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Abstract. This paper is devoted to the study of the one dimensional interfa-
cial coupling of two PDE systems at a given fixed interface, say x = 0. Each
system is posed on a half-space, namely x < 0 and x > 0. As an interfacial

model, a coupling condition whose objective is to enforce the continuity (in a
weak sense) of a prescribed variable is generally imposed at x = 0.
We first focus on the coupling of two scalar conservation laws and state an
existence result for the coupled Riemann problem. Numerical experiments are
also proposed. We then consider, both from a theoretical and a numerical point
of view, the coupling of two-phase flow models namely a drift-flux model and a
two-fluid model. In particular, the link between both models will be addressed
using asymptotic expansions.

1. Introduction. This paper follows a presentation given by the author at the con-
ference New Trends in Model Coupling. Theory, Numerics and Applications held
in Paris (France) in September 2009. It aimed at briefly presenting some results
obtained recently in the context of a collaboration between the Laboratoire Jacques-
Louis Lions (http://www.ann.jussieu.fr) and the CEA-Saclay (http://www-centre-
saclay.cea.fr/index.php/en) on the coupling problem of nonlinear systems of partial
differential equations. The following persons have taken (or took) part in this collab-
oration : A. Ambroso, B. Boutin, C. Chalons, F. Coquel, T. Galié, E. Godlewski,
F. Lagoutière, P.-A. Raviart, J. Segré, Nicolas Seguin. We refer the reader to
http://www.ann.jussieu.fr/groupes/cea for more details.
We have been more precisely interested in the development of theoretically grounded
numerical tools for the coupling of two-phase flow models. With this in mind, we
have studied a wide hierarchy of models : scalar conservation laws, gas dynamics
equations, homogeneous models for two-phase flows, drift-flux models and bifluid
systems. The industrial motivation is concerned with the simulation of nuclear
reactors when several thermohydraulic codes are used. In these codes, multiple
modelling scales are applied to describe the flow. For instance, different models can
be used for each reactor component to take into account its specific behavior, or
small scale models can be used, locally, to obtain a better resolution. When these
models are put side to side, we face the problem of coupling. There is therefore
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a need to identify the nature of the information to be transmitted at a coupling
interface in order to obtain a coherent description of the whole operating device.

The first part of the paper is devoted to the coupling of two scalar conservation
laws. We first explain how the coupling problem is set from a mathematical point
of view by precising the coupling condition we impose at the coupling interface. We
then state an existence result for the Riemann problem and highlight some interest-
ing features like existence and non uniqueness of both continuous and discontinuous
(at the coupling interface) solutions. The numerical standpoint is also investigated.

The second part of the paper is concerned with the coupling of two two-phase flow
models, namely a two-fluid two-pressure model and a drift-flux model. After a brief
presentation of the dimensionless forms of these models, we first state a proximity
result of their solutions to each other. This statement relies on a Chapman-Enskog
asymptotic analysis with respect to a small parameter ǫ. This parameter naturally
comes out when considering real-like applications and expresses, roughly speaking,
that the various relaxation times involved in the (two-pressure) model are much
smaller than the time scale of interest. We then briefly describe the proposed
numerical coupling procedure and assess it on a classical vertical bubbly column
test case. A particular attention is paid to the numerical validity of the above
mentioned proximity result in the asymptotic regime ǫ → 0.
The two parts of the paper are independent.

This work was partially supported by the NEPTUNE project [18], funded by
CEA, EDF, IRSN and AREVA-NP.

2. Interfacial coupling of two scalar conservation laws. In this section, we
focus on the coupling of two scalar conservation laws at a fixed interface, say for
instance x = 0. Each equation is associated with its own smooth flux function and
is posed on a half-space, namely x < 0 and x > 0. More precisely, the problem
writes as follows :

∂tu + ∂xfL(u) = 0, x < 0, t > 0 (1)

∂tu + ∂xfR(u) = 0, x > 0, t > 0 (2)

where fα : R → R, α = L, R, are two given C1 functions. Note that it will be
implicitly assumed throughout the paper that the flux functions fα have at most
a finite number of changes of convexity, which is often (is not always) the case for
practical applications. Given u0 : R → R, we impose the initial condition

u(x, 0) = u0(x), x ∈ R. (3)

At this stage, the coupling condition at point x = 0 remains to be precised. Without
further details, we assume here that it is physically relevant to impose the continuity
of a given quantity vα = vα(u) at the coupling interface, that is to look for a solution
u : (x, t) → u(x, t) ∈ R such that

vL(u(0−, t)) = vR(u(0+, t)), t > 0. (4)

This continuity constraint will be understood in a weak sense hereafter.

