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Abstract. We show how to derive time implicit formulations of relaxation schemes for the
Euler equations for real materials in several space dimensions. In the fully time explicit setting, the
relaxation approach has been proved to provide efficient and robust methods. It thus turns interesting
to answer the open question of the time implicit extension of the procedure. A first natural extension
of the classical time explicit strategy is shown to fail in producing discrete solutions which converge
in time to a steady state. We prove that this first approach does not permit a proper balance between
the stiff relaxation terms and the flux gradients. We then show how to achieve a well-balanced time
implicit method which yields approximate solutions at a perfect steady state.
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1. Introduction. This work is devoted to the study of time implicit formula-
tions of relaxation schemes for the Euler equations with general pressure laws.
Over the past decade, relaxation schemes have received a considerable attention. Such
schemes are primarily intended to approximate the solutions of highly nonlinear hy-
perbolic systems. The design principle of relaxation schemes consists in approximating
the solutions (say the Riemann solutions) of a given highly nonlinear system by the
solutions of a larger but weakly nonlinear system with singular perturbations. These
perturbations take the form of stiff relaxation source terms which restore the alge-
braic nonlinearities of the original PDE model in the regime of an infinite relaxation
parameter. Here the key issue is that these source terms must of course facilitate
the derivation of the approximation procedure together with its nonlinear stability
analysis as well.
At the theoretical level, relevant relaxation methods have been proved to obey in
their time explicit formulation several important stability properties ranging from L1

stability (the phase space is preserved) to nonlinear stability like entropy inequalities,
see [3], [6], [5], [15], [9] and the references therein. Moreover, some of these methods
([3], [6]) also enjoy accuracy properties like the exact capture of stationary contact
discontinuities. From a numerical point of view, the simplicity in the time explicit
formulation of these methods guarantees a very low computational effort. In addition,
the property that their upwind mechanism stays virtually free from the exact pressure
law makes them very useful in practice. At last, the relaxation strategy allows for
a fruitful reinterpretation of some of the prominent approximate Riemann solvers as
underlined by Bouchut [3] and also Leveque and Pelanti [17]. Such a reintrepretation
has made tractable the extension of Riemann solvers to various and difficult settings
for complex compressible materials (see [1], [2], [4] for recent contributions), but al-
ways in a fully time explicit framework.
It therefore seems useful to extend the relaxation schemes to a time implicit setting
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in order to inherit from their valuable properties of stability, accuracy and simplic-
ity in the calculation of steady state solutions via the very classical time marching
technique.

Here the solutions of the Euler equations for real gases in several space dimen-
sions are approximated by the solutions of relaxation PDE model due to [24]. From
the mathematical standpoint, Chalons and Coulombel [7] have recently proposed a
comprehensive study of the convergence properties of the solutions of the relaxation
system to the solutions of the original 3 × 3 Euler system. At the discrete level, the
stability properties of the resulting scheme have been studied by [3], [5], [6] in a fully
time explicit framework.

In this paper, we prove that the natural extension of the time explicit formula-
tion to a time implicit one fails generally speaking in producing perfectly stationary
solutions. We show how to correct the natural extension so as to end up with a ro-
bust time implicit relaxation scheme producing discrete solution at a perfect steady
state. Indeed, let us briefly report on such an origin. In the commonly used time
explicit approach, the relaxation approximation procedure makes use of a fractional
step method alternating between solving the homogeneous relaxation conservation
laws with the ODE equations associated with the (infinitely) stiff relaxation source
terms. It is known after Leveque and Yee [18] that the usual fractional step method
may grossly fail in the capture of unsteady solutions of some PDE systems with stiff
relaxation (see [13] for the capture of detonation wave and a cure). But we stress
that the fractional step method actually fairly succeeds within the fully time explicit
framework for relaxation schemes to reproduce the dynamics in unsteady solutions of
the equilibrium system. This claim, grounded on numerous numerical evidences (see
[3], [5], [6], [15] and [17]), has been given recently a mathematical fundation by Gosse
[11] in the context of a 2 × 2 model for chromatography, proving the convergence of
two time splitting techniques. But when dealing with solutions nearly in steady state,
splitting techniques are known, already in the setting of finite relaxation rate, to suffer
from inaccuracy in balancing source terms and flux gradients. The reader is referred
to LeVeque [16], Greenberg and Leroux [12], and to the recent book by Bouchut [3].
As put forward in the present work devoted to large time step methods for capturing
stationary solutions, extension to the case of an infinite relaxation rate yields a closely
related difficulty: the fractional step method brings in a robust manner solutions of
the equilibrium system to be nearly in steady state but not at perfect steady state. In
this work, we prove that perfectly stationary solutions cannot be reached in general,
unless the relaxation source terms and the flux gradients in the augmented system
are kept in a proper balance in the regime of an infinite relaxation rate. In the light
of the analysis we propose, we design a well-balanced time implicit formulation of the
relaxation approximation procedure. Numerical evidences assess the relevance of the
method: perfectly stationary solutions are achieved.

The format of this paper is as follow. Section 2 addresses the relaxation PDE
model for approximating the solutions of the Euler equations. The stability of this
approximation procedure requires the satisfaction of a so-called subcharacteristic con-
dition. This one is briefly re-investigated on the ground of a Chapman-Enskog ex-
pansion. This rather classical issue is addressed here since it turns very useful to
understand why the well-balanced time implicit relaxation scheme is stable under the
subcharacteristic condition. Section 3 is devoted to the numerical issue. The time ex-
plicit relaxation method is shortly revisited to provide all the formulas required in the
time implicit formulations. We then prove that the relaxation scheme under consider-
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ation can be understood equivalently as a Roe-type method for the relaxation system
but not for the original Euler equations. We refer the reader to LeVeque and Pelanti
[17] for a reinterpretation of the relaxation scheme of Jin and Xin [15] in term of a
Roe method. In the present setting, this equivalence with a Roe linearization stays at
the very basis of the time implicit formulations we derive. The natural time implicit
extension of the relaxation scheme is then described and analyzed to understand the
roots of the reported failure of convergence in time. We propose a correction proce-
dure dictated by the property that the flux gradients in the relaxation system must
properly balance the relaxation source term in the regime of an infinite relaxation
parameter. The last paragraph gives numerical evidences assessing the correct design
of the time implicit formulation we promote in the relaxation framework.

2. Statement of the problem. The present work treats the numerical approx-
imation of the steady state solutions of the Euler equations for real gases :





∂tρ +∇. ρw = 0, t > 0, x ∈ D,
∂tρw +∇. (ρw ⊗w + p(U) Id) = 0,
∂tρE +∇. (ρE + p(U))w = 0,

(2.1)

where D is a bounded domain of Rd with d ≥ 1. The pressure law p(U) is a given
smooth function of the unknown U = (ρ, ρw, ρE) in the form:

p(U) = p(ρ, ρe) with ρe = ρE − ||ρw||2
2ρ

,(2.2)

with the property that the first order system (2.1) is hyperbolic, namely

c2(U) = c2(ρ, ρe) =
∂p

∂ρ
(ρ, ρe) +

1
ρ
(p + ρe)

∂p

∂ρe
(ρ, ρe) > 0,(2.3)

for all state U in the natural phase space:

ΩU =
{
U = (ρ, ρw, ρE) ∈ Rd+2/ρ > 0, ρw ∈ Rd, ρE − ||ρw||2

2ρ
> 0

}
.(2.4)

System (2.1) is given the following condensed form:

