

V = (τ, v, p)T → P(V) = (v, p)T . (48)

The coupling conditions naturally write
{

u(0−, t) ∈ OL(ϕL(P(V(0+, t))))
U(0+, t) ∈ OR(ϕR(L(v(0−, t)))). (49)
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Figure 9:τ, v, p for the transmission ofv = (v, p), p-system inx < 0 and Euler system inx > 0

HereϕL(v) = u andϕR(V) = U are the previously defined admissible change of variables (15) and
(25).

Proposition 5.DefiningL,P by (47) and (48), the coupling conditions (49) lead to
{

v(0−, t) = v(0+, t),
p(0−, t) = p(0+, t).

(50)

and the solution of the coupled Riemann problem is unique

Proof. We express the Riemann problems associated to (49) using thevariablesv andp. Firstv(0−, t)
is connected toP(V(0+, t)) by a 2L−wave for thep−system. ThenL(v(0−, t)) is connected to
V(0+, t) by a1R−wave for the Euler system, we project the corresponding1R−wave curve on the
(v, p)−plane and its intersection with the2L−wave curve for thep−system has only one intersection
point, so thatv(0−, t) = P(V(0+, t)) and the result follows. We have implicitly assumed in the proof
that the analogous of (26) holds. �

The result is illustrated in Figure 9 with aγ−law pL(τ) = τγ , pR(τ, ε) = (γ − 1)ε/τ , with γ = 1.4.
We note thatτ is discontinuous whereas the continuity ofv, p atx = 0 is indeed ensured.

We may also interpret the above coupling procedure by augmenting the dimension of the smaller system
in order to couple systems of the same dimension.

4.2 Interpretation

In fact the previous approach of lifting+ projection can be interpreted by adding an equation to the
small system with two conservation laws







































∂τ

∂t
− ∂v

∂x
= 0,

∂v

∂t
+
∂p

∂x
= 0,

∂p

∂t
− p′(τ)

∂v

∂x
= 0,

(51)

which we write
∂V

∂t
+B(V)

∂V

∂x
= 0,
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whereV = (τ, v, p)T . Only the third equation is in non conservative form, but it is clearly redundant
sincep = p(τ), so the matrixB(V) of the system

B(V) =





0 −1 0
0 0 1
0 −p′(τ) 0





is non invertible. We have added to the existing eigenvaluesλ1 = −c, λ3 = c, c =
√

−p′(τ), a new
eigenvalue which is preciselyλ2 = 0. The eigenvectors (in variablesV) ares2 = (1, 0, 0)T , s1 =
(1, c,−c2)T , s3 = (1,−c,−c2)T . These eigenvectors are presently the eigenvectors of the matrix of the
full Euler system written in primitive variablesV = (τ, v, p)T , only withC2 = ppε − pτ . In fact, the
corresponding third equation for the full Euler system in primitive variables is

∂p

∂t
+ (ppε − pτ )

∂v

∂x
= 0.

The Riemann invariants associated to 0 arev, p.

The only nonconservative product in the third equation of (51) can be defined through the first conserva-
tive equations. Indeed,v andp are continuous across a2−discontinuity and ifv andp are discontinuous
across a1− or 3−wave, the productp′(τ)∂v

∂x is naturally defined by

−p′(τ)∂v
∂x

= σ2 ∂v

∂x

if σ is the speed of propagation of the discontinuity, since we have σ[p] = σ2[v], where[.] denotes as
usual the jump. So the augmentedp−system (51) is a barotropic Euler system in whichpε = 0.

We can define uniquely a solution of the Riemann problem for (51) and initial dataVL = (τL, vL, pL)T ,
VR = (τR, vR, pR)T . The initial data are supposed to satisfyp = p(τ), i.e., pL = p(τL), pR =
p(τR) but it is not necessary in what follows. A priori, the solution consists of a1−wave between
VL and some stateV∗

L, a 2− discontinuity betweenV∗
L and some stateV∗

R, and a3−wave between
V∗

R and VR. Sincev, p are continuous across the2−discontinuity i.e.,x = 0, the common value
(v∗, p∗) is determined as usual by the intersection of the projectionof the1− and3−wave curves on the
(v, p)−plane and it is the intermediate state in the solution of the Riemann problem for thep−system
(solved in variable(v, p) by parametrizing the wave curves byp as we have seen in section 1.3, for
the data(vL, pL), (vR, pR)). Now we havep∗ = p(τ∗) so thatV is continuous,W(0±;VL,VR) =
(τ∗, v∗, p∗)T .

The coupling of (51) inx < 0 with the Euler system (17) inx > 0 is done through the condition
{

V(0−, t) ∈ OL(V(0+, t))
U(0+, t) ∈ OR(ϕR(V(0−, t))). (52)

Proposition 6.The coupling conditions (52) are equivalent to (50).

Proof. Expressing the conditionV(0−, t) ∈ OL(V(0+, t)) gives that(v(0−, t), p(0−, t)) belongs
to the projection on the(v, p)−plane of the (backward)3−wave curve, the projection passes through
(v(0+, t), p(0+, t)). Note that the given valueτ(0+, t) does not satisfyp = p(τ), but as we have
noticed above, it does not prevent from solving the Riemann problem for system (51).

