
TRANSPORT-EQUILIBRIUM SCHEMES FOR COMPUTING
CONTACT DISCONTINUITIES IN TRAFFIC FLOW MODELING ∗

CHRISTOPHE CHALONS † AND PAOLA GOATIN ‡

Abstract. We present a very efficient numerical strategy for computing contact discontinuities
in traffic flow modeling. We consider the Aw-Rascle model and the objective is to remove spurious
oscillations generated for instance by the Godunov method near contact discontinuities. The method
is mixed and based on both a random sampling strategy and the Godunov method. To prove the
validity of the method, we show that it enjoys important stability properties and numerical tests are
proposed. The convergence of the algorithm is demonstrated numerically.
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1. Introduction
Mathematical and numerical models for traffic dynamics can be developed under

different approaches. We can distinguish between microscopic (particle based), meso-
scopic (gas-kinetic) and macroscopic (fluid-dynamic) models. Here, we are interested
in continuum models, which are based on conservation (or balance) equations. First-
order models consist of one equation, describing the conservation of mass (i.e. the
number of cars). The prototype of these models is due to Lighthill-Whitham [17] and
Richards [20] (LWR). If another conservation equation is added, we obtain a so-called
second-order model. A first prototype was proposed by Payne [19] and Whitham [24].
This kind of models mimics the isentropic Euler equations of fluid mechanics, requir-
ing conservation of mass and momentum. However, traffic flow does not behave as
usual fluids, and the Payne-Whitham model shows some absurdities, as pointed out
by Daganzo [12]. In order to correct these drawbacks, Aw and Rascle [3] proposed
another model, in which they replace the space derivative of the ”pressure” in the mo-
mentum equation by the convective derivative ∂t +v∂x, where v stands for the (mean)
car velocity. More precisely, the model consists in a 2×2 system of conservation laws
for the car density ρ and the ”momentum” y which reads as follows:

{

∂tρ+∂x (ρv)=0,
∂ty+∂x (yv)=0,

x∈R, t>0. (1.1)

The conservative variable y is defined by

y =ρw, w=v+p(ρ). (1.2)

Here p is a ”pressure” term (as in gas dynamics) which takes into account drivers’
reactions to the state of traffic in front of them. In this way, if we suitably choose the
domain in the phase space, the model satisfies the basic principles:
- no information travels faster than cars;
- density and velocity remain non-negative and bounded.
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2 Transport-Equilibrium schemes

The velocity v is linked to the conservative unknown u=(ρ,y) by (1.2) and a
closure relation for p. Following [3], the function p has to be chosen as a smooth and
strictly increasing function such that ρp(ρ) is strictly convex. For instance, we will
take (without any restriction) the following definition for the numerical experiments
of this paper:

p(ρ)=vref ln
( ρ

R

)

, (1.3)

where R is the maximal car density allowed by the road, and vref is a given reference
velocity. Introducing now three parameters vM and wm,wM for the thresholds of v
and w respectively, we define the following invariant region for (1.1) :

Ω=
{

(ρ,y)∈R
2 with ρ∈

[

0,R
]

, v∈
[

0,vM

]

, w∈
[

wm,wM

]}

. (1.4)

We observe that (1.1) can also be written in condensed form as

∂tu+∂xf(u)=0, u∈Ω, (1.5)

where the flux function f finds a clear definition from previous developments.
As detailed in Section 2, the system under consideration is strictly hyperbolic for

ρ>0, with a genuinely nonlinear and a linearly degenerate characteristic field. The
latter is associated with the faster eigenvalue which is equal to v and then develops
discontinuous waves, the so-called contact discontinuities, for which the speed of prop-
agation is continuous and given by v. In this paper, we will focus on the numerical
approximation of these contact discontinuities.

