
Time Implicit Formulation of a Relaxation

Approximation of the Euler Equations for Real Gases

Christophe Chalons ∗

Université Paris 7 & Laboratoire JLL, U.M.R. 7598, Bôıte courrier 187, 75252 Paris Cedex 05, France
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We propose a new time implicit method for approximating the steady state solutions of

the Euler equations for real materials in several space dimensions. The severe nonlinearities

in the pressure law are bypassed thanks to a suitable approximation procedure with stiff

relaxation of the original governing PDE. This approach has been proved fairly successful

in a fully time explicit setting. Here, we answer the open question of the time implicit

extension of the procedure. A first natural extension of the classical time explicit scheme

is shown to fail in producing discrete solutions which converge in time to a steady state.

Strong evidences indicate that the stiff relaxation terms are not properly accounted for in

this first approach. We then show how to achieve a well-balanced time implicit method

which yields approximate solutions at a perfect steady state.

I. Statement of the problem

The present work treats the numerical approximation of the steady state weak solutions of the Euler
equations for real gases :











∂tρ + ∇. ρw = 0, t > 0, x ∈ D,

∂tρw + ∇. (ρw ⊗ w + p(U) Id) = 0,

∂tρE + ∇. (ρE + p(U))w = 0,

(1)

where D is a bounded domain of R
d with d ≥ 1. The pressure law p(U) is a given smooth function of the

unknown U = (ρ, ρw, ρE) in the form:

p(U) = p(ρ, ρe) with ρe = ρE −
||ρw||2

2ρ
, (2)

with the property that the first order system (1) is hyperbolic, namely

c2(U) = c2(ρ, ρe) =
∂p

∂ρ
(ρ, ρe) +

1

ρ
(p + ρe)

∂p

∂ρe
(ρ, ρe) > 0, (3)

for all state U in the natural phase space:

ΩU =
{

U = (ρ, ρw, ρE) ∈ R
d+2/ρ > 0, ρw ∈ R

d, ρE −
||ρw||2

2ρ
> 0

}

. (4)

System (1) is given the following condensed form:

∂tU + ∇. F(U) = 0, (5)
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with clear definition for the vector-valued flux function F(U) = (Fxj
(U))1≤j≤d.

In the present work, the pressure laws under consideration are motivated by the physics of complex com-
pressible material. The reader is referred to Menikoff and Plorh9 for a discussion and several examples. First,
it is well-known that this nonlinear function p(ρ, ρe) is responsible for the most severe part of nonlinearities
in the PDE model (1) : in particular it dictates the nonlinearity properties of the fields associated with
the acoustic waves. Then, such nonlinearities make difficult and costly the extension to the frame of real
gases of celebrated approximate Riemann solvers introduced in the simple polytropic setting. To tackle these
nonlinearities and to allow for an efficient numerical procedure, we propose to adopt a relaxation approach:
the weak solutions of the system (1) are approximated by the solutions of a larger but simpler PDE model
with relaxation source terms. By simpler, it is understood that the underlying nonlinearities are easier to
handle. Motivated by the works Bouchut,1 Chalons and Coquel,3 Coquel et al.5 and Siliciu,11 simplicity is
achieved when no longer understanding the pressure p(ρ, ρe) as a nonlinear function but as a new unknown
we denote by Π, equipped with its own partial differential equation. This new unknown Π is subject to
a relaxation procedure which purpose is to restore the original pressure law p in the regime of an infinite
relaxation rate. More precisely, the relaxation PDE model developed in5,1,3,11 reads:



















∂tρ
λ + ∇. (ρw)λ = 0, t > 0, x ∈ D,

∂t(ρw)λ + ∇. (ρw ⊗ w + Π Id)λ = 0,

∂t(ρE)λ + ∇. ((ρE + Π)w)λ = 0,

∂t(ρΠ)λ + ∇. ((ρΠ + a2)w)λ = λρλ(p(ρλ, (ρe)λ) − Πλ),

(6)

where the parameter λ > 0 stands for the relaxation coefficient rate. Here, the parameter a is a given
real number so that the PDE model (6) is seen to be invariant by rotation. To simplify the notations, the
relaxation model (6) is given the following condensed form:

∂tV
λ + ∇. G(Vλ) = λR(Vλ), (7)

with V = (ρ, ρw, ρE, ρΠ), R(V) = (0, 0Rd , 0, ρ(p(ρ, ρe) − Π)) and clear definitions for the vector-valued
function G(V) = (Gxj

(V))1≤j≤d. The precise role played by the parameter a is explained just hereafter but
first, it is worth to stress the reason why (6) is easier to handle than (1). To that purpose, observe that
setting λ = 0 in (6) decouples the total energy equation from the others. In other words, the total energy
only enters the algebraic relaxation source term via the definition (2) of the original pressure law. This weak
coupling is responsible for the following attractive result (see1 for instance):