Similarly expressing the conditionU(0+, t) ∈ OR(ϕR(V(0−, t))) gives that(v(0+, t), p(0+, t)) be-
longs to the projection of the1−wave curve through(v(0−, t), p(0−, t)). Again, the two curves inter-
sect at only one point in the(v, p)−plane. �

If the initial states satisfypL = pL(τL), pR = pR(τR) the two solutions of the coupled Riemann
problem satisfying (52) or (50) coincide.
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4.3 Another interpretation: coupling of the isentropic and full sytems

We now consider thep−system in the left half-plane as the isentropic model of gas dynamics, thus
augmented by∂s

∂t = 0 and we write







































∂τ

∂t
− ∂v

∂x
= 0,

∂v

∂t
+
∂p

∂x
= 0,

∂s

∂t
= 0,

(53)

assuming
p = p(τ, s0)

for some fixed values0 of the specific entropy andp = p(τ, s) is the equation of state of the fluid
expressed in terms ofτ and s. For instance for a perfect gas, we havep(τ, s) = (γ − 1) exp((s −
s0)/Cv)τ

−γ .

We then consider the coupled problem


















∂W

∂t
+

∂

∂x
FL(W) = 0, x < 0,

∂U

∂t
+

∂

∂x
FR(U) = 0, x > 0,

(54)

where
W = (τ, v, s)T , U = (τ, v, e)T ,

and
FL(W) = (−v, p, 0)T , FR(U) = (−v, p, pv)T ,

and the systems have now the same size.

We setW̃ = (v, p, s)T , and define an admissible change of variablesψ byψ(W̃) = W. More precisely
ψL(W̃) = W = (v, τL(p), s)T is an admissible change of variables for (53) with pressure law p =
pL(τ) andτL(p) its inverse. Now, for the Euler system, the mappingV = (τ, v, p)T → U = ϕR(V) =
(τ, v, e)T is an admissible change of variables, andW̃ = (v, p, s)T → ϕ̃R(W̃) ≡ V = (τ, v, p)T too,
when assumings = s(τ, p) satisfies∂τs 6= 0. For instance, in the case of aγ−law, we have seen that
pR(τ, s) = (γR − 1)τ−γR exp((s − s0)/Cv) thussR(τ, p) = s0 + Cv log(pτγR/(γR − 1)). Thus we
can writeU = ϕR(ϕ̃R(W̃)) ≡ ψ̃R(W̃)) and it is admissible.

For the coupling problem (54), we take the following coupling conditions

{

W(0−, t) ∈ OL(ψL(W̃(0+, t))),

U(0+, t) ∈ OR(ψ̃R(W̃(0−, t))), (55)

whereW̃(0+) = (ψ̃R)−1(U(0+)) = (v(0+), p(0+), s(0+))T , with p(0+) = pR(τ(0+), ε(0+)), and
W̃(0−) = (ψL)−1(W(0−)) = (v(0−), p(0−), s(0−))T with p(0−) = pL(τ(0−)). Again (55) are
equivalent to (50). Note that the precise value ofs0 does not matter since the variables does not appear
in the equation forpL nor in the coupling condition.
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5 Extension to general Lagrangian systems

We want to extend the coupling to more general systems in Lagrangian coordinates, by transmission
of a set of variables which corresponds to(v, p) when restricting to Euler system. We first recall the
common algebraic structure of all these systems which allows us to treat their coupling from a general
point of view. This is followed by some technical computations which are required in order to define
the transmitted variables.

5.1 The form of general Lagrangian systems

We consider systems ofq conservation laws in Lagrangian coordinates (x still stands for a mass vari-
able)

∂tu + ∂xf(u) = 0, (56)

which meet some common properties (we refer to [7] for a detailed description):

• they are endowed with a strictly convex entropys(u), with null associated entropy flux, so that
for smooth solutions

∂ts = 0.

• u is made ofq − 1− d statevariables andd velocityvariablesU. The last component ofu is the
total energy which we will denotee

uq ≡ e = ε+
1

2
|U|2

where the internal energyε is astatevariable, thens is also astatevariable. We will assume that
s(u), satisfies∂s

∂e(u) ≡ se(u) < 0. The model is then called afluid model.

• Galilean invariance,

• reversibility in time for smooths solutions.

Then, they can be written in a canonical form:∃Ψ : u → Ψ(u) ∈ R
q−1,∃B ∈ M(Rq−1) such that

f(u) = (BΨ(u),−1

2
Ψ(u)TBΨ(u))T , (57)

moreoverB is a symmetricconstant(q−1)×(q−1) matrix. Finally the spectrum off ′(u) is symmetric:
if λ(u) is an eigenvalue so is−λ(u). In the sequel we will writeλ in order to shorten the notations.
Again we refer to [7] for a detailed proof. From now on, we assume these results and we derive some
of the properties needed in the following computations.

The first consequence of the last result is that there is an even number, say2m, of eigenvaluesλi 6= 0
and we can number the spectrum as follows:λ0 = 0 with multiplicity q − 2m andλ1, · · · , λm <
0, λm+1, · · · , λ2m > 0.
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5.1.1 Number of transmitted variables

Since the interface is characteristic, we cannot expect thecontinuity ofu at the coupling interface. As
illustrated by the case of the Euler system, a reduced numberof (nonlinear) functions ofu are expected
to be continuous. The aim of this section is to provide the material in order to derive the required set
of these functions with linear independent gradients whichare Riemann invariants associated to the
eigenvalue0.
First note that (57) implies that a solution which is assumedto be discontinuous acrossx = 0 satisfies
B[Ψ] = 0 and one could say thatBΨ aretransmittedvariables. However,B is not inversible as we will
see, and we want to ‘extract’ more explicit informations anddefine independent transmitted variables
from theseq − 1 relations, by some change of variables (the analogous ofv, p for Euler system). In
particular, the number of thesetransmittedvariables depends on the dimension ofkerB and thus on
the multiplicity of the eigenvalue 0 off ′(u).