2.1. Towards a weakened coupling condition. In order to illustrate the need
for a weakened coupling condition instead of (4), let us temporarily concentrate on
the simplest case vα(u) = u, α = L, R, so that (4) reads

u(0−, t) = u(0+, t), t > 0. (5)
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Figure 1. Information travelling with positive speed in a bound-
ary value problem set in x < 0

Then, the coupling problem (1)-(2)-(4) can be understood as two boundary value
problems, namely a ”right” boundary value problem for the ”left” system (1) and
a ”left” boundary value problem for the ”right” system (2) :

{

∂tu + ∂xfL(u) = 0, x < 0, t > 0
u(0−, t) = bL(t), t > 0

and

{

∂tu + ∂xfR(u) = 0, x > 0, t > 0
u(0+, t) = bR(t), t > 0

with bL(t) = u(0+, t) and bR(t) = u(0−, t). Now in this context, it is well-known
that given u0, f , b and the following initial boundary value problem set for instance
in x < 0,







∂tu + ∂xf(u) = 0, x < 0, t > 0
u(0−, t) = b, t > 0
u(x, 0) = u0(x), x < 0

(6)

one cannot always impose u(0−, t) = b, t > 0 in the strong sense since information
may travel with positive speed depending on the flux function f , see Figure 1. The
boundary condition u(0−, t) = b, t > 0 must therefore be understood in a weak
sense. Following LeFloch and Dubois [13] and denoting w(x

t ; ug, ud) the self-similar
solution of the Riemann problem















∂tu + ∂xf(u) = 0, x ∈ R, t > 0

u(x, 0) =

{

ug, x < 0
ud, x > 0

we propose to replace u(0−, t) = b, t > 0 with

u(0−, t) ∈ O(b), t > 0, (7)

the set O(b) being defined by

O(b) = {w(0−; u, b); u ∈ R}.

The boundary value b obviously belongs to this set of admissible values since
w(0−; b, b) = b. More generally, (7) means that the left trace u(0−, t) of the so-
lution must coincide with the left trace (at point x = 0) of a Riemann solution for
which the right state ud of the initial condition is b. In other words, the Riemann
solution w(.; ug, ud) for which the left and right states ug and ud are respectively
u(0−, t) and b must only have waves propagating with a non negative speed, see
Figure 2.
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Figure 2. An example of admissible left trace u(0−, t) : the Rie-
mann solution w(x

t ; u(0−, t), b) has non negative speeds only

Consider now the more general initial boundary value problem






∂tu + ∂xf(u) = 0, x < 0, t > 0
v(0−, t) := θ−1(u(0−, t)) = b, t > 0
u(x, 0) = u0(x), x < 0

(8)

for a given invertible function θ−1. Setting

z(
x

t
; vg, vd) = θ−1(w(

x

t
; θ(vg), θ(vd)))

the boundary condition v(0−, t) := θ−1(u(0−, t)) = b is naturally replaced with

v(0−, t) ∈ Õ(b), t > 0, (9)

the set Õ(b) being defined by

Õ(b) = {z(0−; v, b); v ∈ R}.

Remark 1. The invertibility assumption on θ−1 is necessary for z(.; ., .) and then

Õ(b) to be well-defined. This assumption is thus necessary as soon as we deal
with solutions of the initial boundary value problem (8) such that the continuity
condition v(0−, t) := θ−1(u(0−, t)) = b is not satisfied in the strong sense.

2.2. The mathematical formulation of the coupling problem. It is now clear
that the coupling condition (4) must be understood in a weak sense. Let us assume
that vα(u) = θ−1

α (u), α = L, R for two given invertible functions θ−1
α , α = L, R. We

set

v(x, t) =







θ−1
L (u(x, t)), x < 0

θ−1
R (u(x, t)), x > 0.

(10)

Along the lines of the previous subsection and following [13], [16] and [17], (4) is
given the following weak sense :







v(0−, t) ∈ ÕL(v(0+, t))

v(0+, t) ∈ ÕR(v(0−, t)),

(11)
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Figure 3. An example of admissible left trace u(0−, t) : the Rie-
mann solution wL(x

t ; u(0−, t), u(0+, t)) has non negative speeds
only

where the sets ÕL(vd) and ÕR(vg) are naturally defined as follows. Denoting by
wα(x

t ; ug, ud) the self-similar solution of the Riemann problem














∂tu + ∂xfα(u) = 0, x ∈ R, t > 0

u(x, 0) =

{

ug, x < 0
ud, x > 0

and setting

zα(
x

t
; vg, vd) = θ−1

α (wα(
x

t
; θα(vg), θα(vd)))

we have






ÕL(vd) = {zL(0−; v, vd); v ∈ R}

ÕR(vg) = {zR(0+; vg, v); v ∈ R} .

Focusing on the particular case θ−1
α (u) = u, α = L, R, the weakened coupling con-

dition (11) means that the left trace u(0−, t) (respectively the right trace u(0+, t))
of the solution of the coupled problem must coincide with the left trace (resp. the
right trace) of a Riemann solution associated with the flux fL (resp. fR) and for
which the right state ud (resp. the left state ug) of the initial condition is u(0+, t)
(resp. u(0−, t)). In other words, the Riemann solution wα(.; u(0−, t), u(0+, t)) must
only have waves propagating with a non negative (respectively non positive) speed
for α = L (resp. α = R), see Figures 3 and 4.