Lemma 1. Let be given a > 0 in (6). Then the first order system in (6) is hyperbolic over the following
phase space

ΩV =
{

V = (ρ, ρw, ρE, ρΠ) ∈ R
d+3/ρ > 0, ρw ∈ R

d, ρE −
||ρw||2

2ρ
> 0, ρΠ ∈ R

}

. (8)

Namely, for any given unit vector n = (ni)1≤i≤d ∈ R
d, the matrix

A(V,n) =

d
∑

i=1

ni∇VGni
(V)

is R-diagonalizable for all V ∈ ΩV, with the following increasingly ordered eigenvalues:

λ1(V,n) = w.n −
a

ρ
< λ2(V,n) = w.n < λ3(V,n) = w.n +

a

ρ
, (9)

where the intermediate eigenvalue λ2(V,n) has d + 1 order of multiplicity. In addition, all the fields are
linearly degenerate: all the propagating waves behave as linear waves.

Observe from the definition (9) that the free real parameter a entering (6) has the dimension of ρc(ρ, ρe),
i.e. the dimension of a lagrangian sound speed. In any given direction n ∈ R

d, the extreme waves associated
with the eigenvalues λ1(V,n) and λ3(V,n) may be thus understood as an approximation of the waves in the
original equations (1). But the reported linear degeneracy is in clear contrast with the strong nonlinearities
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involved in the original PDE model and stays at the basis of the efficient numerical method to be discussed
in the next sections.

We now come to highlight the importance of a correct definition of the real parameter a in the procedure
of approximation of the solutions of (1) by those of (6). To that purpose, let us rewrite the last governing
equation in (6) as follows:

(ρΠ)λ = (ρp(ρ, ρe))λ −
1

λ
{∂t(ρΠ)λ + ∇. ((ρΠ + a2)w)λ}. (10)

So that in the limit of an infinite relaxation rate λ → +∞, Πλ formally coincides with the original pressure
law p(ρ, ρe):

lim
λ→+∞

Πλ = p(ρ, ρe). (11)

After the pioneering works by Liu8 and Chen, Levermore and Liu,4 it is known that to prevent a general
relaxation procedure from instabilities in the regime of a large parameter λ >> 1, the so-called subcharacter-
istic conditions, or Whitham conditions, must be met: the eigenvalues (9) of the relaxation PDE model and
those of the original system must be properly interlaced. In the present relaxation setting (6) for approxi-
mating the solutions of (1), these stability conditions are satisfied provided that the free coefficient a > 0 in
(9) upperbounds the exact lagrangian sound speed ρc(ρ, ρe); namely,

a > ρ c(U) = ρc(ρ, ρe) (12)

must be valid for all the states U under consideration. The reader is referred to the quoted works1,3,5 for
a detailed discussion of (12) and its relationship with the validity of entropy inequalities for the relaxation
PDE model (6) that are closely related to those of the original equations.
In this work, it is worth to briefly shade light on the Whitham condition (12) on the simpler ground of
a Chapmann-Enskog expansion. According to this approach, the unknown (ρΠ)λ is given the following
expansion for large but finite values of λ > 0:

(ρΠ)λ = (ρp(ρ, ρe))λ +
1

λ
(ρΠ)λ

1 + O(
1

λ2
). (13)

The first order corrector (ρΠ)λ
1 is found when plugging (13) in the PDE (10) to obtain:

(ρΠ)λ = (ρp(ρ, ρe))λ −
1

λ
{∂t(ρp(ρ, ρe))λ + ∇. ((ρp(ρ, ρe) + a2)w)λ} + O(

1

λ2
), (14)

so that the first order corrector reads:

Πλ
1 = − 1

ρλ {∂t(ρp(ρ, ρe))λ + ∇. ((ρp(ρ, ρe) + a2)w)λ}

= −{∂t(p(ρ, ρe))λ + wλ.∇(p(ρ, ρe))λ} − a2

ρλ ∇. wλ.
(15)

To go further, we notice that the first d + 2 equations in (6) reads as follows at the first order in 1
λ

and in
view of the near-equilibrium identity Πλ = (p(ρ, ρe))λ + O( 1

λ
):











∂tρ
λ + ∇. (ρw)λ = 0, t > 0, x ∈ D,

∂t(ρw)λ + ∇. (ρw ⊗ w + p(ρ, ρe) Id)λ = O( 1
λ
),

∂t(ρE)λ + ∇. ((ρE + p(ρ, ρe))w)λ = O( 1
λ
),

(16)

so that classical manipulations prove that smooth solutions of (6) obey at the first order in 1
λ

the next
equation for the original pressure law p(ρ, ρe):