The set of variablesΨ is derived from the polar variables which we precise now. We will need other
sets of variables which we introduce together with some notations. For the set of conservative variables
u and fluxf(u), we distinguish the last component

u = (uq−1, e)
T , f(u) = (fq−1(u), fe(u))T ,

whereuq−1 = (u1, u2, · · · , uq−1)
T . We should writeu = (uT

q−1, e)
T but we will skip the inte-

rior transpose markT in order to lighten the notations. Thus Després’ result says that we can write
fq−1(u) = BΨ(u), fe(u) = −1

2ΨTBΨ(u) so that the system (56) writes

{

∂tuq−1 +B∂xΨ(u) = 0,
∂te+ ∂x(−1

2Ψ(u)TBΨ(u)) = 0.
(58)

The system is endowed with an entropys, with se(u) < 0, and we define the entropy variables that
symmetrize the system (see [11])

u∗ ≡ s′(u)T = (su1
, · · · , suq−1

, se)
T

and (cf. [7])Ψ(u) in (58), is in fact derived from the entropy variables

Ψ(u) = (
su1

se
, · · · , suq−1

se
)T . (59)

Note that we identify the derivative of scalar functions involved in the definition of polar variables (such
ass′(u)) with a1 × q matrix (line vector). We also consider the change of variables

v = (u1, u2, · · · , uq−1, s)
T = (uq−1, s)

T .

Then since againse(u) < 0, v → e(v) = ε+ |U|2/2 is a convex entropy for the system in variablesv

(see the details in [11] chapter II, Section 1 for the Euler system) and we define the conjugate function
or polar variables by

v∗ = e′(v)T = (ev1
, · · · , evq−1

, es)
T ≡ (v∗

n−1, s
∗)T . (60)

Lemma 1.Let v∗
n−1 be defined by (60). Then we have the identity

v∗
n−1 = −Ψ(u(v)) (61)
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whereΨ is defined by (59).

Proof. Indeed, we can writee(v(u)) = e = uq, so thate′(v)v′(u) = (0, ..., 0, 1). Then the last
component giveses = (se)

−1 while for theq − 1 first components, for whichvj = uj , we get

∑

1≤i≤q−1

∂e(v)

∂vi

∂vi

∂uj
+
∂e

∂s

∂s

∂uj
= evj + essuj = 0,

so thatevj = −essuj = −(se)
−1suj , which in view of (59), gives (61). �

Thus, from (58), we can write for smooth solutions

∂tv −
(

B 0
0 0

)

∂xv
∗ = 0 (62)

(in fact, only the last equation is not satisfied by discontinuous solutions). Now multiplying this equation
by the matrixv∗′(v) = e′′(v), we get the system satisfied byv∗

∂tv
∗ − e′′(v)

(

B 0
0 0

)

∂xv
∗ = 0.

It is not difficult to prove thatu → v∗ is an admissible change of variables, hence the matrices−f ′(u)

ande′′(v)

(

B 0
0 0

)

are similar. This implies the following result.

Lemma 2. 0 is an eigenvalue of multiplicityq − 2m − 1 of B. MoreoverB hasm negative andm
positive eigenvalues.

Proof SinceB is symmetric,B is diagonalizable. Assume 0 is an eigenvalue of multiplicity k of B.
Let r1, · · · rk bek independent eigenvectors∈ R

q−1 of B associated to the eigenvalue 0 (i.e. a basis of
kerB) andr̃i = (rT

i , 0)
T ∈ R

q. Then thẽri are independent eigenvectors of the augmented matrix

B̃ ≡
(

B 0
0 0

)

(63)

and thus ofe′′(v)B̃. Now the vectorrq = (0, · · · , 0, 1)T is also an eigenvector of the matrix̃B associ-
ated to 0 and thus ofe′′(v)B̃ ( associated to the eigenvalue 0). Thek + 1 vectorsr̃i andrq are clearly
linearly independent. We have assumed at the beginning thatthe matrixf ′(u) (and thuse′′(v)B̃) has
q − 2m null eigenvalues, hencek+ 1 ≤ q − 2m. Let r be another eigenvector ofe′′(v)B̃ associated to
0, sincee′′(v) is invertible, it is an eigenvector of̃B, we can choosẽr ∈ r⊥q i.e.r = (r1, · · · , rq−1, 0)

T .
Then,(r1, · · · , rq−1)

T is clearly an eigenvector ofB and thus a combination of theri which yields
k + 1 = q − 2m.