Remark 2. Here again, the invertibility assumptions on θ−1
α are necessary for

the sets Õα(v), α = L, R to be well-defined. This assumption is thus necessary
as soon as we deal with solutions of the coupling problem (1)-(2)-(11) such that
v(0−, t) 6= v(0+, t). In this case, the continuity constraint v(0−, t) = v(0+, t) is
satisfied in a weak sense only.

3. An existence result for the coupled Riemann problem. In this section,
we consider the Riemann problem associated with the coupled problem under con-
sideration, meaning that we look for a self-similar solution of (1)-(2), supplemented
with the weakened coupling condition (11) and the initial condition

u(x, 0) =

{

ug, x < 0
ud, x > 0
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Figure 4. An example of admissible right trace u(0+, t) : the
Riemann solution wR(x

t ; u(0−, t), u(0+, t)) has non positive speeds
only

for two given initial states ug and ud. For convenience, we assume that both func-
tions θL and θR are strictly increasing and map R onto itself.
In [10], we proved the following existence result.

Theorem 3.1. ([10]) Assume that the flux functions fL and fR are C1 functions
with at most a finite number of convexity changes. Then the coupled Riemann
problem has at least one self-similar solution.

Instead of proving this theorem, which would be too long for the present limited in
length paper, we propose to illustrate it on particular flux functions.

Let us first briefly give some comments. Firstly, the solution to the coupled Riemann
problem can be either continuous or discontinuous in the v-variable at the coupling
interface. In the former case, the coupling condition (4) is satisfied in the classical
sense, while in the latter one, this continuity constraint is satisfied in the weak sense
(11) only. Secondly, it is worth noticing that the solution to the Riemann problem
exists but is not necessarily unique. In fact, in some particular situations, continuous
and discontinuous solutions at the coupling interface (and in the v-variable) may
co-exist, the latter one being not necessarily unique. At last, note that even a 1-
parameter family of continuous solutions at the coupling interface may exist for the
same Riemann initial data.

3.1. Some particular configurations. In this section, we set vL(u) = vR(u) = u.

3.1.1. The functions fL and fR are strictly decreasing. In this case, information
propagates with negative speed so that the right trace of the solution u(0+, t) at
the coupling interface necessarily equals ud. More precisely, we have

u(x, t) = ud, x > 0.

As far as the left trace u(0−, t) is concerned, the coupling condition u(0−, t) ∈
OL(ud) imposes that the Riemann solution wL(.; u(0−, t), ud) has only waves prop-
agating with non negative speeds. Since fL is strictly decreasing, this is not possible
except if the waves are trivial which means that u(0−, t) = ud. The Riemann so-
lution to the coupled Riemann problem is therefore continuous at the coupling
interface and equals ud :

u(0−, t) = u(0+, t) = ud,

see Figure 5.
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Figure 5. The functions fL and fR are strictly decreasing
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Figure 6. The functions fL and fR are strictly increasing

3.1.2. The functions fL and fR are strictly increasing. This case is similar to the
previous one. Here, information propagates with positive speed so that the left
trace of the solution u(0−, t) at the coupling interface necessarily equals ug. More
precisely,

u(x, t) = ug, x < 0.

Regarding the right trace u(0+, t), the coupling condition u(0+, t) ∈ OR(ug) imposes
that the Riemann solution wR(.; ug, u(0+, t)) has only waves propagating with non
positive speeds. Since fR is strictly increasing, this is not possible except if the waves
are trivial meaning that u(0+, t) = ug. The Riemann solution is thus continuous
and equals ug at the coupling interface :

u(0−, t) = u(0+, t) = ug,

see Figure 6.

3.1.3. The function fL is strictly increasing and the function fR is strictly decreas-
ing. Here, information propagates with positive speed in the domain {x < 0} and
with negative speed in the domain {x > 0} so that we necessarily have u(0−, t) = ug

and u(0+, t) = ud. Let us now concentrate on the coupling condition which writes
here ug ∈ OL(ud) and ud ∈ OR(ug). The Riemann solution wL(.; ug, ud) (respec-
tively wR(.; ug, ud)) must only have waves propagating with non negative (resp. non
positive) speeds. This is obviously true since fL (resp. fR) is strictly increasing
(resp. strictly decreasing). The Riemann solution to the coupled Riemann problem
is thus a stationary discontinuity, see Figure 7.