∂tU + ∇. F(U) = 0,(2.5)

with clear definition for the vector-valued flux function F(U) = (Fxj (U))1≤j≤d.
In the present work, we deserve a central attention to numerical methods for

the approximation of the solutions to the Euler equations whose formulation stays
free, as far as possible, of the exact form of the required pressure law. In addition,
the methods we seek must achieve robustness in the setting of closure laws coming
from the physics of compressible real material. The reader is referred to Menikoff
and Plorh [21] for a discussion and several examples. It is well-known that the severe
nonlinearities involved in these pressure laws make particularly delicate the capture of
the nonlinear phenomena induced by the acoustic waves. To tackle these nonlinearities
and to allow for an efficient and robust numerical procedure, we propose to adopt a
relaxation approach: the weak solutions of the system (2.1) are approximated by the
solutions of a larger but simpler PDE model with (infinitely) stiff relaxation source
terms. By simpler, it is understood that the underlying nonlinearities are easier to
handle. Motivated by the works by Bouchut [3], Chalons and Coquel [6], Coquel et al.
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[9] and Siliciu [24], simplicity is achieved when no longer understanding the pressure
p(ρ, ρe) as a nonlinear function but as a new unknown we denote by Π, equipped with
its own partial differential equation. This new unknown Π is subject to a relaxation
procedure which purpose is to restore the original pressure law p in the regime of an
infinite relaxation rate. More precisely, the relaxation PDE model developed in [9],
[3], [6], [24] reads:





∂tρ
λ +∇. (ρw)λ = 0, t > 0, x ∈ D,

∂t(ρw)λ +∇. (ρw ⊗w + Π Id)λ = 0,
∂t(ρE)λ +∇. ((ρE + Π)w)λ = 0,
∂t(ρΠ)λ +∇. ((ρΠ + a2)w)λ = λρλ(p(ρλ, (ρe)λ)−Πλ),

(2.6)

where the parameter λ > 0 stands for the relaxation coefficient rate. Here, the
parameter a is a given positive real number and the PDE model (2.6) can be seen
to be invariant by rotation. To simplify the notations, the relaxation model (2.6) is
given the following condensed form:

∂tVλ +∇. G(Vλ) = λR(Vλ),(2.7)

with V = (ρ, ρw, ρE, ρΠ), R(V) = (0, 0Rd , 0, ρ(p(ρ, ρe)−Π)) and clear definitions for
the vector-valued function G(V) = (Gxj (V))1≤j≤d. The precise role played by the
parameter a is explained just hereafter but first, it is worth to stress the reason why
(2.6) is easier to handle than (2.1). To that purpose, observe that setting λ = 0 in
(2.6) decouples the total energy equation from the others. In other words, the total
energy only enters the algebraic relaxation source term via the definition (2.2) of the
original pressure law. This weak coupling is responsible for the following attractive
result (see [3] for instance):

Lemma 2.1. Let be given a > 0 in (2.6). Then the first order system in (2.6) is
hyperbolic over the following phase space

ΩV =
{
V = (ρ, ρw, ρE, ρΠ) ∈ Rd+3/ρ > 0, ρw ∈ Rd, ρE − ||ρw||2

2ρ
> 0, ρΠ ∈ R

}
.

(2.8)
Namely, for any given unit vector n = (ni)1≤i≤d ∈ Rd, the matrix

A(V,n) =
d∑

i=1

ni∇VGni(V)

is R-diagonalizable for all V ∈ ΩV, with the following increasingly ordered eigenvalues:

λ1(V,n) = w.n− a

ρ
< λ2(V,n) = w.n < λ3(V,n) = w.n +

a

ρ
,(2.9)

where the intermediate eigenvalue λ2(V,n) has d+1 order of multiplicity. In addition,
all the fields are linearly degenerate: all the propagating waves behave as linear waves.

Observe from the definition (2.9) that the free real parameter a entering (2.6) has
the dimension of ρc(ρ, ρe), i.e. the dimension of a Lagrangian sound speed. In any
given direction n ∈ Rd, the extreme waves associated with the eigenvalues λ1(V,n)
and λ3(V,n) may be thus understood as an approximation of the acoustic waves in
the original equations (2.1). Hence the reported linear degeneracy is in clear contrast
with the strong nonlinearities involved in the original PDE model and stays at the
basis of the efficient numerical method to be discussed in the next sections.
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We now come to highlight the importance of a correct definition of the parameter
a in the procedure of approximation of the solutions of (2.1) by those of (2.6). To
that purpose, let us rewrite the last governing equation in (2.6) as follows:

(ρΠ)λ = (ρp(ρ, ρe))λ − 1
λ
{∂t(ρΠ)λ +∇. ((ρΠ + a2)w)λ}.(2.10)

Clearly in the limit of an infinite relaxation rate λ → +∞, Πλ formally coincides with
the original pressure law p(ρ, ρe):

lim
λ→+∞

Πλ = p(ρ, ρe).(2.11)

After the works by Liu [19] and Chen, Levermore and Liu [8], it is known (see also the
pioneering work by Whitham [26]) that to prevent a general relaxation procedure from
instabilities in the regime of a large parameter λ >> 1, the so-called subcharacteristic
condition, or Whitham condition [26], must be met: the eigenvalues (2.9) of the
relaxation PDE model and those of the original system must be properly interlaced.
In the present relaxation setting (2.6) for approximating the solutions of (2.1), these
stability conditions are satisfied provided that the free coefficient a > 0 in (2.9) upper-
bounds the exact Lagrangian sound speed ρc(ρ, ρe); namely:

a > ρ× c(U) = ρc(ρ, ρe)(2.12)

must be valid for all the state U under consideration. The reader is referred to the
quoted works [3], [6], [9] for a detailed discussion of (2.12) and its relationship with
the validity of entropy inequalities for the relaxation PDE model (2.6) that are closely
related to those of the original equations.

To assess the relevance of some of our forthcoming conclusions, it is worth to
briefly shade light on the Whitham condition (2.12) on the simpler ground of a
Chapman-Enskog expansion (see Whitham [26] , Chen, Levermore and Liu [8]). Ac-
cording to this approach, the unknown (ρΠ)λ is given the following expansion for
large but finite values of λ > 0:

(ρΠ)λ = (ρp(ρ, ρe))λ +
1
λ

(ρΠ)λ
1 +O(

1
λ2

).(2.13)

The first order corrector (ρΠ)λ
1 is found when plugging (2.13) in the PDE (2.10) to

obtain:

(ρΠ)λ = (ρp(ρ, ρe))λ − 1
λ
{∂t(ρp(ρ, ρe))λ +∇. ((ρp(ρ, ρe) + a2)w)λ}+O(

1
λ2

),(2.14)

so that the first order corrector reads:

Πλ
1 = − 1

ρλ {∂t(ρp(ρ, ρe))λ +∇. ((ρp(ρ, ρe) + a2)w)λ}
= −{∂t(p(ρ, ρe))λ + wλ.∇(p(ρ, ρe))λ} − a2

ρλ∇. wλ.
(2.15)

To go further, we notice that the first d + 2 equations in (2.6) reads as follows at the
first order in 1

λ and in view of the near-equilibrium identity Πλ = (p(ρ, ρe))λ +O( 1
λ ):