∂tp(ρ, ρe)λ + wλ.∇p(ρ, ρe)λ + ρλc2(ρ, ρe)λ∇. wλ = O(
1

λ
). (17)

As a consequence, the first order corrector Πλ
1 in (15) writes equivalently:

Πλ
1 = −

1

ρλ
(a2 − (ρλc(U)λ)2)∇. wλ. (18)
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Invoking the expansion (13) with the formula (18), the first order asymptotic system governing the solutions
of the relaxation system (6) for large values λ >> 1 then reduces to:



















∂tρ
λ + ∇. (ρw)λ = 0,

∂t(ρw)λ + ∇. (ρw ⊗ w + p(ρ, ρe) Id)λ = − 1
λ
∇. (Πλ

1 Id),

= 1
λ
∇. ( 1

ρλ (a2 − (ρc)2)λ∇. wλ Id),

∂t(ρE)λ + ∇. ((ρE + p(ρ, ρe))w)λ = 1
λ
∇. ( 1

ρλ (a2 − (ρc)2)λwλ∇. wλ).

(19)

Observe that (19) takes the form of the original Euler equations (1) but in the presence of a viscous pertur-
bation with viscosity like coefficient 1

λρλ (a2−(ρλc(U)λ)2). As it is well-known, this viscosity coefficient must

be positive for the solutions of the near-equilibrium system (19) to be stable: this requirement is nothing
but the Whitham condition expressed in (12).

II. The numerical procedure

We show how to take advantage of the relaxation system (6) in the derivation of an efficient time implicit
method for the approximation of the solutions to the original Euler equations (1). We first propose a
seemingly natural time implicit formulation of the time explicit procedure which is classically performed in
a relaxation setting (see7,5 for instance). We prove that such a natural extension fails to produce perfectly
steady state approximate solutions: residues stop decreasing after a few order of magnitude to then reach a
plateau. We then show how to correct this first extension so as to end up with a robust time implicit method
that yields converged in time discrete solutions corresponding to a ten order of magnitude decrease for the
residues.

For the sake of simplicity in the notations, we only address the case of bidimensionnal problems when
focusing on cartesian grids with constant space step ∆x > 0 and ∆y > 0, the extension to curvilinear grids
being a classical matter. The time variable is discretized using a constant time step ∆t > 0. The approximate
solution Uh(x, y, t), h = max(∆x, ∆y), is sought under the form of a piecewise constant function at each
time level tn = n∆t, n ≥ 0. An initial data U0(x, y) being prescribed for (1), we classically define:

Uh(x, y, 0) = U0
i,j =

1

∆x∆y

∫

Cij

U0(x, y)dxdy, i, j ∈ Z, (20)

with (x, y) ∈ Cij = ((i − 1
2 )∆x, (i + 1

2 )∆x) × ((j − 1
2 )∆y, (j + 1

2 )∆y).
The boundary conditions considered in the present work are extremely classical in the setting of the Euler
equations: namely far field boundary conditions and wall conditions. Their treatment is a classical matter
described for instance in Hirsch.6 Besides, MUSCL second order in space enhancement is used in the
forthcoming numerical evidences. We again refer the reader to6 for the required material.

II.A. Revisiting the time explicit procedure

In this section, we briefly revisit the usual approach for deriving time explicit scheme in a relaxation frame-
work. Our main purpose is to put forward that this strategy may be actually reinterpreted as a Roe-type
method for the relaxation system (7) (but not for the Euler equations (1)). This equivalence with a Roe
method stays at the very basis of the time implicit versions to be discussed in the next paragraph.

The discrete solution Uh(x, y, tn) being known at time tn = n∆t, n ≥ 1, this one is evolved to the next
time level thanks to a time explicit finite volume scheme:

Uh(x, y, tn+1) ≡ Un+1
i,j = Un

i,j −
∆t

∆x
(Fn

i+ 1
2
,j
− Fn

i− 1
2
,j
) −

∆t

∆y
(Fn

i,j+ 1
2

− Fn
i,j− 1

2

), (x, y) ∈ Cij , (21)

where Fn
i+ 1

2
,j

and Fn
i,j+ 1

2

must be defined at time tn from two numerical flux functions that are respectively

consistant with the exact flux functions Fx and Fy in the x and y direction. Their required definition follows
from the next classical two steps relaxation procedure (see7 for instance). This approach can be understood
as a splitting technique for the relaxation system (6) when setting λ to 0 in a first step and then letting the
relaxation parameter λ go to infinity in a second step.
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First step: Evolution in time (tn → tn+1−)
Starting from the discrete solution Uh(x, y, tn), we consider a relaxation approximate solution at time tn

setting:
Vh(x, y, tn) = (Uh(x, y, tn), (ρΠ)h(x, y, tn)), (22)

where the relaxation pressure is defined at equilibrium

(ρΠ)h(x, y, tn) = ρhp(ρh, (ρe)h)(x, y, tn). (23)