The diagonalization of the matrixf ′(u) gives a diagonal matrix, sayD(u), with m negative,m posi-
tive and(q − 2m) 0 entries, and thus its signature is(m,m). The matricesf ′(u(v)) ande′′(v)B̃ are
similar. The matrixe′′ is symmetric positive definite, we may define its square root,saye′′1/2, which is
symmetric positive definite too, with inversee′′−1/2 thene′′1/2B̃e′′1/2 is similar toe′′(v)B̃. The sym-
metric matrixe′′1/2B̃e′′1/2 is associated to a quadratic form onR

q which has thus the same signature
(m,m) asD(u). Thene′′1/2B̃e′′1/2 has the same signature as̃B. Indeed, the numbers of eigenval-
ues that are positive, negative, or 0 do not change under a congruence transformation (by Sylvester’s
inertial law). Finally if the signature of̃B is (m,m) so is that ofB. That argument also proves that
dim kerB = q − 2m− 1. �
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5.1.2 Choice of transmitted variables

We are looking for still another set of variables built fromv∗ for which theq − 1 first jump relations in
the original system or equivalently in system (57):B[v∗

n−1] = B[Ψ] = 0, will give the conservation of
precisely2m independent quantities, sayw∗

2m, i.e.,2m = q − (k + 1) Riemann invariants associated
to the eigenvalue0 of multiplicity k + 1

[w∗
2m] = 0.

These quantities, corresponding tov, p or rather combinations ofv, p for the Euler system, are meant
to be transmitted in the coupling which will follow.
More precisely, the aim of this section is to prove that thereexists a change of variables(wk,w2m, e),
which will be defined below, such that the weak solutions of the original model (56), (57) equivalently
solve the system











∂twk = 0,
∂tw2m −M∂xw

∗
2m = 0,

∂te+ ∂x(−1

2
w∗

2m
TMw∗

2m) = 0,

(64)

whereM is a diagonal invertible matrix andw∗ is a linear combination ofw. The interest of this change
of variables lies in the fact thatw∗

2m is the set of2m Riemann invariants we are looking for. Indeed,
the matrixM is constant, diagonal and invertible, hence if a solution isdiscontinuous acrossx = 0
(contact discontinuity corresponding to the eigenvalueλ = 0), the jump condition yields

M [w∗
2m] = 0 ⇔ [w∗

2m] = 0

and provides the set of transmission relations we are looking for.

We ‘decouple’ partly the system by diagonalizingB. The spectrumS of B is S = {0, µi, 1 ≤ i ≤
2m} with multiplicity k for the eigenvalue 0 and the other eigenvalues satisfyingµi 6= 0. SinceB ∈
M(Rq−1) is symmetric, there exists an orthogonal matrixO, satisfyingOOT = Iq−1 and

OBOT = diag(0k,M) ≡ Λ

with M ∈ M(R2m) a constant diagonal matrix:M = diag(µi), havingm entriesµj < 0 andm
entriesµl > 0. Then we define the orthogonal matrixΩ ∈ M(Rq), ΩΩT = Iq by

Ω =

(

O 0
0 1

)

,

and set
w = Ωv = (wk,w2m, s)

T . (65)

We adopt the notation: given a vectory ∈ R
q, y = (y1,y2, ..yj)

T corresponds to the partition
(i1, i2, .., ij) of (1, 2, .., q), (i1, i2, .., ij) ∈ (N∗)j , i1 + i2 + ...+ ij = q. Also for the particular partition
(k, 2m, 1), (y)2m ≡ y2m. With this convention, sinceΩB̃ΩT = diag(0k,M, 0), we get from (62)
that smooth solutions satisfy







∂twk = 0,
∂tw2m −M∂x(Ωv∗)2m = 0,
∂ts = 0.

(66)

Again, sinceΩ has constant entries, only the last equation is not satisfiedby discontinuous solutions.
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We now introduce
w∗ = Ωv∗ = (Ov∗

n−1, s
∗) = (w∗

k,w
∗
2m, s

∗) (67)

so that (66) writes






∂twk = 0,
∂tw2m −M∂xw

∗
2m = 0,

∂ts = 0.
(68)

Let us check the following.

Lemma 3.The mappingw → E(w) ≡ e(ΩT w) is strictly convex andE ′(w)T = w∗.

Proof. We use the formula to express the derivative of a compound function. It gives (using the differ-
ential form fore′′)

E ′′(w)(w1,w2) = e′′(ΩTw) · (ΩTw1,Ω
Tw2)

or using the matrix form for the Hessiane′′(w), E ′′(w) = Ωe′′(ΩTw)ΩT which proves the convexity
of E sincee′′(v) is positive definite. �

Observe thatE(w(v)) = e(ΩTw(v)) = e(v). ThenE is an entropy for system (68) and the polar
variableE ′(w) is in factw∗ = Ωv∗, i.e.

E ′(w)T = Ωv∗

(the similarity transformationΩ commutes with the conjugate). Indeed, for anyh ∈ R
q, the linear form

E ′(w) satisfies
E ′(w) · h = e′(ΩTw) · ΩTh

and if we identify bothE ′(w) ande′(v) with line vectors inRq, it gives

E ′(w)T = Ωe′(ΩTw) = Ωe′(v)T = Ωv∗.

Let us now consider the system satisfied by the set of variableswe = (wq−1, e)
T , replacing the equation

on the entropys by the original equation ine. It can be checked thatwe is also an admissible change
of variables and smooth solutions of (66) solve the energy equation. In order to express the flux in
terms ofwe, we notice that sincev∗ = ΩTw∗ andΨTBΨ = v∗

q−1
TOT ΛOv∗

q−1, we getΨTBΨ =

w∗
q−1

T Λw∗
q−1 = w∗

2m
TMw∗

2m because of the specific form ofΛ = diag(0k,M). Thus, in variables

we ≡ (wq−1, e)
T = (wk,w2m, e)

T (69)

we get as expected the system (64)











∂twk = 0,
∂tw2m −M∂xw

∗
2m = 0,

∂te+ ∂x(−1

2
w∗

2m
TMw∗

2m) = 0.