∂tρ
λ +∇. (ρw)λ = 0, t > 0, x ∈ D,

∂t(ρw)λ +∇. (ρw ⊗w + p(ρ, ρe) Id)λ = O( 1
λ ),

∂t(ρE)λ +∇. ((ρE + p(ρ, ρe))w)λ = O( 1
λ ),

(2.16)
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so that classical manipulations prove that smooth solutions of (2.6) obey at the first
order in 1

λ the next equation for the original pressure law p(ρ, ρe):

∂tp(ρ, ρe)λ + wλ.∇p(ρ, ρe)λ + ρλc2(ρ, ρe)λ∇. wλ = O(
1
λ

).(2.17)

As a consequence, the first order corrector Πλ
1 in (2.15) writes equivalently:

Πλ
1 = − 1

ρλ
(a2 − (ρλc(U)λ)2)∇. wλ.(2.18)

Invoking the expansion (2.13) with the formula (2.18), the first order asymptotic
system governing the solutions of the relaxation system (2.6) for large values λ >> 1
then reduces to:

∂tρ
λ +∇. (ρw)λ = 0,

∂t(ρw)λ +∇. (ρw ⊗w + p(ρ, ρe) Id)λ = − 1
λ∇. (Πλ

1 Id),
= 1

λ∇. ( 1
ρλ (a2 − (ρc)2)λ∇. wλ Id),

∂t(ρE)λ +∇. ((ρE + p(ρ, ρe))w)λ = 1
λ∇. ( 1

ρλ (a2 − (ρc)2)λwλ∇. wλ).

(2.19)

Observe that (2.19) takes the form of the original Euler equations (2.1) but in the
presence of a viscous perturbation with viscosity like coefficient 1

λρλ (a2−(ρλc(U)λ)2).
As it is well-known (see Majda and Pego [20] for instance), this viscosity coefficient
must be positive for the solutions of the near-equilibrium system (2.19) to be stable:
this requirement is nothing but the Whitham condition expressed in (2.12).

3. The numerical procedure. We show how to take advantage of the relax-
ation system (2.6) in the derivation of an efficient time implicit method for the ap-
proximation of the solutions to the original Euler equations (2.1). We first briefly
revisit the time explicit relaxation framework for the sake of completeness in the re-
quired formulas. We then propose a seemingly natural extension of this framework
to a time implicit setting (see [15], [9] for instance). We prove that such a natural
extension fails to produce perfectly steady state approximate solutions: residues stop
decreasing after a few order of magnitude to then reach a plateau. We then show how
to correct this first extension so as to end up with a robust time implicit method that
yields converged in time discrete solutions corresponding to a ten order of magnitude
decrease for the residues.

For the sake of simplicity in the notations, we only address the case of bidimen-
sionnal problems when focusing on cartesian grids with constant space step ∆x > 0
and ∆y > 0, the extension to curvilinear grids being a classical matter. The time
variable is discretized using a constant time step ∆t > 0. The approximate solution
Uh(x, y, t), h = max(∆x, ∆y), is sought under the form of a piecewise constant func-
tion at each time level tn = n∆t, n ≥ 0. An initial data U0(x, y) being prescribed for
(2.1), we classically define:

Uh(x, y, 0) = U0
i,j =

1
∆x∆y

∫

Cij

U0(x, y)dxdy, i, j ∈ Z,(3.1)

with (x, y) ∈ Cij = ((i− 1
2 )∆x, (i + 1

2 )∆x)× ((j − 1
2 )∆y, (j + 1

2 )∆y).
The boundary conditions considered in the present work are extremely classical in
the setting of the Euler equations: namely far field boundary conditions and wall
conditions. Their treatment is a classical matter described for instance in Hirsch
[14]. Besides, MUSCL second order in space enhancement is used in the forthcoming
numerical evidences. We again refer the reader to [14] for the required material.
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3.1. Revisiting the time explicit procedure. In this section, we briefly re-
visit the usual approach for deriving time explicit scheme in a relaxation framework.
The discrete solution Uh(x, y, tn) being known at time tn = n∆t, n ≥ 1, this one is
evolved to the next time level tn+1 = tn + ∆t thanks to a time explicit finite volume
scheme:

Uh(x, y, tn+1) ≡ Un+1
i,j = Un

i,j−
∆t

∆x
(Fn

i+ 1
2 ,j−Fn

i− 1
2 ,j)−

∆t

∆y
(Fn

i,j+ 1
2
−Fn

i,j− 1
2
), (x, y) ∈ Cij ,

(3.2)
where Fn

i+ 1
2 ,j

and Fn
i,j+ 1

2
must be defined at time tn from two numerical flux func-

tions that are respectively consistent with the exact flux functions Fx and Fy in the
x and y direction. Their required definition follows from the next classical two steps
relaxation procedure (see [15] for instance). This approach can be understood as a
splitting technique for the relaxation system (2.6) when setting λ to 0 in a first step
and then letting the relaxation parameter λ go to infinity in a second step.

First step: Evolution in time (tn → tn+1−)
Starting from the discrete solution Uh(x, y, tn), we consider a relaxation approximate
solution at time tn setting:

Vh(x, y, tn) = (Uh(x, y, tn), (ρΠ)h(x, y, tn)),(3.3)

where the relaxation pressure is defined at equilibrium

(ρΠ)h(x, y, tn) = ρhp(ρh, (ρe)h)(x, y, tn).(3.4)

We then solve for times t ∈ [0,∆t[, ∆t small enough, the following Cauchy problem
for the frozen relaxation system (2.7) with λ = 0:

{
∂tV +∇. G(V) = 0, t > 0, x ∈ D,
V(x, y, 0) = Vh(x, y, tn).(3.5)

Within the finite volume framework, this amounts to update the relaxation approxi-
mate solution at time tn+1− setting in each cell Cij :

Vn+1,−
i,j = Vn

i,j −
∆t

∆x
(Gn

i+ 1
2 ,j − Gn

i− 1
2 ,j)−

∆t

∆y
(Gn

i,j+ 1
2
− Gn

i,j− 1
2
), (x, y) ∈ Cij ,(3.6)

where the definitions of Gn
i+ 1

2 ,j
and Gn

i,j+ 1
2

will be given hereafter.

Second step: relaxation (tn+1− → tn+1)
In each cell Cij , we solve the following EDO problem in the limit λ →∞:





∂tρ
λ = 0,

∂t(ρw)λ = 0,
∂t(ρE)λ = 0,
∂t(ρΠ)λ = λρλ(p(ρ, ρe)λ −Πλ),

(3.7)

with as initial data V(x, y, ∆t−) the solution of the Cauchy problem (3.5) at time ∆t.
In other words, the approximate relaxation solution Vh(x, y, tn+1) is set at equilibrium
at time tn+1 in each cell when keeping unchanged ρ, w and E:

ρn+1
i,j = ρn+1−

i,j , (ρw)n+1
i,j = (ρw)n+1−

i,j , (ρE)n+1
i,j = (ρE)n+1−

i,j ,(3.8)
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but when redefining the relaxation pressure at tn+1 so as to enforce equilibrium in
agreement with (3.4) :

(ρΠ)n+1
i,j = (ρp)(ρn+1

i,j , (ρe)n+1
i,j ).

The Euler approximate solution Uh(x, y, tn+1) is then defined at time tn+1 in each
cell Cij using (3.8)

Un+1
i,j =

(
ρn+1

i,j , (ρw)n+1
i,j , (ρE)n+1

i,j

)
.(3.9)

This concludes the method.