3.1.4. The function fL is strictly decreasing and the function fR is strictly increas-
ing. Here, information propagates with negative speed in the domain {x < 0} and
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Figure 7. The function fL is strictly increasing and the function
fR is strictly decreasing
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Figure 8. The function fL is strictly decreasing and the function
fR is strictly increasing

with positive speed in the domain {x > 0} so that the values u(0−, t) and u(0+, t)
cannot be defined from the initial data. Regarding the coupling condition, the Rie-
mann solution wL(.; u(0−, t), u(0+, t)) (respectively wR(.; u(0−, t), u(0+, t))) must
only have waves propagating with non negative (resp. non positive) speeds. This is
not possible since fL (resp. fR) is strictly decreasing (resp. strictly increasing), ex-
cept if u(0−, t) = u(0+, t). The solutions to the coupled Riemann problem are thus
u-continuous at the coupling interface and form a one-parameter family depending
on the parameter u(0) := u(0−, t) = u(0+, t) ∈ R, see Figure 8.

4. Numerical experiments. The aim of this section is to illustrate the theoretical
statements of the previous section from a numerical point of view. Note from now
on that the numerical results of this section, and additional ones as well, can be
found in [10]. Here, two particular configurations will be considered. The first
one corresponds to the case of two strictly monotone flux functions fL and fR.
The second one corresponds to a situation leading to two admissible discontinuous
solutions at the coupling interface. Interestingly, we will observe that different
numerical schemes may capture different solutions.
Let us begin with a brief description of the numerical scheme.

4.1. Numerical scheme. We propose a finite volume method for the discretization
of both systems (1) and (2). Let ∆x and ∆t denote the uniform steps for space
and time, and let Cj+1/2 be the cells defined by Cj+1/2 = (xj , xj+1) with xj = j∆x
and whose centers are xj+1/2 = (j + 1/2)∆x for all j ∈ Z. We set λ = ∆t/∆x and
tn = n∆t for n ∈ N. The approximate solution is assumed to be piecewise constant
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on each cell Cj+1/2 and at each time tn and the corresponding value is denoted
un

j+1/2. As is usual, we first set

u0
j+1/2 =

1

∆x

∫

Cj+1/2

u0(x)dx, j ∈ Z,

where u0 denotes a given initial condition for the coupling problem.
Then, let Gα, α = L, R be two two-point numerical flux functions such that
Gα(u, u) = fα(u), α = L, R (consistency). We propose the following update formula
for un+1

j+1/2 :

un+1
j−1/2 = un

j−1/2 − λ(Gn
L,j − Gn

L,j−1), j ≤ 0, n ≥ 0,

un+1
j+1/2 = un

j+1/2 − λ(Gn
R,j+1 − Gn

R,j), j ≥ 0, n ≥ 0,
(12)

with Gn
α,j = Gα(un

j−1/2, u
n
j+1/2) for j 6= 0. Said differently, the scheme is a classical

finite volume scheme ”far away” from the interface, while both fluxes Gn
L,0 and

Gn
R,0 remain to be precised in order to define the numerical coupling procedure.

Following the previous works [16], [17] (see also [1], [2], [3], [4], [5], [6]), we set in
[10]

Gn
L,0 = GL(un

−1/2, θL(vn
1/2)),

Gn
R,0 = GR(θR(vn

−1/2), u
n
1/2),

(13)

where ghost states vn
±1/2 are obtained as

vn
−1/2 = θ−1

L (un
−1/2),

vn
1/2 = θ−1

R (un
1/2).

(14)

For convenience , we will restrict ourselves to the simple case θL = θR = id, so that
the ghost states at the interface are simply

vn
−1/2 = un

−1/2,

vn
1/2 = un

1/2.
(15)

At last and as far as the numerical flux functions Gα, α = L, R are concerned, we
will consider the celebrated Godunov scheme :

Gα(u, v) =

{

minw∈[u,v] fα(w), u ≤ v,
maxw∈[v,u] fα(w), v < u,

(16)

and a relaxation scheme (see for instance [21]) defined by :

Gα(u, v) =
1

2

(

fα(u)+fα(v)
)

+
a(u, v)

2
(u−v) with a(u, v) = max

[min(u,v),max(u,v)]
|f ′|.

(17)

4.2. Numerical results. Let us now present the test cases and the numerical
results. As Riemann initial data, we take

u0(x) =

{

ug if x < 0,
ud if x > 0.

Test 1. The case of strictly monotone flux functions.
We choose ug = −2 and ud = 2 and we consider the following cases :

(a) fL(u) = −u and fR(u) = −2u : the unique solution is continuous at the
coupling interface.

(b) fL(u) = u and fR(u) = 2u : the unique solution is continuous at the coupling
interface.
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(c) fL(u) = u and fR(u) = −2u : there is no continuous solution but a unique
discontinuous solution.

(d) fL(u) = −u and fR(u) = 2u : there is no discontinuous solution and a contin-
uum of continuous solutions.

Numerical results, obtained for both relaxation and Godunov approaches, are pre-
sented on Fig. 9. These results are in agreement with the above theoretical results.
Note that in the last case, a one-parameter family of solutions does exist but both
numerical schemes capture the same continuous solution.