System (64) is nowequivalentto the initial one (they have the same smooth and discontinuous solutions)
since the last equation is now also satisfied by discontinuous solutions of (56), (57). Andw∗

2m is indeed
the set of2m Riemann invariants we are looking for, while thek components ofwk ands are common
Riemann invariants for the other characteristic fieldsλj 6= 0.
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5.1.3 Choice of coupling variables

The ‘final’ set of variables we are going to use for coupling is

z = (wk,w
∗
2m, e)

T . (70)

Let us check first that it is indeed admissible. The results ofthe previous section prove that it is sufficient
to ask for the transmission ofw∗

2m since bothwk ande are free of constraints at the interface.

Lemma 4.The mappingw → z defines an admissible change of variables.

Proof. Recall thatw, z are defined byw = (wk,w2m, s)
T andz = (wk,w

∗
2m, e)

T , with e = E(w)
strictly convex. Hence it is enough to prove that the2m× 2m matrix∇w2mw∗

2m ≡ ((∂w2m,iw
∗
2m,j)i,j)

is invertible. We havew∗ = E ′(w)T , thus(w∗)′(w) = E ′′(w). Let us writeE ′′(w) in blocks corre-
sponding to the the partition (k, 2m, 1), i.e. to the decomposition ofRq in R

k × R
2m × R

E ′′(w) =





Ek,k Ek,2m Ek,1

E2m,k E2m,2m E2m,1

E1,k E1,2m E1,1



 .

The matrix corresponding to∇w2mw∗
2m is the2m× 2m diagonal blockE2m,2m extracted fromE ′′(w)

which is symmetric positive definite. This means thatE2m,2m(w) is the restriction ofE ′′(w) to the
subspace{r = (0k, r2m, 0), r2m ∈ R

2m} and thus is invertible. �

Example.Let us explicit the above computations for the Euler system,u = (τ, v, e)T , v = (τ, v, s)T ,
se = 1

T , u∗ = 1
T (p,−v, 1)T ,Ψ = (p,−v)T , v∗ = (−p, v, T )T , k = 0,m = 1, then

B =

(

0 1
1 0

)

, M =

(

−1 0
0 1

)

, O =
1√
2

(

−1 1
1 1

)

,

so thatw = Ωv = ( 1√
2
(−τ + v), 1√

2
(τ + v), s)T and the components ofw∗

2 = −OΨ = 1√
2
(v +

p, v − p)T are indeed 0-Riemann invariants. The matrixE2m,2m which is the first2× 2 diagonal block
OT e′′(v)2,2O, extracted fromE ′′(w) = ΩT e′′(v)Ω, is given by

E2m,2m =
1

2

(

1 + C2 1 − C2

1 − C2 1 + C2

)

.

Indeed,e′(v)T = v∗ = (−p, v, T )T so that

e′′(v)2,2 =

(

−∂τp 0
0 1

)

,

with −∂τp(τ, s) = C2. �

5.2 The coupling of general Lagrangian systems

We now consider the coupling of two general systems (1)(2) where fα are of the form (57) with the
same matrixB but with two distinct entropy functions involved in the definition (59) of Ψ.
Thus, following the previous study, we start from two systems which we can write in the equivalent form
(64) with the set (69) of variableswe = (wq−1, e)

T , each system is endowed with a strictly convex

entropy function:sL = sL(we), sR = sR(we), and we havee = |U |2
2 + ε with (τ, s) → ε(τ, s) strictly

convex. We want to express the coupling condition in the set (70) of variablesz = (wk,w
∗
2m, e)

T

which means that we want totransmitw∗
2m. Note that considered as function ofz, w∗

2m depends on the
choice of the closure relation.
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5.2.1 The coupling conditions expressed in variablesz

Recalling (7), we write
{

we(0−, t) ∈ OL(ϕL(z(0+, t))),
we(0+, t) ∈ OR(ϕR(z(0−, t))), (71)

wherewe = ϕL(z) in x < 0, we = ϕR(z) in x > 0. We aim to prove that (71) gives the continuity of
w∗

2m (for the Euler system, this means the continuity ofv andp ) at the interface.
This result is stated in the following proposition. It will be established for entropy functions close
enough so that the following assumption is true: given, forα = L,R, a basis of eigenvectors
(rα

j )1≤j≤q of the Jacobian matrixf ′α and(rα
j,2m)1≤j≤2m the corresponding basis ofR

2m, the vectors
(rR

1,2m, r
R
2,2m, ..., r

R
m,2m, r

L
m+1,2m, r

L
m+2,2m, ..., r

L
2m,2m) still form a basis ofR2m. The vectors will in

fact be expressed as functions ofwe.

Proposition 7.The coupling conditions (71) lead to the continuity ofw∗
2m at the interfacex = 0.

The proof relies on some more technical lemmas.

Lemma 5.Given a statez, let C+
L (z) be defined as the projection (on thew∗

2m− hyperplane) of the set
of states that can be connected toϕL(z) by (at most)m L−waves associated to positive eigenvalues
λL

j , j ∈ {m+1, · · · , 2m} and similarlyC−
R(z) as the projection of the set of states to whichϕR(z) can

be connected by (at most)m R−waves associated to negative eigenvaluesλR
j , j ∈ {1, · · · ,m}. Then

(71) implies
w∗

2m(0−, t) ∈ C+
L (z(0+, t)), w∗

2m(0+, t) ∈ C−
R(z(0−, t)).