Let us now give a detailed description of the required numerical fluxes Gn
i+ 1

2 ,j
, Gn

i,j+ 1
2

in (3.6) in order to eventually infer the definition of the required fluxes Fn
i+ 1

2 ,j
and

Fn
i,j+ 1

2
in (3.2). We classically take advantage of the invariance by rotation of the

relaxation PDE model (2.6) to focus solely on the definitions of Gn
i+ 1

2 ,j
and thus of

Fn
i+ 1

2 ,j
. The fluxes Gn

i,j+ 1
2

and Fn
i,j+ 1

2
are given symmetrical definitions. Here, the

numerical flux function Gn
i+ 1

2 ,j
is built from the Godunov approach (see Godlewski

and Raviart [10]) when solving a Riemann problem for (2.6) and with λ = 0 in the
x direction. Indeed, denoting Gx the exact flux function in (2.6) in the x direction,
we consider for two given states VL and VR in ΩV, W(.;VL,VR) the self-similar
solution of





∂tV + ∂xGx(V) = 0,

V(x, 0) =
{

VL if x < 0,
VR if x > 0,

(3.10)

to then define the required flux Gn
i+ 1

2 ,j
as follows:

Gn
i+ 1

2 ,j
= Gx(W(0+;Vn

i,j ,V
n
i+1,j))

≡ ((Gρ
x)n

i+ 1
2 ,j

, (Gρu
x )n

i+ 1
2 ,j

, (Gρv
x )n

i+ 1
2 ,j

, (GρE
x )n

i+ 1
2 ,j

, (GρΠ
x )n

i+ 1
2 ,j

).(3.11)

Here, u (respectively v) denotes the velocity component in the x (respectively y)
direction. Let us precise that the states VL ≡ Vn

i,j and VR ≡ Vn
i+1,j in (3.11)

necessarily read in view of (3.3), (3.4):

Vn
i,j =

(
Un

i,j , ρn
i,jp

n
i,j

)
, Vn

i+1,j =
(
Un

i+1,j , ρn
i+1,jp

n
i+1,j

)
.(3.12)

We are now in a position to define the required numerical flux function Fn
i+ 1

2 ,j
=

((Fρ
x)n

i+ 1
2 ,j

, (Fρu
x )n

i+ 1
2 ,j

, (Fρv
x )n

i+ 1
2 ,j

, (FρE
x )n

i+ 1
2 ,j

) from the formula (3.11) and (3.8):

(Fρ
x)n

i+ 1
2 ,j

= (Gρ
x)n

i+ 1
2 ,j

, (Fρu
x )n

i+ 1
2 ,j

= (Gρu
x )n

i+ 1
2 ,j

,

(Fρv
x )n

i+ 1
2 ,j

= (Gρv
x )n

i+ 1
2 ,j

, (FρE
x )n

i+ 1
2 ,j

= (GρE
x )n

i+ 1
2 ,j

.

Observe from (3.12) that the proposed numerical flux function Fn
i+ 1

2 ,j
is consistent

with the exact flux function Fx.
Being given two states VL and VR in ΩV, we now define for the sake of completeness
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the self-similar solution W(.;VL,VR) of system (3.10) which expanded form reads:





∂tρ + ∂x(ρu) = 0,
∂t(ρu) + ∂x(ρu2 + Π) = 0,
∂t(ρv) + ∂x(ρuv) = 0,
∂t(ρE) + ∂x((ρE + Π)u) = 0,
∂t(ρΠ) + ∂x((ρΠ + a2(VL,VR)u) = 0,

(3.13)

with initial data V0(x) = VL, x < 0; VR otherwise. In (3.13), we propose to define
the coefficient a(VL,VR) in order to simultaneously satisfy the following simplified
Whitham condition

a(VL,VR) = max( (ρc)(UL), (ρc)(UR) ),(3.14)

together with

σ1(VL,VR) = uL−a(VL,VR)
ρL

< σ2(VL,VR) = u?(VL,VR) < σ3(VL,VR) = uR+
a(VL,VR)

ρR
,

(3.15)
where

u?(VL,VR) =
1
2
(uR + uL)− 1

2a(VL,VR)
(ΠR −ΠL).(3.16)

We refer the reader to Bouchut [3], Chalons and Coquel [6], for a nonlinear version
of the Whitham condition (3.14) which is actually required for the validity of entropy
inequalities. In the present work, we promote (3.14) for practical reasons but this
simplified form must be supplemented with the requirement (3.15) which is easy to
fulfil in practice. The additional condition (3.15) asks for a natural ordering of the
waves in the Riemann solution : it thus sounds natural and it will be seen in the proof
of the next statement to be equivalent to the property that the intermediate states in
the Riemann solution are kept within the physical phase space.

Proposition 3.1. Let be given two states VL and VR in ΩV. Choose the
coefficient a(VL,VR) so as to verify (3.14) and (3.15). Then, the self-similar solution
W(.,VL,VR) of the Cauchy problem (3.13) with initial data:

V0(x) =
{

VL if x < 0,
VR if x > 0,

(3.17)

is made of four constant states VL,V1(VL,VR),V2(VL,VR),VR separated by con-
tact discontinuities propagating with speed σi(VL,VR), i = 1, 2, 3:

W(x/t;VL,VR) =





VL if x
t < σ1(VL,VR),

V1(VL,VR) if σ1(VL,VR) < x
t < σ2(VL,VR),

V2(VL,VR) if σ2(VL,VR) < x
t < σ3(VL,VR),

VR if σ3(VL,VR) < x
t .

(3.18)

The intermediate states V1(VL,VR) and V2(VL,VR) belong to the phase space ΩV

(i.e. ρ1(VL,VR) > 0, ρ2(VL,VR) > 0) and are recovered from the next formulas
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with a = a(VL,VR):

Π? = Π1 = Π2 = 1
2 (ΠL + ΠR)− a

2 (uR − uL),
u? = u1 = u2 = 1

2 (uL + uR)− 1
2a (ΠR −ΠL),

1
ρ1

= 1
ρL
− 1

a (uL − u?),
1
ρ2

= 1
ρR
− 1

a (u? − uR),
v1 = vL, v2 = vR,
E1 = EL − 1

a (Π?u? −ΠLuL),
E2 = ER + 1

a (Π?u? −ΠRuR),

(3.19)

where u? = u?(VL,VR) is given in (3.16).

For our forthcoming purpose, it is useful to briefly sketch the proof of this statement
(see [3] and [6] for a detailed proof and additional results).

Proof. The linear degeneracy of all the fields in the hyperbolic system (3.10) im-
plies that the Riemann solution is systematically made of three contact discontinuities
separating four constant states VL, V1, V2 and VR, respectively propagating with
speed σ1 = λ1(VL) = λ1(V1), σ2 = λ2(V1) = λ2(V2) and σ3 = λ3(V2) = λ3(VR).
The intermediate states V1 and V2 are then determined from the Rankine Hugo-
niot conditions that must be satisfied across each discontinuity in the solution. To
conclude, observe from (3.19) that

1
ρ1

=
1
a
(σ2 − σ1),

1
ρ2

=
1
a
(σ3 − σ2),(3.20)

so that the condition (3.15) to be satisfied by the coefficient a ensures 0 < ρ1 < +∞
and 0 < ρ2 < +∞.