-2

-1

 0

 1

 2

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Relaxation
Godunov
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-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1
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Godunov
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-1
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 1

 2

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1
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Godunov

-2

-1
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 1

 2
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Relaxation
Godunov

Figure 9. Monotone fluxes. Top : Left (a), Right (b). Bottom :
Left (c), Right (d). 1000-point mesh. t = 0.2. ug = −2, ud = 2.

Test 3. A particular configuration where two discontinuous solutions are admissi-
ble.
The flux functions fL and fR are defined from the derivatives f ′

L and f ′
R given by

f ′
L(u) = (u + 1)(u +

1

10
)(u − 1),

f ′
R(u) = −(u +

1

2
)(u −

2

5
)(u −

3

2
).

The Riemann initial data is such that ug = −1.25 and ud = 1.75. It can be proved,
see [10], that the Riemann problem admits two discontinuous solutions. Numerical
solutions are presented on Fig. 10. We observe that the Godunov scheme and the
relaxation scheme do not capture the same solution.
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Figure 10. Multiple discontinuous solutions. 10000-point mesh.
uL = −1.25, uR = 1.75, t = 1.5

5. Application to multiphase flows. In this part, we are now interested in the
coupling of two-phase flow models, namely a two-pressure model and a drift-flux
model. This coupling problem is motivated by real applications in the nuclear do-
main and more precisely by the simulation of the flows in the core or steam generator
of a nuclear reactor, say for instance a Pressurized or Boiling Water Reactor. In
this context, liquid-vapor water flows are naturally present and may be described by
different sets of equations depending on their specificities. One assumes here that
both the two-pressure and drift-flux systems are relevant, and thus investigate their
coupling. Let us begin with a brief description of the models, focusing ourselves on
the barotropic case.

The two-fluid two-pressure model. The two-pressure model we consider is made
of five equations associated with the following five unknowns : the void fraction
α1 of the phase 1 (the void fraction of the phase 2 is given by α2 = 1 − α1), the
densities ρ1 and ρ2 of the two phases, and the corresponding velocities u1 and u2.
We set u = (α1, α1ρ1, α2ρ2, α1ρ1u1, α2ρ2u2).
The governing equations, written in dimensionless form, are given as follows :






















∂tα1 + uI∂xα1 = Θ(u)(p1 − p2)
∂tα1ρ1 + ∂xα1ρ1u1 = 0
∂tα2ρ2 + ∂xα2ρ2u2 = 0
∂t(α1ρ1u1) + ∂x(α1ρ1u

2
1 + α1p1(ρ1)) − pI∂xα1 = α1ρ1f1(u) + Λ(u)|u2 − u1|(u2 − u1)

∂t(α2ρ2u2) + ∂x(α2ρ2u
2
2 + α2p2(ρ2)) + pI∂xα1 = α2ρ2f2(u) + Λ(u)|u1 − u2|(u1 − u2)

(18)
We first observe that the void fraction α1 evolves according to a transport equation
with (interfacial) velocity uI and supplemented with a pressure relaxation term. The
relaxation coefficient is given by 1/Θ(u) and the corresponding equilibrium is given
by an equality of the barotropic pressures of the two phases, that is p1(ρ1) = p2(ρ2).
Then we have two classical mass conservation equations for each phase, and at last
two evolution equations for the momentum α1ρ1u1 and α2ρ2u2. In these equations,
we first emphasize in the left-hand side the presence of two nonconservative products
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pI∂xα1 where pI denotes an interfacial pressure, and in the right-hand side the
presence of a velocity relaxation term to the equilibrium u1 = u2. The relaxation
coefficient is given by 1/Λ(u). The fonctions f1(u) and f2(u) correspond to the
external forces and will be set to the gravity constant −g in the following.
We will assume throughout this section that the pressure and velocity relaxation
coefficients have the following forms :

Λ(u) =
λ(u)

ǫ2
, Θ(u) =

θ(u)

ǫ2

where importantly, λ(u) and θ(u) are basically of order 1 and ǫ << 1 denotes a
small parameter. This number is often related to a bubble radius in practice. In
the following and without restriction, we will simply take λ(u) = 1 and θ(u) = 1.
As far as the interfacial quantities are concerned, we make the choice uI = u2

and pI = p1 which turns out to be mathematically consistant with both the linear
degeneracy of the characteristic field associated with uI , and the existence of an
entropy-entropy flux pair. We do not enter the details and refer for instance the
reader to [15]. Note however that other choices are possible.