Proof. By definition of the admissible setOL, there exists a statewe
− ∈ Ω such that

we(0−, t) = WL(0−;we
−, ϕL(z(0+, t))).

TheL−Riemann problem betweenwe
− andϕL(z(0+, t)) is thus built with a succession of (at most)

m L−waves (with negative speed) betweenwe
− andwe(0−, t), a 0−contact discontinuity atx = 0

betweenwe(0−, t) and a statewe,L
+ and (at most)mL−waves (with positive speed) betweenw

e,L
+ and

ϕL(z(0+, t)). This yields that
w∗

2m(we,L
+ ) = w∗

2m(0−, t),
and thus, after projection onR2m (thew∗

2m− hyperplane),w∗
2m(0−, t) belongs to the setC+

L (z(0+, t)),
defined as the projection (on thew∗

2m− hyperplane) of the set of states that can be connected to
ϕL(z(0+, t)) byL−waves associated to positive eigenvaluesλL

j , j ∈ {m+ 1, · · · , 2m}.

Similarly by definition of the admissible setOR, there exists a statewe
+ ∈ Ω such that

we(0+, t) = WR(0+;ϕR(z(0−, t)),we
+).

TheR−Riemann problem betweenϕR(z(0−, t)) andwe
+ is thus built with a succession of (at most)m

R−waves betweenϕR(z(0−, t)) and a statewe,R
− , a 0−contact discontinuity atx = 0 betweenwe,R

−
andwe(0+, t) and (at most)m R−waves betweenwe(0+, t) andwe

+. This yields that

w∗
2m(we,R

− ) = w∗
2m(0+, t),

and thus, after projection onR2m (thew∗
2m− hyperplane),w∗

2m(0+, t) belongs to the setC−
R(z(0−, t))

defined as the projection of the set of states to whichϕR(z(0−, t)) can be connected byR−waves
associated to negative eigenvaluesλR

j , j ∈ {1, · · · ,m}. �
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However, the proof of the continuity ofw∗
2m at 0 supposes that we can parametrize correctly the pro-

jection of the wave curvesC−
R(z(0−, t)) or C+

L(z(0+, t)), at least locally. For instance, for the Euler
system, we are able to parametrize the projection of the wavecurves in the(v, p)−plane in the form
v = Φ(p). The parametization is proved in the following lemma where we use the same notations as
those introduced in Lemma 5.

Lemma 6. For given statesz± characterized byz± = (w±
k ,w

∗
2m

±, e±)T , the curveC−
R(z−) can be

parametrized forξ− = (ξ−j ) ∈ R
m, |ξ−j | small enough by

w∗
2m(ξ−) = w∗

2m
− +

m
∑

j=1

ξ−j rR
j,2m(z−) +O(|ξ−|2);

similarly C+
L (z+) can be parametrized forξ+ = (ξ+j ) ∈ R

m, |ξ+j | small enough, by

w∗
2m(ξ+) = w∗

2m
+ +

2m
∑

j=m+1

ξ+j rL
j,2m(z+) +O(|ξ+|2).

Proof. Let us first consider a discontinuous solution of (64). It satisfies the following jump conditions






−σ[wk] = 0,
−σ[w2m] −M [w∗

2m] = 0,

−σ[e] − 1
2 [w∗

2m
TMw∗

2m] = 0,

(72)

in particular[w∗
2m] = −σM−1[w2m] with M diagonal.

A shock corresponds necessarily to aj−characteristic field associated to a non null eigenvalueλj ,
j ∈ {1, · · · , 2m}. Assume first, only in order to simplify the presentation, that all the corresponding
fields are genuinely nonlinear (GNL). We know that the jump[we] is an eigenvector sayre

j of the matrix
noted in a shortened wayDe

De ≡ D(we
−,w

e
+) =

∫ 1

0
D(we

− + s(we
+ − we

−))ds

corresponding to the eigenvalueσ.

Note that the choice of variablesz kind of decouples the system in three subsystems,










∂twk = 0,
∂tw

∗
2m − E2m,2mM∂xw

∗
2m = 0,

∂te+ ∂x(−1

2
w∗

2m
TMw∗

2m) = 0.

(73)

The matrixD∗(z) of this quasilinear system∂tz + D∗(z)∂xz = 0 is (in block of sizes corresponding
to the decompositionq = k + 2m+ 1)

D∗(z) =





0 0 0
0 −E2m,2mM 0
0 B1,2m 0



 . (74)

The Jacobian matrix of system (64), notedD, is similar toD∗ and has the same structure in blocks as
D∗(z)

D(we) =





0 0 0
0 −ME2m,2m 0
0 B1,2mE2m,2m 0



 . (75)
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Hence, given the structure ofD(we) (see (75)), this eigenvectorre
j of De has the formre

j =

(0k, r
e
j,2m, rj,e)

T . Now, by (74), (75), the matrices extracted fromD andD∗ are given byD∗
2m,2m =

−E2m,2mM andD2m,2m = −ME2m,2m, we write

[w∗
2m] = −σM−1[w2m] = −M−1De

2m,2mre
j,2m = Ee

2m,2mre
j,2m = rz

j,2m

with shorthand notations expressing thatrz
j,2m ≡ Ee

2m,2mre
j,2m is an eigenvector ofD∗

2m,2m.