3.2. Towards time implicit formulations. The relaxation approximation pro-
cedure we have discussed naturally makes use of the Godunov numerical flux function.
As it is well-known, this flux function is only Lipschitz continuous and not differen-
tiable. This lack of smoothness makes rather delicate the derivation of efficient time
implicit formulations mostly based on a linearized form of the flux function. The
usual way to circumvent this difficulty is to perform a partial linearization of the flux
function obtained when freezing in the time expansion the unsmooth parts. This ap-
proach is very well exemplified by the Roe numerical flux function which is also only
Lipschitz continuous. We refer the reader to the pioneering work by Mülder and van
Leer [22]. By contrast to the Roe method, the form of the Godunov flux function
does not allow for a simple localization of the non-differentiable parts so as to end up
with a robust partial linearization of it. Due to the linear degeneracy property of all
the fields of the relaxation system (3.13), we prove in this section that the Godunov
flux function (3.11) is algebraically equivalent to a Roe flux function. The existence
of an equivalent Roe-type linearization will permit to investigate the time implicit
formulations of the relaxation procedure. We refer the reader to LeVeque and Pelanti
[17] where the equivalence with a Roe linearization is also valid for the Jin and Xin
relaxation procedure [15]. The equivalence property we claim relies on a series of
statements given hereafter. The required proofs are somehow lengthy and are thus
postponed to Appendix A.
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Proposition 3.2. For any given pair of states (VL,VR) ∈ Ω2
V, with the nota-

tions of Proposition 3.1, let us define the following five vectors of R5:

r1(VL,VR) =




1
uL − a/ρL

vL

EL + ΠL/ρL − au?/ρL

ΠL + a2/ρL




,

r2(VL,VR) =




0
0
1
0
0




, r3(VL,VR) =




0
0
0
1
0




, r4(VL,VR) =




1
u?

0
0
Π?




,

r5(VL,VR) =




1
uR + a/ρR

vR

ER + ΠR/ρR + au?/ρR

ΠR + a2/ρR




,

where u? and Π? are given in (3.19). Then, the family ( ri(VL,VR) )1≤i≤5 spans
R5, i.e. the matrix

R(VL,VR) =
(
r1(VL,VR), r2(VL,VR), r3(VL,VR), r4(VL,VR), r5(VL,VR)

)

(3.21)
is invertible. In addition, we have:

V1(VL,VR)−VL = (ρ1 − ρL) r1(VL,VR),
V2(VL,VR)−V1(VL,VR) = (ρ2vR − ρ1vL) r2(VL,VR)

+(ρ2E2 − ρ1E1) r3(VL,VR)
+(ρ2 − ρ1) r4(VL,VR),

VR −V2(VL,VR) = (ρR − ρ2) r5(VL,VR).

(3.22)

Proposition 3.3. For any given pair of states (VL,VR) ∈ Ω2
V, let us consider

the well-defined matrix Ax(VL,VR) ∈Mat(R5) given by:

Ax(VL,VR) = R(VL,VR)D(VL,VR)R−1(VL,VR),(3.23)

where R(VL,VR) is the invertible matrix introduced in (3.21) and D(VL,VR) the
diagonal matrix defined by:

D(VL,VR) = diag(σ1(VL,VR), σ2(VL,VR), σ2(VL,VR), σ2(VL,VR), σ3(VL,VR)).
(3.24)
Then, Ax(VL,VR) is a Roe-type linearization for the quasi-1D relaxation system
(3.13); namely:

(i) Ax(V,V) = ∇VGx(V),
(ii) Ax(VL,VR) (VR −VL) = Gx(VR)− Gx(VL),
(iii) Ax(VL,VR) is R-diagonalizable.

(3.25)
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Equipped with these notations and results, the main statement of this section is:
Theorem 3.4. For any given pair of states (VL,VR) ∈ Ω2

V, the Godunov numer-
ical flux function for the quasi-1D relaxation system (3.13) is algebraically equivalent
to the following Roe numerical flux function:

Gx(W(0+;VL,VR)) =
1
2

(
Gx(VL) + Gx(VR)− |Ax(VL,VR)|(VR −VL)

)
,(3.26)

where Ax(VL,VR) denotes the Roe linearization (3.23).
Let us emphasize that the matrix Ax(VL,VR) ∈Mat(R5) is a Roe-type linearization
for the 5× 5 quasi-1D relaxation system but not for the 4× 4 quasi-1D original Euler
equations. Let us conclude when underlying that the numerical flux function in the
y direction, Gn

i,j+ 1
2
, can be also equivalently reexpressed as a Roe method following

symmetrical steps.
The proof of the main result of this section, Theorem 3.4, relies on the following

technical lemma.
Lemma 3.5. For any given pair of states (VL,VR) ∈ Ω2

V, the Godunov numerical
flux function (3.26) equivalently reads

Gx(W(0+;VL,VR)) = 1
2

(
Gx(VL) + Gx(VR)− ( |σ1(VL,VR)|(V1 −VL)

+|σ2(VL,VR)|(V2 −V1) + |σ3(VL,VR)|(VR −V2) )
)
,

(3.27)
where we have used the notations introduced in Proposition 3.1.

Recall that the reader is referred to Appendix A for the proofs of the above claims.

3.3. A first time implicit method. The two step relaxation procedure we
have described in a time explicit framework can be given a straightforward time im-
plicit formulation. For the sake of efficiency, this time implicit method is classically
linearized thanks to the existence of a Roe linearization for equivalently re-expressing
the numerical fluxes. We refer the reader to the work by Mülder and van Leer [22]
and to the book by Hirsch [14]. More precisely, the two steps of the previous section
now read:

First step: evolution in time (tn → tn+1−)
Solve the following linearized time implicit scheme

Vn+1−
i,j = Vn

i,j −
∆t

∆x
(Gn+1−

i+ 1
2 ,j

− Gn+1−
i− 1

2 ,j
)− ∆t

∆y
(Gn+1−

i,j+ 1
2
− Gn+1−

i,j− 1
2
), (i, j) ∈ Z2,(3.28)

where thanks to the equivalent form (3.26) we have classically set (see [22] and [14]):

Gn+1−
i+ 1

2 ,j
= Gn

i+ 1
2 ,j

+ 1
2 (∇V Gx(Vn

i,j) + |Ax(Vn
i,j ,V

n
i+1,j)|) δ(Vn

i,j)
+ 1

2 (∇V Gx(Vn
i+1,j)− |Ax(Vn

i,j ,V
n
i+1,j)|) δ(Vn

i+1,j),
(3.29)

where the time increments are defined by:

δ(Vn
i,j) = Vn+1−

i,j −Vn
i,j .(3.30)

A symmetrical definition applies to the numerical flux Gn+1−
i,j+ 1

2
in the y direction.
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Solving (3.28) then classically amounts to solve a linear system in the unknown
δ(Vn

i,j)i,j∈Z2 with a pentadiagonal 5 × 5 block matrix. The non-zero entries of a
block-line of the corresponding matrix read

(Ln
x)i,j , (Ln

y )i,j , (Dn)i,j , (Rn
y )i,j , (Rn

x)i,j ,(3.31)

where the diagonal 5× 5 matrix writes

Dn
i,j = Id + ∆t

2∆x

(
|Ax(Vn

i,j ,V
n
i+1,j)|+ |Ax(Vn

i−1,j ,V
n
i,j)|

)

+ ∆t
2∆y

(
|Ay(Vn

i,j ,V
n
i,j+1)|+ |Ay(Vn

i,j−1,V
n
i,j)|

)
,

(3.32)

while the extradiagonal 5× 5 matrices are defined by

(Ln
x)i,j = − ∆t

2∆x

(
∇VGx(Vn

i−1,j) + |Ax(Vn
i−1,j ,V

n
i,j)|

)
,

(Rn
x)i,j = + ∆t

2∆x

(
∇VGx(Vn

i+1,j)− |Ax(Vn
i,j ,V

n
i+1,j)|

)
,

(3.33)

with symmetrical definitions for (Ln
y )i,j and (Rn

y )i,j .