The drift-flux model. The drift-flux model reads as follows :






∂tρ + ∂xρu = 0
∂tρY + ∂x(ρY u + ρY (1 − Y )ur) = 0
∂tρu + ∂x(ρu2 + p + ρY (1 − Y )u2

r) = ρ(1 − Y )f1(v) + ρY f2(v)
(19)

Here, the unknowns are the mixture density ρ, the mass fraction Y of one of the
two phases (say for instance the phase 2) and the mixture velocity u. We set
v = (ρ, ρY, ρu).
The first equation is the classical mass conservation for the total density ρ. The
partial density ρY is also conserved but we note that in addition to the usual
transport term ρY u, the second equation involves an additional contribution ur =
ur(v) which represents an algebraic closure law defining the difference between the
velocities of the two phases. This term is also present in the momentum equation.
As already stated, the external forces f1(v) and f2(v) will be set to the gravity
constant −g in the following.
At last and in regards to the pressure term p = p(v), we consider an isobaric closure
law associated with two given barotropic pressures p1 = p1(ρ1) and p2 = p2(ρ2) for
the two phases 1 and 2. More precisely, the following system is assumed to well-
define the void fraction α2 and the pressure p with respect to v :

{

p = p2(
ρY
α2

)

p1(
ρ(1−Y )
1−α2

) = p2(
ρY
α2

)

Asymptotic analysis. As already said, our objective is to couple these models at
a fixed interface. In order to propose a relevant numerical coupling strategy, we
first studied in [7] how these models are related to each other and proved a hierar-
chy between the two-pressure and the drift-flux models. More precisely, we proved
that the solutions of the drift-flux model correspond to the first-order equilibrium
approximation of the solutions of the two-pressure model. The method of proof is
based on an asymptotic analysis with respect to the small parameter ǫ using the
Chapman-Enskog method, and the corresponding relative velocity ur is given either
by a Darcy-type differential closure law or an algebraic closure law in the spirit of
Zuber-Findlay models [22]. The main two steps of this analysis are briefly recalled
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here and we refer the reader to [7] for more details.

We are interested in the solutions of the two-pressure model near the equilibrium
defined by

{

pr := p1(ρ1) − p2(ρ2) = 0,
ur := u2 − u1 = 0.

Following the Chapman-Enskog method, these solutions are parametrized by ǫ and
we assume that they satisfy the following first-order development in power series
over the small parameter ǫ :

{

pr = 0 + ǫp1
r + O(ǫ2),

ur = 0 + ǫu1
r + O(ǫ2).

(20)

Note that the dependance on ǫ is not explicited in order to avoid cumbersome
notations. We are thus able to prove the following result.

Theorem 5.1. ([7]) Let us define the mixture variables

ρ := α1ρ1 + α2ρ2,
ρu := α1ρ1u1 + α2ρ2u2,
ρY := α2ρ2,

from the two-pressure model. Then, the first-order equilibrium system associated
with the two-pressure model (18) reads exactly as the drift-flux model (19) with the
following Darcy-type closure law for the relative velocity ur :

|ur|ur = ǫ2(ρ2 − ρ1)α1α2
∂xp

ρ
(21)

In other words, the drift-flux model coincides with the reduced model in which the
second (and higher) order terms in ǫ are neglected. The proof of this result simply
consists in first inserting the Chapman-Enskog expansions (20) of ur and pr in the
two-pressure model, and then keeping the first-order terms in ǫ while neglecting the
higher-order terms.

Remark 3. It is important to notice that the Darcy-type closure law (21) still
involves a second-order term in ǫ. This term has not been neglected in agreement
with the classical form of the drift-flux models.

Remark 4. It is also important to mention that thanks to the second-order term ǫ2

in the pressure relaxation coefficient of the two-pressure model, the first-order pres-
sure correction p1

r turns out to be zero. As a consequence, the first-order equilibrium
system does not depend on Θ(u).

The hydrodynamic closure law (21) is a Darcy-like law in the sense that ur depends
on v but also on the first derivative ∂xp. This is only the first step towards a clas-
sical drift-flux model. Our objective is now to get a classical drift-flux model with
an algebraic (i.e. a zeroth-order) closure law.

To do so, we focus on the so-called permanent flows. Such flows are defined as
the long-time limit of the solutions of the drift-flux model along the characteristics
of the flow. We then write down the governing equation for the momentum in the
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associated Lagrangian-like coordinates and neglecting the ǫ2 and higher-order terms
leads to the following classical equation :

Dtu +
1

ρ
∂xp = −g.

Since we aim at focusing on long-time limit solutions, it is natural to introduce the
scaling s = tǫ so as to get

ǫDsu +
1

ρ
∂xp = −g.

Now letting ǫ go to 0 allows to recover the classical hydrostatic equilibrium relation

∂xp = −ρg.

Such a balance between the gradient of the pressure p and the external forces is the
key point in the derivation of a zeroth-order closure law for the relative velocity ur.
It is stated in the following theorem.

Theorem 5.2. ([7]) Let us assume that the hydrostatic equilibrium

∂xp = −ρg (22)

is satisfied. Then the first-order equilibrium system associated with the two-pressure
model (18) reads exactly as the drift-flux model (19) with the following algebraic
closure law for the relative velocity ur :

|ur|ur = −ǫ2(ρ2 − ρ1)α1α2g. (23)

We have thus proved a hierarchy between the two-fluid two-pressure model and the
drift-flux model using asymptotic mechanisms. In other words, the solutions of the
two-fluid two-pressure model behave like the solutions of the drift-flux model with
the algebraic closure law (23) when ǫ → 0 and at first order accuracy.