We then solve for times t ∈ [0, ∆t[, ∆t small enough, the following Cauchy problem for the frozen relaxation
system (7) with λ = 0:

{

∂tV + ∇. G(V) = 0, t > 0, x ∈ D,

V(x, y, 0) = Vh(x, y, tn).
(24)

Within the finite volume framework, this amounts to update the relaxation approximate solution at time
tn+1− setting in each cell Cij :

V
n+1,−
i,j = Vn

i,j −
∆t

∆x
(Gn

i+ 1
2
,j
− Gn

i− 1
2
,j
) −

∆t

∆y
(Gn

i,j+ 1
2

− Gn
i,j− 1

2

), (x, y) ∈ Cij , (25)

where the definitions of Gn
i+ 1

2
,j

and Gn
i,j+ 1

2

will be given hereafter.

Second step: relaxation (tn+1− → tn+1)
In each cell Cij , we solve the following EDO problem in the limit λ → ∞:



















∂tρ
λ = 0,

∂t(ρw)λ = 0,

∂t(ρE)λ = 0,

∂t(ρΠ)λ = λρλ(p(ρ, ρe)λ − Πλ),

(26)

with as initial data V(x, y, ∆t−) the solution of the Cauchy problem (24) at time ∆t. In other words, the
approximate relaxation solution Vh(x, y, tn+1) is set at equilibrium at time tn+1 in each cell when keeping
unchanged ρ, w and E:

ρn+1
i,j = ρn+1−

i,j , (ρw)n+1
i,j = (ρw)n+1−

i,j , (ρE)n+1
i,j = (ρE)n+1−

i,j , (27)

but redefining the relaxation pressure at tn+1 to enforce equilibrium in agreement with (23) :

(ρΠ)n+1
i,j = (ρp)(ρn+1

i,j , (ρe)n+1
i,j ). (28)

The Euler approximate solution Uh(x, y, tn+1) is then defined at time tn+1 in each cell Cij using (27)

Un+1
i,j =

(

ρn+1
i,j , (ρw)n+1

i,j , (ρE)n+1
i,j

)

. (29)

This concludes the method.

Let us now give a detailed description of the required numerical fluxes Gn
i+ 1

2
,j
, Gn

i,j+ 1
2

in (25) in order to

eventually infer the definition of the required fluxes Fn
i+ 1

2
,j

and Fn
i,j+ 1

2

in (21). We classicaly take advantage

of the invariance by rotation of the relaxation PDE model (6) to focus solely on the definitions of Gn
i+ 1

2
,j

and thus of Fn
i+ 1

2
,j
. The fluxes Gn

i,j+ 1
2

and Fn
i,j+ 1

2

are given symmetric definitions. Here, the numerical flux

function Gn
i+ 1

2
,j

is built from the Godunov approach when solving a Riemann problem for (6) and with λ = 0

in the x direction. Indeed, denoting Gx the exact flux function in (6) and in the x direction and considering
for VL and VR in ΩV, W(.;VL,VR) the self-similar solution of











∂tV + ∂xGx(V) = 0,

V(x, 0) =

{

VL if x < 0,

VR if x > 0,

(30)
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then we define the required flux Gn
i+ 1

2
,j

as follows:

Gn
i+ 1

2
,j

= Gx(W(0+;Vn
i,j ,V

n
i+1,j))

≡ ((Gρ
x)n

i+ 1
2

,j
, (Gρu

x )n
i+ 1

2
,j
, (Gρv

x )n
i+ 1

2
,j
, (GρE

x )n
i+ 1

2
,j
, (GρΠ

x )n
i+ 1

2
,j
).

(31)

Here, u (respectively v) denotes the velocity component in the x (respectively y) direction. Let us precise
that the states VL ≡ Vn

i,j and VR ≡ Vn
i+1,j in (31) necessarily read in view of (22), (23):

Vn
i,j =

(

Un
i,j , ρn

i,jp
n
i,j

)

, Vn
i+1,j =

(

Un
i+1,j , ρn

i+1,jp
n
i+1,j

)

. (32)

We are now in a position to define the required numerical flux function
Fn

i+ 1
2

,j
= ((Fρ

x)n
i+ 1

2
,j
, (Fρu

x )n
i+ 1

2
,j
, (Fρv

x )n
i+ 1

2
,j
, (FρE

x )n
i+ 1

2
,j
) from the formula (31) and (27):

(Fρ
x)n

i+ 1
2
,j

= (Gρ
x)n

i+ 1
2

,j
,

(Fρu
x )n

i+ 1
2
,j

= (Gρu
x )n

i+ 1
2
,j
,

(Fρv
x )n

i+ 1
2
,j

= (Gρv
x )n

i+ 1
2
,j
,

(FρE
x )n

i+ 1
2
,j

= (GρE
x )n

i+ 1
2
,j
.