Second step: Relaxation (tn+1− → tn+1)
From the solution Vn+1−

i,j of the above linear problem (3.28), we keep unchanged:

ρn+1
i,j = ρn+1−

i,j , (ρw)n+1
i,j = (ρw)n+1−

i,j , (ρE)n+1
i,j = (ρE)n+1−

i,j ,

while we define so as to enforce equilibrium:

(ρΠ)n+1
i,j = (ρp)(ρn+1

i,j , (ρe)n+1
i,j ).

In other words, the second step is kept unchanged. This concludes the presentation
of the first time implicit formulation of the relaxation approximation procedure.

Despite being natural and robust, this first extension is numerically shown hereafter
to fail in producing converged in time discrete solutions. The origin of the failure may
be understood as follows. The steady state solutions of the Euler equations (2.1),
namely solutions of

∇. F(U) = 0, x ∈ D,(3.34)

are intended to be recovered from the steady state solutions of the relaxation system
(2.6)

∇. G(Vλ)− λR(Vλ) = 0, x ∈ D,(3.35)

in the regime of an infinite relaxation rate λ → ∞. Observe that one cannot expect
stationary solutions Vλ of (3.35) to simultaneously satisfy∇.G(Vλ) = 0 andR(Vλ) =
0 generally speaking in view of the next result:

Proposition 3.6. Let be given V : D → ΩV a smooth function of the space
variables such that:

∇. G(V) = 0 and R(V) = 0, x ∈ D,(3.36)

simultaneously hold. Then, the smooth function V necessarily obeys:

(a2 − ρ2c2(ρ, ρe)) ∇. w = 0, x ∈ D,(3.37)
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where c(ρ, ρe) is the sound speed introduced in (2.3). The proof is postponed at
the end of the paragraph. Under the mandatory Whitham condition (2.12), a smooth
function V satisfying (3.36) and therefore (3.37) necessarily comes with the property of
a divergence free velocity field w, i.e. ∇. w = 0. From ∇. ρw = 0 stated in (3.36), we
would then infer w.∇ρ = 0 and thus either ρ necessarily stays constant or the velocity
vanishes. Such conditions are far from being general. Therefore, stationary solutions
of (3.35) do not obey (3.36) in general. In other words, the singular relaxation source
term in (3.35) must come into proper balance with the flux divergence. Here stays the
reason of the reported failure in the proposed time marching strategy for capturing
steady state solutions of (3.34) via those of (3.35).
Indeed, the discussed time marching method intends to restore solutions of (3.35) on
the basis of a splitting strategy in between the flux divergence and the relaxation
source term: solve first the frozen relaxation system (2.6) choosing λ = 0

∂tV +∇. G(V) = 0,

to then restore the relaxation effects when solving

∂tVλ − λR(Vλ) = 0,

in the limit λ → ∞. Formally, time convergence in this splitting strategy to some
stationary solutions V would require ∇. G(V) = 0 together with λR(Vλ) → 0 in
the limit λ → ∞, properties which cannot hold for general solutions of (3.35). In
other words, splitting the relaxation source term from the flux divergence cannot re-
sult in a well-balanced approximation of the solutions of (3.35) and therefore of (3.34).

We end this section when establishing Proposition 3.6.
Proof. By definition, a function V with the property R(V) = 0, x ∈ D is such

that:

Π(x) = p(ρ(x), ρe(x)), x ∈ D.(3.38)

If in addition it obeys ∇.G(V) = 0 according to (3.36), one infers from (3.38) that:

∇. ρw = 0,
∇. (ρw ⊗w + p Id) = 0,

∇. (ρEw + pw) = 0,
(3.39)

together with

∇. (ρpw) + a2∇. w = 0.(3.40)

Decomposing V = (U, ρΠ = ρp) gives in view of (3.39) that U is nothing but a
stationary solution of the Euler equation, i.e. obeying ∇.F(U) = 0 as stated in
(3.34). In view of the balance equation (2.17) for governing the pressure p, such a
solution obeys:

ρ w.∇p + ρ2c2(U)∇. w = 0, x ∈ D,(3.41)

which recasts as:

∇. (ρwp) + ρc2(U)∇. w = 0,(3.42)

invoking ∇. (ρw) = 0 from (3.39). Substracting (3.42) from (3.40) yields the required
identity (3.37).
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3.4. Well-balanced time implicit formulation in a relaxation frame-
work. In the light of the previous section, the correct design of a time implicit
relaxation procedure requires to handle simultaneously the relaxation source term
with the flux divergence during the first evolution step tn → tn+1−. We propose to
adopt the following strategy, still made of two steps for reasons we will explain on
due time.

First step: evolution in time (tn → tn+1−)
Instead of the the frozen version (3.5) with λ = 0, we have to approximate at

time ∆t the solution of the following Cauchy problem
{

∂tVλ +∇. G(Vλ) = λR(Vλ),
Vλ(x, y, 0) = Vh(x, y, tn),(3.43)

in the regime of an infinite relaxation rate λ → ∞. The initial data Vh(x, y, tn) is
again built at equilibrium from Uh(x, y, tn) according to (3.3)-(3.4).
In order to derive the required approximate solution, let us start from the following
direct extension of (3.28)

Vλ, n+1−
i,j = Vλ, n

i,j −∆t

∆x
(Gλ, n+1−

i+ 1
2 ,j

−Gλ, n+1−
i− 1

2 ,j
)−∆t

∆y
(Gλ, n+1−

i,j+ 1
2

−Gλ, n+1−
i,j− 1

2
)+λ∆tR(Vλ, n+1−

i,j ),

(3.44)
which we have to deal with in the limit λ →∞. To cope with this limit, let us rewrite
the last discrete equation in (3.44) for updating the relaxation pressure, as follows

(
ρΠ

)λ, n+1−

i,j
=

(
ρp(ρ, ρe)

)λ, n+1−

i,j

− 1
λ

{
(ρΠ)λ, n+1−

i,j −(ρp(ρ,ρe))n
i,j

∆t +
Gλ, n+1−

i+ 1
2 ,j

−Gλ, n+1−
i− 1

2 ,j

∆x +
Gλ, n+1−

i,j+ 1
2

−Gλ, n+1−
i,j− 1

2
∆y

}
,

(3.45)

which is nothing but a time implicit discrete form of (2.10). Under the Whitham
condition (3.14) for the sake of stability, we formally let λ go to infinity in (3.45) to
consider the implicit formula

(
ρΠ

)n+1−

i,j
=

(
ρp(ρ, ρe)

)n+1−

i,j
≡

(
ρp(ρ, ρw, ρE)

)n+1−

i,j
.

To lower the computational effort due to the nonlinear pressure law p(U), we propose
to Taylor expand this implicit formula so as to consider the following final definition

(
ρΠ

)n+1−

i,j
=

(
ρp(ρ, ρe)

)n

i,j
+

(
p(U) + ρ∂p

∂ρ (U)
)n

i,j

(
ρn+1−

i,j − ρn
i,j

)

+(ρ∇wp(U))n
i,j

(
(ρw)n+1−

i,j − (ρw)n
i,j

)
+ (ρ ∂p

∂ρE (U))n
i,j

(
(ρE)n+1−

i,j − (ρE)n
i,j

)
.