Thus we can parametrize thej−shock curve in a decoupled way. For a given left state characterized
by z− = (w−

k ,w
∗
2m

−, e−)T , the curve (thej−shock curve) of states which can be connected toz− by
a j−shock can be parametrized in variablez, and for|ξ|, small enough,ξ < 0 (this results from Lax
entropy condition) and we may write

{

wk(ξ) = w−
k ,

w∗
2m(ξ) = w∗

2m
− + ξrj,2m(z−) +O(ξ2)

(76)

and the last equation of (72) which we write

e(ξ) = e− +
1

2σ
[w∗

2m
TMw∗

2m].

Now, a j−rarefaction curve, where the indexj corresponds again to a non null eigenvalueλj, j ∈
{1, · · · , 2m}, is (in variablez) an integral curve ofrj(z) and thus satisfies

{

dξwk = 0,
dξw

∗
2m = rj,2m(z(ξ)),

(77)

together with
dξs = 0.

For a given left statez− = (w−
k ,w

∗
2m

−, e−)T , the curve of states which can be connected toz− by a
j−rarefaction can be parametrized forξ > 0 small enough by







wk(ξ) = w−
k ,

w∗
2m(ξ−) = w∗

2m
− + ξrj,2m(z−) +O(ξ2)

e(ξ) = E(w−
k ,w

∗
2m(ξ), s−).

(78)

E(w) is a function ofw = (wk,w2m, s)
T , and we have seen that∇w2mw∗

2m is invertible, hence the
notationE(wk,w

∗
2m, s) is a short way of writingE(wk,w2m(w∗

2m), s).

Now if a characteristic field sayλR
j , is linearly degenerate (LD), the result still holds since the curve of

states which can be connected toz− by aj−contact discontinuity is also an integral curve ofrj(z) that
can be parametrized in the same way.
Thus, for a given left statez− = (w−

k ,w
∗
2m

−, e−), the curveC−
R(z−) projection of the set of states

to whichϕL(z−) can be connected by (at most)m R−waves,j−rarefaction,j−shock (if thej−field
is GNL) or j−contact discontinuity (if it is LD), each associated to a negative eigenvalueλR

j , j ∈
{1, · · · ,m}, can be parametrized forξ− = (ξ−j ) ∈ R

m, |ξ−j | small enough by

w∗
2m(ξ−) = w∗

2m
− +

m
∑

j=1

ξ−j rR
j,2m(z−) +O(|ξ−|2).
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Similarly, for C+
L (z+) projection of the set of states to whichϕL(z+) can be connected by (at most)m

L−waves,j−rarefaction orj−shock orj−contact discontinuity, each associated to a positive eigen-
valueλL

j , j ∈ {1, · · · ,m} can be parametrized forξ+ = (ξ+j ) ∈ R
m, |ξ+j | small enough, by

w∗
2m(ξ+) = w∗

2m
+ +

2m
∑

j=m+1

ξ+j rL
j,2m(z+) +O(|ξ+|2),

which ends the proof of the lemma. �

Proof of proposition 7. We apply the above results toz+ = z(0+, t), z− = z(0−, t), and assume that
rR
j,2m(z(0+, t)), 1 ≤ j ≤ m, rL

j,2m(z(0−, t)),m + 1 ≤ j ≤ 2m are linearly independent. We write
{

w∗
2m(0+, t) = w∗

2m(0−, t) +
∑m

j=1 ξ
−
j rR

j,2m(z(0−, t)) +O(|ξ−|2),
w∗

2m(0−, t) = w∗
2m(0+, t) +

∑2m
j=m+1 ξ

+
j rL

j,2m(z(0+, t)) +O(|ξ+|2). (79)

Assumeξ = (ξ−, ξ+) is non null. This would imply

m
∑

j=1

ξ−j
|ξ| r

R
j,2m(z(0−, t)) = −

2m
∑

j=m+1

ξ+j
|ξ| r

L
j,2m(z(0+, t)) +O(|ξ|).

This holds for anyξ 6= 0 small enough, lettingξ tends to0, this yields that some of the vectorsrR
j,2m, 1 ≤

j ≤ m andrL
j,2m,m+1 ≤ j ≤ 2m are linearly dependent in contradiction with our assumption. Hence

ξ = 0 andw∗
2m(0−, t) = w∗

2m(0+, t), which concludes the proof.

The fact that the vectorsrR
j,2m(z(0+, t)), 1 ≤ j ≤ m, rL

j,2m(z(0−, t)),m + 1 ≤ j ≤ 2m are linearly
independent can be proved, by some technical continuity argument, using the fact that we have assumed
that the entropy laws are close enough so that the eigenvectors rR

j,2m(z), 1 ≤ j ≤ m, rL
j,2m(z),m+1 ≤

j ≤ 2m are independent. Indeed, due to the coupling condition, we know thatz(0−, t) andz(0+, t)
are connected byL− (or equivalentlyR−) waves, hence, with a possible change inO(|ξ−|2) we can
take all the eigenvectors evaluated at the same statez(0+, t) (or z(0−, t)). �

5.2.2 The coupled Riemann problem

We are given two nearby constant stateswe
± or equivalentlyz± = (w±

k ,w
∗
2m

±, e±), wherewe
− =

ϕL(z−), we
+ = ϕR(z+), and we want to solve the coupled Riemann problem i.e. (64) with sL =

sL(we), or in variablez, εL(τ, s) in x < 0, sR = sR(we) or εR(τ, s), in x > 0, the initial condition

w(x, 0) =

{

we
−, in x < 0

we
+, in x > 0.