(33)

Observe from (32) that the proposed numerical flux function Fn
i+ 1

2
,j

is consistent with the exact flux function

Fx.
Being given two states VL and VR in ΩV, we now define for the sake of completeness the self-similar solution
W(.;VL,VR) of (30) which expanded form reads:



























∂tρ + ∂x(ρu) = 0,

∂t(ρu) + ∂x(ρu2 + Π) = 0,

∂t(ρv) + ∂x(ρuv) = 0,

∂t(ρE) + ∂x((ρE + Π)u) = 0,

∂t(ρΠ) + ∂x((ρΠ + a2(VL,VR)u) = 0,

(34)

with initial data V0(x) = VL, x < 0; VR otherwise. In (34), the coefficient a(VL,VR) is set to:

a(VL,VR) = max( (ρc)(UL), (ρc)(UR) ), (35)

according to the Whitham condition (12).

Proposition 1. Let be given two states VL and VR in ΩV. Choose the coefficient a(VL,VR) as in (35)
and possibly larger so as to verify:

σ1(VL,VR) = uL −
a(VL,VR)

ρL

< σ2(VL,VR) = u?(VL,VR) < σ3(VL,VR) = uR +
a(VL,VR)

ρR

, (36)

with

u?(VL,VR) =
1

2
(uR + uL) −

1

2a(VL,VR)
(ΠR − ΠL). (37)

Then, the self-similar solution W(.,VL,VR) of the Cauchy problem (34) with initial data:

V0(x) =

{

VL if x < 0,

VR if x > 0,
(38)

is made of four constant states VL,V1(VL,VR),V2(VL,VR),VR separated by contact discontinuities prop-
agating with speed σi(VL,VR), i = 1, 2, 3:

W(x/t;VL,VR) =



















VL if x
t

< σ1(VL,VR),

V1(VL,VR) if σ1(VL,VR) < x
t

< σ2(VL,VR),

V2(VL,VR) if σ2(VL,VR) < x
t

< σ3(VL,VR),

VR if σ3(VL,VR) < x
t
.

(39)
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The intermediate states V1(VL,VR) and V2(VL,VR) belong to the phase space ΩV (i.e. ρ1(VL,VR) >
0, ρ2(VL,VR) > 0) and are recovered from the next formulae with a = a(VL,VR):

Π? = Π1 = Π2 = 1
2 (ΠL + ΠR) − a

2 (uR − uL),

u? = u1 = u2 = 1
2 (uL + uR) − 1

2a
(ΠR − ΠL),

1
ρ1

= 1
ρL

− 1
a
(uL − u?),

1
ρ2

= 1
ρR

− 1
a
(u? − uR),

v1 = vL, v2 = vR,

E1 = EL − 1
a
(Π?u? − ΠLuL),

E2 = ER + 1
a
(Π?u? − ΠRuR).

(40)

According to the definition (31), the numerical flux Gn
i+ 1

2
,j

is nothing but the Godunov flux for the quasi-1D

relaxation system (34). Due to the property that all the fields of this system are linearly degenerate, see
Lemma 1, it can be proved that the numerical flux Gn

i+ 1
2
,j

is algebraically equivalent to the one of a Roe-type

linearization of the system (34). More precisely we successively have:

Proposition 2. For any given pair of states (VL,VR) ∈ Ω2
V, with the notations of Proposition 1, let us

define the following five vectors of R
5:

r1(VL,VR) =















1

uL − a/ρL

vL

EL + ΠL/ρL − au?/ρL

ΠL + a2/ρL















,

r2(VL,VR) =















0

0

1

0

0















, r3(VL,VR) =















0

0

0

1

0















, r4(VL,VR) =















1

u?

0

0

Π?















,

r5(VL,VR) =















1

uR + a/ρR

vR

ER + ΠR/ρR + au?/ρR

ΠR + a2/ρR















,

where u? and Π? are given in (40). Then, the family ( ri(VL,VR) )1≤i≤5 spans R
5, i.e. the matrix

R(VL,VR) =
(

r1(VL,VR), r2(VL,VR), r3(VL,VR), r4(VL,VR), r5(VL,VR)
)

(41)

is invertible.

Proposition 3. For any given pair of states (VL,VR) ∈ Ω2
V, let us consider the well-defined matrix

Ax(VL,VR) ∈ Mat(R5) given by:

Ax(VL,VR) = R(VL,VR)D(VL,VR)R−1(VL,VR), (42)

where R(VL,VR) is the invertible matrix introduced in (41) and D(VL,VR) the diagonal matrix defined
by:

D(VL,VR) = diag(σ1(VL,VR), σ2(VL,VR), σ2(VL,VR), σ2(VL,VR), σ3(VL,VR)). (43)

Then, Ax(VL,VR) is a Roe-type linearization for the quasi-1D relaxation system (34); namely:

(i) Ax(V,V) = ∇VGx(V),

(ii) Ax(VL,VR) (VR − VL) = Gx(VR) − Gx(VL),

(iii) Ax(VL,VR) is R-diagonalizable.