The numerical coupling procedure. Let us now consider the coupling problem at
point x = 0 of the two-pressure model in the left part of the domain (x < 0)
and the drift-flux model with closure relation (23) in the right part of the domain
(x > 0). The proposed numerical scheme is taken from [14] and only the key points
are given here. It is based again on a finite volume approach so that exactly the
same notations as in Section 4 are used for the time and space steps and the mesh
(cells and points). Regarding the piecewise constant approximate solutions, un

j+1/2

for j < 0 will correspond to the two-pressure model and vn
j+1/2 for j ≥ 0 will be

associated with the drift-flux model.
The strategy is motivated by the asymptotic result we have just recalled and has
already been used in other contexts, see for instance [9], [19] and the references
therein. It is often called the father model technique. Here of course, the two-
pressure model naturally plays the role of the father model. The strategy is made
of two steps. In the first one, the two-pressure model is numerically solved on the
whole domain, i.e. including the cells Cj+1/2 for j ≥ 0. This step relies on a relevant
reconstruction strategy. In the second one, a simple projection procedure is applied
on the cells Cj+1/2 for j ≥ 0 in order to get back an approximate solution consistant
with the drift-flux model. Proceeding this (natural) way, the proposed numerical
scheme for the drift-flux model is expected to asymptotically comply with the one
associated with the two-pressure model. Let us now give this more details.
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First step : tn → tn+1−. In order to solve the two-pressure model in the whole
domain, we first propose to define an approximate solution of this model in the
right part of the domain by lifting vn

j+1/2, j ≥ 0. It thus amounts to define u from

v and this procedure is expected to be consistant with the drift law defining ur.
We proceed as follows for all j ≥ 0. The mass fractions are first defined setting :

(α2ρ2)
n
j+1/2 = (ρY )n

j+1/2

(α1ρ1)
n
j+1/2 = ρn

j+1/2 − (α2ρ2)
n
j+1/2.

Then, (α1)
n
j+1/2 and (α2)

n
j+1/2 = 1 − (α1)

n
j+1/2 are defined thanks to the isobaric

relation

p1(
(α1ρ1)

n
j+1/2

(α1)n
j+1/2

) = p2(
(α2ρ2)

n
j+1/2

(α2)n
j+1/2

).

At last, we seek the momentum (α1ρ1u1)
n
j+1/2 and (α2ρ2u2)

n
j+1/2 as the solutions

of the following 2 × 2 nonlinear system involving the drift law :
{

(ρu)n
j+1/2 = (α1ρ1u1)

n
j+1/2 + (α2ρ2u2)

n
j+1/2

|(ur)
n
j+1/2|(ur)

n
j+1/2 = −ǫ2((ρ2)

n
j+1/2 − (ρ1)

n
j+1/2)(α1)

n
j+1/2(α2)

n
j+1/2g,

where of course ρk = (αkρk)/αk and uk = (αkρkuk)/(αkρk) for each k = 1, 2, and
ur = u2 − u1. Note that the topology of the flow under consideration is expected
to ensure existence and uniqueness of a solution to this system. In other words, the
sign of the relative velocity ur and then the value of |ur| is assumed to be defined
without ambiguity.

Equipped with this piecewise constant approximation of u in the whole domain,
we are now in position to numerically solve the two-pressure model in the time
interval [tn, tn+1]. This leads to an updated sequence of approximate values un+1−

j+1/2,

∀ j.

Step 2 : tn+1− → tn+1. The aim of this step is to recover a consistant approx-
imation of the drift-flux model in the right part of the domain. With this in mind,
we propose to keep unchanged the updated values in the left part, setting

un+1
j+1/2 = un+1−

j+1/2, ∀ j < 0,

and to simply project it in the right part. More precisely, vn+1
j+1/2 for j ≥ 0 is defined

by the following natural relations :

(ρY )n+1
j+1/2 = (α2ρ2)

n+1−
j+1/2

ρn+1
j+1/2 = (α1ρ1)

n+1−
j+1/2 + (α2ρ2)

n+1−
j+1/2

and

(ρu)n+1
j+1/2 = (α1ρ1u1)

n+1−
j+1/2 + (α2ρ2u2)

n+1−
j+1/2

This solution is thus expected to approach the solution of the drift-flux model up
to second or higher order terms in ǫ.

The numerical scheme we used to define un+1−
j+1/2 is based on a relaxation approxi-

mation of the two-pressure model, including both the convective part of the model
and its velocity relaxation term. The latter thus received an upwind treatment.
On the contrary, the other sources such as the pressure relaxation term are taken
into account using classical centered approximations. Such a strategy is motivated
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by the now well-known well-balanced and asymptotic preserving properties, see for
instance [12] and the numerous references therein. For the full description of the
algorithm, we refer the reader to [14] (note that the paper [8] is submitted on this
subject, including an extension to the non barotropic case).