(80)

together with the coupling conditions (71).

Theorem 1.Assuming the above hypothesis, the coupled Riemann problemhas a unique solution.

Proof. We try to connect the states by a succession of elementary waves: (at most)m L−waves, each
associated to a negative eigenvalueλL

j < 0, j ∈ {1, · · · ,m}, betweenwe
− andwe(0−), a ‘discontinu-

tity’ at the interfacex = 0 betweenwe(0−) andwe(0+) satisfying the coupling conditions (71) and
(at most)mR−waves, each associated to a positive eigenvalueλR

j > 0, j ∈ {m+1, · · · , 2m} between
we(0+) andwe

+.

Following the proof of proposition 7, we intend to ‘project’on thew∗
2m hyperplane since the discon-

tinutity between the statewe(0−) andwe(0+) is characterized byw∗
2m(0−) = w∗

2m(0+). This gives
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2m unknown quantities(ξj)1≤j≤2m characterizing the componentsw∗
2m of the intermediate constant

states, saywe
j,∗, between theL−waves (inx < 0) or R−waves (inx > 0). These quantities are ob-

tained by writing the2m equations expressing thatwe
j,∗ belongs to thej−wave curve throughwe

j−1,∗ or
we

j+1,∗ according to whetherj is in {1, ..m} or {m+ 1, .., 2m}). Using the parametrization of Lemma
6, it results in

{

w∗
2m(0−, t) = (w∗

2m)− +
∑m

j=1 ξjr
L
j,2m(z(0−, t)) + 0(|ξ+|2)

w∗
2m(0+, t) = (w∗

2m)+ +
∑2m

j=m+1 ξjr
R
j,2m(z(0+, t)) + 0(|ξ−|2). (81)

Now, since the2m vectorsrL
j,2m(z(0−, t)), rR

j,2m(z(0+, t)) are independent, thanks to the inverse map-
ping theorem, we conclude that theξj exist and are unique forz± sufficiently close.

We already know that thewk are constant across the non 0 characteristic fields thuswk(0−) = w−
k ,

wk(0+) = w+
k . If there were only rarefactions, we could conclude thats also is constant so that

sL(0−) = s−L , sR(0+) = s+R, in that case the solution is thoroughly determined. However, if we have a
j−discontinuity, we know from the last equation in (72) that itis in fact completely determined by the
w∗

2m components which are already known, so that, in that case too, the argument is completed. �

Note that the coupling we have performed is conservative, meaning that

fL(u(0−, t)) = fR(u(0+, t)).

Indeed, at the interface, (64) shows thatwk is conserved (the corresponding flux is null) whilew∗
2m

beeing continuous, the remaining components of the left andright fluxes are equal. This also holds in
conservative variablesu since constant linear combinations of the above variables remain continuous
at the interface.

5.3 Conclusion and perspective

We have been able to explicit coupling conditions inphysicalvariables and then to solve the coupled
Riemann problem in a unique way for a rather wide class of fluidsystems whose equations are written
in Lagrangian coordinates. Since the interface is characteristic, only the Riemann invariants of the
eigenvalueλ = 0 are constant.

Let us note byWL,R(ξ;u−,u+) this solution of the coupled Riemann problem. It can be used as a
building block for a numerical scheme. Indeed, we can define aGodunov scheme with numerical flux
gGod

LR (u,v) with (see (9)(10)) the usual Godunov schemes in each half space

{

gGod
LR (uj−1/2,uj+1/2) = gGod

L (uj−1/2,uj+1/2), j < 0

gGod
LR (uj−1/2,uj+1/2) = gGod

R (uj+1/2,uj+1/2), j > 0
(82)

wheregGod
α denotes the Godunov flux forfα which involves usual (i.e., uncoupled) Riemann problems

and again two fluxes at the interfacej = 0

{

gGod−
LR (u−1/2,u1/2) = fL(WL,R(0−;u−1/2,u1/2)),

gGod+
LR (u−1/2,u1/2) = fR(WL,R(0+;u−1/2,u1/2)).

(83)

The variablesw∗
2m involved in these fluxes coincide. For instance, for the usual Euler sys-

tem, the flux is(−v, p, pv)T so that the two fluxes do coincidefL(WL,R(0−;u−1/2,u1/2)) =

fR(WL,R(0−;u−1/2,u1/2)) = (−v0, p0, p0v0)
T if v0, p0 denotes the common velocity and presure

of the stateWL,R(0−;u−1/2,u1/2).
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The above analysis can also be used for the coupling of two Euler systems (in Eulerian coordinates)
in primitive variables using a Lagrange+projection scheme. In the Lagrangian step, we solve the
Lagrangian system on one time step with some two-flux method which ensures the transmission of
v, p and then project back on the Eulerian grid, thus the Lagrangian step ensures the continuity of the
Riemann invariantsw∗

2m, i.e. of v, p for the usual Euler system. A special treatment of the projection
step (with mean pressure projection) will preserve this continuity. This has been performed and the cor-
responding scheme is used for the coupling of two Euler systems with differentγ−law (we refer to [4]).

This work falls within the scope of an ingoing joint researchprogram on multiphase flows between
CEA and University Pierre et Marie Curie–Paris 6 (see [2]) inthe framework of the Neptune project.
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