(44)
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Equipped with these notations and results, the main statement of this section is:

Theorem 1. For any given pair of states (VL,VR) ∈ Ω2
V, the Godunov numerical flux function for the

quasi-1D relaxation system (34) is algebraically equivalent to the following Roe numerical flux function:

Gx(W(0+;VL,VR)) =
1

2

(

Gx(VL) + Gx(VR) − |Ax(VL,VR)|(VR − VL)
)

, (45)

where Ax(VL,VR) denotes the Roe linearization (42).

Let us emphasize that the matrix Ax(VL,VR) ∈ Mat(R5) is a Roe-type linearization for the 5×5 quasi-1D
relaxation system but not for the 4× 4 quasi-1D original Euler equations. Let us conclude when underlying
that the numerical flux function in the y direction, Gn

i,j+ 1
2

, can be also equivalently reexpressed as a Roe

method following symmetric steps.

II.B. A first time implicit method

The two step relaxation procedure we have described in a time explicit framework can be given a straightfor-
ward time implicit formulation. For the sake of efficiency, this time implicit method is classically linearized
thanks to the existence of a Roe linearization for equivalently reexpressing the numerical fluxes. More pre-
cisely, the two steps of the previous section now read:

First step: evolution in time (tn → tn+1−)
Solve the following linearized time implicit scheme

Vn+1−
i,j = Vn

i,j −
∆t

∆x
(Gn+1−

i+ 1
2
,j
− Gn+1−

i− 1
2
,j

) −
∆t

∆y
(Gn+1−

i,j+ 1
2

− Gn+1−
i,j− 1

2

), (i, j) ∈ Z
2, (46)

where thanks to the equivalent form (45) we have classically set:

Gn+1−
i+ 1

2
,j

= Gn
i+ 1

2
,j

+ 1
2 (∇V Gx(Vn

i,j) + |Ax(Vn
i,j ,V

n
i+1,j)|) δ(Vn

i,j)

+ 1
2 (∇V Gx(Vn

i+1,j) − |Ax(Vn
i,j ,V

n
i+1,j)|) δ(Vn

i+1,j),
(47)

where the time increments are defined by:

δ(Vn
i,j) = Vn+1−

i,j − Vn
i,j . (48)

A symmetrical definition applies to the numerical flux Gn+1−
i,j+ 1

2

in the y direction.

Solving (46) then classically amounts to solve a linear system in the unknown δ(Vn
i,j)i,j∈Z2 with a pentadi-

agonal 5 × 5 block matrix. The non-zero entries of a line of the corresponding matrix read

(Ln
x)i,j , (Ln

y )i,j , (Dn)i,j , (Rn
y )i,j , (Rn

x)i,j , (49)

where the diagonal 5 × 5 matrix writes

Dn
i,j = Id + ∆t

2∆x

(

|Ax(Vn
i,j ,V

n
i+1,j)| + |Ax(Vn

i−1,j ,V
n
i,j)|

)

+ ∆t
2∆y

(

|Ay(Vn
i,j ,V

n
i,j+1)| + |Ay(Vn

i,j−1,V
n
i,j)|

)

,
(50)

while the extradiagonal 5 × 5 matrices are defined by

(Ln
x)i,j = − ∆t

2∆x

(

∇VGx(Vn
i−1,j) + |Ax(Vn

i−1,j ,V
n
i,j)|

)

,

(Rn
x)i,j = + ∆t

2∆x

(

∇VGx(Vn
i+1,j) − |Ax(Vn

i,j ,V
n
i+1,j)|

)

,
(51)

with symmetrical definitions for (Ln
y )i,j and (Rn

y )i,j .

Second step: Relaxation (tn+1− → tn+1)
From the solution Vn+1−

i,j of the above linear problem (46), we keep unchanged:

ρn+1
i,j = ρn+1−

i,j , (ρw)n+1
i,j = (ρw)n+1−

i,j , (ρE)n+1
i,j = (ρE)n+1−

i,j ,
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while we define so as to enforce equilibrium:

(ρΠ)n+1
i,j = (ρp)(ρn+1

i,j , (ρe)n+1
i,j ).

In other words, the second step is kept unchanged. This concludes the presentation of the first time implicit
formulation of the relaxation approximation procedure.