(3.46)

It is then convenient to recast (3.46) in terms of the time increments introduced in
(3.30) to get the next identity

(
p(U) + (ρ∂p

∂ρ (U)
)n

i,j
δ
(
ρn

i,j

)
+ (ρ∇wp(U))n

i,j δ
(
(ρw)n

i,j

)

+(ρ ∂p
∂ρE (U))n

i,j δ
(
(ρE)n

i,j

)
− δ

(
(ρΠ)n

i,j

)
= 0,

(3.47)

since by construction
(
ρΠ

)n

i,j
=

(
ρp(ρ, ρe)

)n

i,j
in (3.4).

Equipped with this identity, we are in a position to state the linear problem to be
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solved in the unknown δVn
i,j . In that aim, we define the pentadiagonal 5 × 5 block

matrix entering this linear problem from the block matrices previously introduced in
(3.31), (3.32) and (3.33)

(L̃x)n
i,j , (L̃y)n

i,j , (D̃)n
i,j , (R̃y)n

i,j , (R̃x)n
i,j ,(3.48)

where each four first lines of the 5 × 5 matrices corresponds respectively to the four
first lines of:

(Lx)n
i,j , (Ly)n

i,j , (D)n
i,j , (Ry)n

i,j , (Rx)n
i,j ,(3.49)

while solely the last line of each of the 5 × 5 matrices (3.49) governing the time
increments δ(ρΠ) have been modified in the new block line (3.48) to account for the
new update formula (3.47). Since this formula written in a given cell Cij only involves
the time increment δVn

i,j , the last line of (L̃x)n
i,j , (L̃y)n

i,j and (R̃x)n
i,j , (R̃y)n

i,j are
necessarily set identically to the zero line

(0, 0, 0, 0, 0),

while necessarily the last line of the diagonal matrix D̃n
ij reads:

(
p +

(
ρ
∂p

∂ρ

)n

ij
,

(
ρ

∂p

∂ρu

)n

ij
,

(
ρ

∂p

∂ρv

)n

ij
,

(
ρ

∂p

∂ρE

)n

ij
, −1

)
.(3.50)

At last, the corresponding component of the right side is set to zero so as to restore
(3.47) with (3.50).
This completes the description of the first step in the well-balanced time implicit for-
mulation of the relaxation scheme.
The need for a second step stems from the linearized version (3.46) we have introduced
at time level tn+1− to reduce the computational effort involved in the initial guess
(ρΠ)n+1−

i,j = (ρp(ρ, ρe))n+1−
i,j . Since equilibrium is not achieved with the linearized

form (3.46), a second step is required to be in position to restart the procedure from
time tn+1. Since this second step just asks for the identity (ρΠ)n+1

i,j = (ρp(ρ, ρe))n+1
i,j ,

this step exactly coincides with the second step described in Section 3.3. This con-
cludes the presentation of the method.

Numerical evidences, discussed in the next paragraph, prove the robustness of
the proposed correction together with its efficiency. Let us again underline that the
Whitham condition (2.12) plays a major role in the stability of the well-balanced
time implicit procedure. Indeed, its design principle based on the formula (3.45) with
large values of λ has clear connexion with the Chapman-Enskog expansion detailed
in section 2. The proposed procedure can thus be understood as a consistent ap-
proximation of the near-equilibrium system (2.19), which is a viscous (i.e. stable)
perturbation of the original Euler equation if and only if the Whitham condition is
satisfied. To go further, it is useful to observe that the pentadiagonal 5 × 5 block
matrices introduced in (3.48) can be reduced to pentadiagonal 4 × 4 block matrices
when eliminating δ

(
(ρΠ)n

i,j

)
from the unknowns δ

(
ρn

i,j

)
, δ

(
(ρw)n

i,j

)
and δ

(
(ρE)n

i,j

)

thanks to the formula (3.46). These calculations are straightforward and are left to
the reader. The CPU effort in our procedure is thus the expected one for the implicit
time discretization of the 2D Euler equations (2.1) or their 4 × 4 near-equilibrium
version (2.19).
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4. Numerical illustrations. We investigate the performance of the proposed
time implicit formulations in the approximation of the steady state solution of the
Euler equations over a blunt body. For simplicity, the pressure law is the one of a
polytropic gas with adiabatic coefficient γ = 1.2. The free-stream conditions follow
from a Mach number set to M∞ = 10 and a static pressure p∞ = 40Pa: they are
responsible for the existence a strong bow shock in the steady state solution. The
computational domain consists in a curvilinear mesh made of 60× 48 cells.
Figure 1 shows the time history of the L2 norm of the density time derivative obtained
using the first time implicit relaxation method. About 15000 time steps have been
performed according to the following CFL strategy: the CFL number is set to the
constant value 25 during the first 7000 time iterations and decreased down to CFL= 5.
Such a strategy makes use of rather small CFL numbers to prove that the two plateaus
achieved in the convergence history is characteristic of a time implicit method which
fails to produce converged in time discrete solutions. By contrast, the time history
of the L2-norm of the density time derivative obtained thanks to the well-balanced
time implicit relaxation method as depicted in Figure 2 proves perfect convergence in
time for the discrete solutions. The results of the two runs are compared, respectively
using a constant CFL number set to 25 for the sake of comparison and then choosing
an increased value CFL= 200 in order to speed up the calculation. At last, Figure 3
displays the density contours in the steady solution obtained with CFL= 200.
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1 5001 10001
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Well-balanced time implicit relaxation method CFL=200

Well-balanced time implicit relaxation method CFL=25

First implicit method CFL=25

Fig. 4.1. Time history of the L2 norm of the density time derivative using the proposed time
implicit relaxation schemes
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Fig. 4.2. Density contours with the well-balanced time implicit method at CFL = 200

Appendix A. . Here we give the detailed proofs of the statements proposed in
Section 3.2. We first establish Proposition 3.2.

Proof. With the notations of Section 3.2, the five vectors ( ri(VL,VR) )1≤i≤5 are
shown in a first step to span R5 when proving that the identity

5∑

i=1

αi ri(VL,VR) = 0(A.1)

implies αi = 0 for i = 1, ..., 5. Indeed, under the condition (3.15), namely:

σ1(VL,VR) < σ2(VL,VR) < σ3(VL,VR),(A.2)

let us check that

1 1 1
σ1(VL,VR) σ2(VL,VR) σ3(VL,VR)

ΠL + a2

ρL
Π? ΠR + a2

ρR

6= 0,(A.3)

so that from the first, second and last components of the vectors r1(VL,VR), r4(VL,VR)
and r5(VL,VR), the identity (A.1) yields

α1 = α4 = α5 = 0.

In turn, we successively deduce α2 = 0 and α3 = 0 respectively from the third
component of r2(VL,VR) and the fourth one of r3(VL,VR). Hence the required
result.
To prove (A.3), observe that the proposed determinant reads equivalently:

0 1 0
σ1 − σ2 σ2 σ3 − σ2

ΠL + a2

ρL
−Π? Π? ΠR + a2

ρR
−Π?

= − σ1 − σ2 σ3 − σ2

a(σ2 − σ1) a(σ3 − σ2)
(A.4)

= 2a(σ2 − σ1)(σ3 − σ2) > 0,
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in view of the condition (A.2). We have used the next identities inferred from the
definition Π? and u? in (3.19) of Proposition 3.1:

ΠL +
a2

ρL
−Π? = a (

1
2
(uR + uL)− 1

2a
(pR − pL) )− a(uL − a

ρL
),

= a(σ2 − σ1),

and

ΠR +
a2

ρR
−Π? = −a (

1
2
(uR + uL)− 1

2a
(pR − pL) ) + a(uR +

a

ρR
),

= a(σ3 − σ2).