Remark 5. Note that such a coupling procedure is by construction conservative
with respect to the partial mass α1ρ1, α2ρ2 and total momentum ρu = α1ρ1u1 +
α2ρ2u2. Note also that it is relevant provided that ǫ is small and the flow almost
satisfies the hydrostatic equilibrium relation. This is indeed necessary for the ap-
proximate solution to realize a good approximation of the drift-flux solution in the
right part of the domain.

Numerical illustration. In order to assess the validity of our coupling approach and
to numerically illustrate the proximity result of the solutions of the two-pressure and
drift-flux models, we consider an ascending dispersed two-phase flow in a vertical
bubbly column of 1m length. The bottom is located at x = −0.5, the top at x = 0.5
and the coupling interface at x = 0.
The pressure laws are given by stiffened gas equations of states

pk(ρk) = Ak(γk − 1)ργk

k − Pk,∞

where the coeffients are taken to be






γ1 = 4.1, γ2 = 1.4
P1,∞ = 900 105Pa, P2,∞ = 0,
A1 = 1.346 10−4, A2 = 62268.

These values are such that when p1 = p2 = 150 bar and T1 = T2 = 342.16 oC, the
densities ρ1 and ρ2 correspond respectively to the saturation values of the liquid
and vapor water densities, namely ρ1 = 603.52 kg/m3 and ρ2 = 96.727 kg/m3.
Theoretical boundary conditions are such that at the entrance we impose a non zero
relative velocity such that u1 = 5m/s and u2 = 15m/s, the void fraction α1 = 0.97,
and the mixture pressure p = 155 105Pa. At the exit, we only impose the mixture
pressure p = 150 105Pa.
From a numerical point of view, fictitious states were used with Dirichlet boundary
conditions at the entrance (with p1 = p2) and half-Riemann problems in the sense
of Dubois and LeFloch [13] at the exit.
In such a configuration, an equilibrium is expected to take place in very long time
between the pressure gradient and the gravity terms. so that we expect a proxim-
ity between the solutions of the two models under consideration. We then plot on
the next picture the stationary profiles of the relative velocity given by a 100-point
mesh and with different methods. More precisely, we propose to compare the solu-
tions given by the coupling procedure we described above, and by the two-pressure
model and the drift-flux model respectively considered in the whole domain (the
above strategy is obviously adapted to the these extreme situations). Different val-
ues of ǫ are considered.
As expected we observe that the more ǫ is small, the best is the agreement between
the three curves in the stationary regime and the shorter is the distance associated
with the transitory regime.

This test case shows a typical situation of physically relevant coupling problem. It
is indeed theoretically justified by a link between both models (asymptotic analysis)
to be coupled, it is numerically relevant since the coupling procedure is natural and
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conservative with respect to the partial mass and total momentum, and importantly
we obtain similar results between a simulation performed with the two-pressure
model only (expensive) and the coupling (less expensive) so that a significant gain
may be obtained in practice.
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Figure 11. ǫ2 = 10−1 (Top) and ǫ2 = 10−3 (Bottom)

6. Conclusion. This paper presents an introduction to the coupling of hyperbolic
models from both a theoretical and industrial point of view. It reviews in par-
ticular some of the results obtained by a working group between the J.-L. Lions
Laboratory (University P. et M. Curie Paris 6) and the CEA-Saclay. It consists of
two independent parts. The first part considers the coupling of two scalar conser-
vation equations and the second part is devoted to the coupling of two barotropic
two-phase flow models.
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[15] T. Gallouët, J.-M. Hérard and N. Seguin. Numerical modeling of two-phase flows using

the two-fluid two-pressure approach. Mathematical Models and Methods in Applied Sciences
(M3AS), vol 14(5), pp 663-700 (2004). MR2057513

[16] E. Godlewski and P.-A. Raviart. The numerical interface coupling of nonlinear hyperbolic sys-

tems of conservation laws. I. The scalar case. Numer. Math., 97(1):81–130, 2004. MR2045460
[17] E. Godlewski, K.-C. Le Thanh and P.-A. Raviart. The numerical interface coupling of non-

linear hyperbolic systems of conservation laws. II. The case of systems. M2AN Math. Model.
Numer. Anal., 39(4):649–692, 2005. MR2165674

[18] A. Guelfi, D. Bestion, M. Boucker, P. Boudier, P. Fillion, M. Grandotto, J.-M. Hérard,
E. Hervieu and P. Péturaud. NEPTUNE: A New Software Platform for Advanced Nuclear

Thermal Hydraulic. Nuclear Science and Engineering, 156, pp 281-324 (2007).
[19] J.-M. Hérard and O. Hurisse. Some attempts to couple distinct fluid models. Network and

Heterogeneous Media, submitted.
[20] O. Hurisse. Techniques de couplages de modèles hyperboliques en thermohydraulique
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