Despites being natural and robust, this first extension is numerically shown hereafter to fail in produc-
ing converged in time discrete solutions. The origin of the failure may be understood as follows. The steady
state solutions of the Euler equations (1), namely solutions of

∇. F(U) = 0, x ∈ D, (52)

are intended to be recovered from the steady state solutions of the relaxation system (6)

∇. G(Vλ) − λR(Vλ) = 0, x ∈ D, (53)

in the regime of an infinite relaxation rate λ → ∞. Observe that one cannot expect stationary solutions
Vλ of (53) to simultaneously satisfy ∇.G(Vλ) = 0 and λR(Vλ) = 0 generally speaking in view of the next
result:

Lemma 2. Let be given V : D → ΩV a smooth function of the space variables such that:

∇. G(V) = 0 and R(V) = 0, x ∈ D, (54)

simultaneously hold. Then , the smooth function V necessarily obeys:

(a2 − ρ2c2(ρ, ρe)) ∇. w = 0, x ∈ D, (55)

where c(ρ, ρe) is the sound speed introduced in (3). Under the mandatory Whitham condition (12), a smooth
function V satisfying (54) and therefore (55) necessarily comes with the property of a divergence free velocity
field w, i.e. ∇. w = 0. From ∇. ρw = 0 stated in (54), we would then infer w.∇ρ = 0 and thus either ρ
necessarily stays constant or the velocity vanishes. Such conditions are far from being general. Therefore,
stationary solutions of (53) do not obey (54) in general. In other words, the singular relaxation source term
in (53) must come into proper balance with the flux divergence. Here stays the reason of the reported failure
in the proposed time marching strategy for capturing steady state solutions of (52) via those of (53).
Indeed, the discussed time marching method intends to restore solutions of (53) on the basis of a splitting
strategy in between the flux divergence and the relaxation source term: solve first the frozen relaxation
system (6) choosing λ = 0

∂tV + ∇. G(V) = 0, (56)

to then restore the relaxation effects when solving

∂tV
λ − λR(Vλ) = 0, (57)

in the limit λ → ∞. Formally, time convergence in this splitting strategy to some stationary solutions V

would require ∇. G(V) = 0 together with λR(Vλ) → 0 in the limit λ → ∞, properties which cannot hold
for general solutions of (53). In other words, splitting the relaxation source term from the flux divergence
cannot result in a well-balanced approximation of the solutions of (53) and therefore of (52).

II.C. Well-balanced time implicit formulation in a relaxation framework

In the light of the previous section, the correct design of a time implicit relaxation procedure requires to
handle simultaneously the relaxation source term with the flux divergence during the first evolution step
tn → tn+1−. We propose to adopt the following strategy, still made of two steps for reasons we will explain
on due time.

First step: evolution in time (tn → tn+1−)
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Instead of the the frozen version (24) with λ = 0, we have to approximate at time ∆t the solution of the
following Cauchy problem

{

∂tV
λ + ∇. G(Vλ) = λR(Vλ),

Vλ(x, y, 0) = Vh(x, y, tn),
(58)

in the regime of an infinite relaxation rate λ → ∞. The initial data Vh(x, y, tn) is again built at equilibrium
from Uh(x, y, tn) according to (22)-(23).
In order to derive the required approximate solution, let us start from the following direct extension of (46)

V
λ, n+1−
i,j = V

λ, n
i,j −

∆t

∆x
(Gλ, n+1−

i+ 1
2
,j

− Gλ, n+1−

i− 1
2
,j

) −
∆t

∆y
(Gλ, n+1−

i,j+ 1
2

− Gλ, n+1−

i,j− 1
2

) + λ∆tR(Vλ, n+1−
i,j ), (59)

which we have to deal with in the limit λ → ∞. To cope with this limit, let us rewrite the last discrete
equation in (59) for updating the relaxation pressure, as follows

(

ρΠ
)λ, n+1−

i,j
=

(

ρp(ρ, ρe)
)λ, n+1−

i,j

− 1
λ

{

(ρΠ)λ, n+1−

i,j
−(ρp(ρ,ρe))n

i,j

∆t
+

G
λ, n+1−

i+1
2

,j
−G

λ, n+1−

i− 1
2

,j

∆x
+

G
λ, n+1−

i,j+ 1
2

−G
λ, n+1−

i,j− 1
2

∆y

}

,

(60)

which is nothing but a time implicit discrete form of (10). Under the Whitham condition (35) for the sake
of stability, we formally let λ go to infinity in (60) to consider the implicit formula

(

ρΠ
)n+1−

i,j
=

(

ρp(ρ, ρe)
)n+1−

i,j
≡

(

ρp(ρ, ρw, ρE)
)n+1−

i,j
.