The identities stated in (3.22) result from direct calculations based on the detailed
form of the two states V1, V2 given in Proposition 3.1. The details are left to the
reader. This concludes the proof.

We are in a position to give the proof of Proposition 3.3.
Proof. For any given states VL and VR in ΩV, the matrix R(VL,VR) is invert-

ible in view of Proposition 3.2 and thus makes well-defined the matrix Ax(VL,VR)
introduced in (3.23). Let us prove that this matrix is a Roe-type linearization for
the quasi-1D relaxation system (3.13). First observe that the definition (3.23) just
expresses that the matrix Ax(VL,VR) is R-diagonalizable as expected in (3.25) prop-
erty (iii). Next, direct calculations yield that for any given V ∈ ΩV the Jacobian
matrix ∇VGx(V) admits the following eigenvalues

σ1(V,V) < σ2(V,V) < σ3(V,V),(A.5)

where σ2(V,V) has three order of multiplicity. In addition, r1(V,V) (respectively
r5(V,V)) is a right eigenvector associated with σ1(V,V) (respectively σ3(V,V))
while the three vectors (r2(V,V), r3(V,V), r4(V,V)) yield a basis of the eigenspace
associated with the eigenvalue σ2(V,V). In other words, the first consistency property
(i) stated in (3.25) is valid.
To conclude, we have to check that the property (ii) holds true. To that purpose, let
us start from the next identity:

VR−VL = (VR−V2(VL,VR))+(V2(VL,VR)−V1(VL,VR))+(V1(VL,VR)−VL),
(A.6)
so that

Ax(VL,VR) (VR −VL) = Ax(VL,VR) (VR −V2(VL,VR))
+Ax(VL,VR) (V2(VL,VR)−V1(VL,VR))
+Ax(VL,VR) (V1(VL,VR)−VL).

In view of the formula (3.22), we infer that:

Ax(VL,VR) (VR −VL) = σ1(VL,VR)(ρR − ρ2)r5(VL,VR)
+σ2(VL,VR) ( (ρ2vR − ρ1vL)r2(VL,VR)+
(ρ2E2 − ρ1E1)r3(VL,VR) + (ρ2 − ρ1)r4(VL,VR) )
+σ3(VL,VR)(ρ1 − ρL)r1(VL,VR),

= σ1(VL,VR)(VR −V2)
+σ2(VL,VR)(V2 −V1)
+σ3(VL,VR)(V1 −VL).

(A.7)
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But by definition, σ1(VL,VR), σ2(VL,VR) and σ3(VL,VR) are velocities of the
contact discontinuities involved in the Riemann solution (3.18) in Proposition 3.1.
Therefore, the Rankine Hugoniot jump relations allow to recast (A.7) according to:

Ax(VL,VR) (VR −VL) = (Gx(VR)− Gx(V2)) + (Gx(V2)− Gx(V1))
+(Gx(V1)− Gx(VL)),

= Gx(VR)− Gx(VL),
(A.8)

which is nothing but the required result.
We now turn proving Lemma 3.5.
Proof. Let us consider the self-similar solution W(.,VL,VR) (3.18) of the Rie-

mann problem for the quasi-1D relaxation system (3.13) and define the next two
half-averages (see Harten, Lax and van Leer [25] for instance):

VL =
2

∆x

∫ 0

−∆x
2

W(
x

∆t
,VL,VR) dx,(A.9)

VR =
2

∆x

∫ ∆x
2

0

W(
x

∆t
,VL,VR) dx.(A.10)

Classical arguments [25] based on the conservation form of the system (3.13) yield:

VL = VL − 2∆t

∆x
( Gx(W(0+;VL,VR))− Gx(VL) ),(A.11)

VR = VR − 2∆t

∆x
( Gx(VR)− Gx(W(0+;VL,VR)) ).(A.12)

But using the property that the self-similar function W(.,VL,VR) is piecewise con-
stant, direct calculations allow to reexpress equivalently the averages (A.9), (A.10) as
follows:

VL = 2
∆x

(
(∆x

2 + σ−1 (VL,VR)∆t)VL + ∆t (σ−2 (VL,VR)− σ−1 (VL,VR))V1(VL,VR)

+∆t (σ−3 (VL,VR)− σ−2 (VL,VR))V2(VL,VR)−∆t σ−3 (VL,VR)VR

)
,

= VL − 2∆t
∆x

(
σ−1 (VL,VR) (V1(VL,VR)−VL)
+σ−2 (VL,VR) (V2(VL,VR)−V1(VL,VR))
+σ−3 (VL,VR) (VR −V2(VL,VR))

)
,

(A.13)
and

VR = VR − 2∆t
∆x

(
σ+

1 (VL,VR) (V1(VL,VR)−VL)
+σ+

2 (VL,VR) (V2(VL,VR)−V1(VL,VR))
+σ+

3 (VL,VR) (VR −V2(VL,VR))
)
,

(A.14)

with the usual notations σ− = min(0, σ) and σ+ = max(0, σ). Hence, substracting
(A.13) from (A.11) yields the first formula for the Godunov flux function

Gx(W(0+;VL,VR)) = Gx(VL) +
(
σ−1 (VL,VR) (V1(VL,VR)−VL)

+σ−2 (VL,VR) (V2(VL,VR)−V1(VL,VR))
+σ−3 (VL,VR) (VR −V2(VL,VR))

)
,

(A.15)
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while equalizing (A.12) and (A.14) provides the second formula

Gx(W(0+;VL,VR)) = Gx(VR)−
(
σ+

1 (VL,VR) (V1(VL,VR)−VL)
+σ+

2 (VL,VR) (V2(VL,VR)−V1(VL,VR))
+σ+

3 (VL,VR) (VR −V2(VL,VR))
)
.

(A.16)

At last, the arithmetic average of (A.15) and (A.16) gives the required result (3.27)
in view of the identity |σ| = σ+ − σ−.

We conclude this appendix when establishing Theorem 3.4.
Proof. It suffices to establish the next identity:

|Ax(VL,VR)| = |σ1(VL,VR)| (V1(VL,VR)−VL)
+|σ2(VL,VR)| (V2(VL,VR)−V1(VL,VR))
+|σ3(VL,VR)| (VR −V2(VL,VR)),

(A.17)

to infer from the flux formula (3.27) stated in Lemma 3.5 the required equivalent
form (3.26). Invoking the identities (3.22), we successively get, when omitting the
dependency in VL and VR for simplicity:

|σ1| (V1 −VL) + |σ2| (V2 −V1) + |σ3| (VR −V2)
= (ρ1 − ρL) |σ1| r1 + (ρ2vR − ρ1vL) |σ2| r2

+(ρ2E2 − ρ1E1) |σ2| r3 + (ρ2 − ρ1) |σ2| r4

+(ρR − ρ2) |σ3| r5,
= (ρ1 − ρL) |Ax| r1 + (ρ2vR − ρ1vL) |Ax| r2

+(ρ2E2 − ρ1E1) |Ax| r3 + (ρ2 − ρ1) |Ax| r4

+(ρR − ρ2) |Ax| r5,
= |Ax|(VR −VL).

(A.18)

This is the required result.
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