To lower the computational effort due to the nonlinear pressure law p(U), we propose to Taylor expand this
implicit formula so as to consider the following final definition

(

ρΠ
)n+1−

i,j
=

(

ρp(ρ, ρe)
)n

i,j
+

(

p(U) + ρ∂p
∂ρ

(U)
)n

i,j

(

ρn+1−
i,j − ρn

i,j

)

+(ρ∇wp(U))n
i,j

(

(ρw)n+1−
i,j − (ρw)n

i,j

)

+ (ρ ∂p
∂ρE

(U))n
i,j

(

(ρE)n+1−
i,j − (ρE)n

i,j

)

.
(61)

It is then convenient to recast (61) in terms of the time increments introduced in (48) to get the next identity

(

p(U) + (ρ∂p
∂ρ

(U)
)n

i,j
δ
(

ρn
i,j

)

+ (ρ∇wp(U))n
i,j δ

(

(ρw)n
i,j

)

+ (ρ ∂p
∂ρE

(U))n
i,j δ

(

(ρE)n
i,j

)

− δ
(

(ρΠ)n
i,j

)

= 0,

(62)

since by construction
(

ρΠ
)n

i,j
=

(

ρp(ρ, ρe)
)n

i,j
in (23).

Equipped with this identity, we are in a position to state the linear problem to be solved in the unknown
δVn

i,j . In that aim, we define the pentadiogonal 5 × 5 block matrix entering this linear problem from the
block matrices previously introduced in (49), (50) and (51)

(L̃x)n
i,j , (L̃y)n

i,j , (D̃)n
i,j , (R̃y)n

i,j , (R̃x)n
i,j , (63)

where each four first lines of the 5 × 5 matrices corresponds respectively to the four first lines of:

(Lx)n
i,j , (Ly)n

i,j , (D)n
i,j , (Ry)n

i,j , (Rx)n
i,j , (64)

while solely the last line of each of the 5 × 5 matrices (64) governing the time increments δ(ρΠ) have been
modified in the new block line (63) to account for the new update formula (62). Since this formula written
in a given cell Cij only involves the time increment δVn

i,j , the last line of (L̃x)n
i,j , (L̃y)n

i,j and (R̃x)n
i,j , (R̃y)n

i,j

are necessarily set identically to the zero line

(0, 0, 0, 0, 0),

while necessarily the last line of the diagonal matrix D̃n
ij reads:

(

p +
(

ρ
∂p

∂ρ

)n

ij
,

(

ρ
∂p

∂ρu

)n

ij
,

(

ρ
∂p

∂ρv

)n

ij
,

(

ρ
∂p

∂ρE

)n

ij
, −1

)

. (65)
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At last, the corresponding component of the right side is set to zero so as to restore (62) with (65).
This completes the description of the first step in the well-balanced time implicit formulation of the relaxation
scheme.
The need for a second step stems from the linearized version (61) we have introduced at time level tn+1− to
reduce the computational effort involved in the initial guess (ρΠ)n+1−

i,j = (ρp(ρ, ρe))n+1−
i,j . Since equilibrium

is not achieved with the linearized form (61), a second step is required to be in position to restart the
procedure from time tn+1. Since this second step just asks for the identity (ρΠ)n+1

i,j = (ρp(ρ, ρe))n+1
i,j , this

step exactly coincides with the second step described in Section II.B. This concludes the presentation of the
method.

III. Numerical illustrations

We investigate the performance of the proposed time implicit formulations in the approximation of the
steady state solution of the Euler equations over a blunt body. For simplicity, the pressure law is the one of
a polytropic gas with adiabatic coefficient γ = 1.2. The freestream conditions follow from a Mach number
set to M∞ = 10 and a static pressure p∞ = 40Pa and are responsible for a strong bow shock in the steady
state solution. The computational domain consists in a curvilinear mesh made of 60 × 48 cells.
Figure 1 shows the time history of the L2 norm of the density time derivative obtained using the first
time implicit relaxation method. About 15000 time steps have been performed according to the following
CFL strategy: the CFL number is set to the constant value 25 during the first 7000 time iterations and
decreased down to CFL= 5. Such a strategy makes use of rather small CFL number to prove that the
two plateaus achieved in the convergence history is characteristic of a time implicit method which fails to
produce converged in time discrete solutions. By contrast, the time history of the L2-norm of the density
time derivative obtained thanks to the well-balanced time implicit relaxation method as depicted in Figure
2 proves perfect convergence in time for the discrete solutions. The results of the two runs are compared,
respectively using a constant CFL number set to 25 for the sake of comparison and then choosing an increased
value CFL= 200 in order to speed up the calculation. At last, Figure 3 displays the density contours in the
steady solution obtained with CFL= 200.
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Figure 1. Time history of the L2 norm of the density time derivative using the first time implicit scheme
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Figure 2. Time history of the L2 norm of the density time derivative using the well-balanced time implicit method
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Figure 3. Density contours with the well-balanced time implicit method at CFL = 200
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