In the past decade, the numerical approximation of contact discontinuities re-
ceived a lot of attention in the context of compressible multicomponent (or multifluid)
flows. Indeed, when the flow is made of several species, it is observed that classical
conservative schemes (like Godunov’s scheme) generate important nonphysical oscil-
lations near the material fronts, eventually leading to numerical solutions that are
not precise (at least for realistic meshes). The same pathologies also exist for single
fluid computations, and they are going to appear for system (1.1). Several cures have
been proposed in the literature, see for instance [15], [16], [1], [21], [13], [2], [4], ...
and the references therein. Roughly speaking, the common idea is to keep on using a
classical conservative scheme far from the material interfaces and to introduce a non
conservative modification in the regions where the problem occurs, in order to pre-
serve constant pressure and velocity. Note however that the threshold technique often
attached to the local treatment prevents the methods from strictly preserving isolated
contact discontinuities. The resulting non conservative schemes give good results and
seem to be numerically converging. Note also that these strategies are usually de-
signed for models involving at least two fluids, and then two pressure laws. As a
consequence, it seems difficult to apply them to our ”single fluid” system (1.1). We
mention however that in [7], the authors will propose a mixed Lagrangian/Eulerian
approach that applies also for closure relations involving a single pressure law.

Based on a recent work [5] (see also [6]) by the first author, we present in this paper
an algorithm whose objective is to remove the spurious oscillations generated by the
Godunov scheme (for instance) near the contact discontinuities of system (1.1). The
method proposes to treat separately contact discontinuities using a random sampling
strategy, and to keep on using the Godunov scheme for the other waves. As expected,
the whole algorithm is non conservative but numerical experiments give very good
numerical solutions with sharp (without numerical diffusion) contact discontinuities
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and very small conservation errors, and show the numerical convergence. Moreover,
we are able to prove that the method enjoys important stability properties like strong
consistency and a maximum principle on the two Riemann invariants of system (1.1),
see Theorems 3.1 and 3.2 in Section 3.3. Note also that our algorithm is free of
threshold techniques. As a consequence of all these properties, contact discontinuities
are always computed without oscillations.

To conclude this section, we recall that another second-order model has been pro-
posed by Colombo [10], and also this model has a genuinely nonlinear and a linearly
degenerate field. Then, the same difficulties related to the numerical contact disconti-
nuities are expected to occur. Moreover, both models [10, 3] have been coupled with
the LWR equation, giving origin to traffic flow models with phase transitions [11, 14].
The techniques presented in this paper can be easily adapted and used in these cases.
In particular, for models with phase transitions, an efficient numerical scheme has
been proposed by the authors in [8]. It can be combined with the present one in order
to better approximate contact discontinuities.

2. Basic properties of the Aw-Rascle model
In this section, we briefly recall the basic features of the model under considera-

tion and we refer the reader to [3] (see also [14]) for more details, knowing that the
properties here stated follow from usual considerations. The basic informations on
the Aw-Rascle system are collected in the following table:

r1(ρ,v)=

[

1
−p′(ρ)

]

, r2(ρ,v)=

[

1
0

]

,

λ1(ρ,v)=v−ρp′(ρ), λ2(ρ,v)=v ,
∇λ1 ·r1 =−2p′(ρ)−ρp′′(ρ), ∇λ2 ·r2 =0,
L1(ρ;ρo,vo)=vo +p(ρo)−p(ρ), L2(ρ;ρo,vo)=vo ,
w1 =v+p(ρ), w2 =v ,

(2.1)

where ri is the i-th right eigenvector, λi the corresponding eigenvalue and Li is the
i-Lax curve. We note that shock and rarefaction curves coincide, hence the system
belongs to the Temple class [23]. The Riemann invariants associated with each eigen-
value λ1 and λ2 are w1 =v+p(ρ) and w2 =v respectively. In addition, it is easily
seen that the first characteristic field is genuinely nonlinear, and the second is linearly
degenerate. Therefore, depending on the initial data, the self-similar solution to the
general Riemann problem







∂tu+∂xf(u)=0,

u(x,0)=

{

ul if x<0,
ur if x>0,

(2.2)

will be made of one Lax wave (shock or rarefaction) moving with negative and/or
positive speeds, and a contact discontinuity always moving with positive speed v. For
a more detailed description of the Riemann solver see again [3]. Using the Riemann
coordinates and the property that w1 (respectively w2) is constant across the waves of
the first (respectively second) family, the intermediate state u⋆(ul,ur) in the Riemann
solution is easily computed :

{

w⋆
1 =wl

1 =vl +p(ρl),
w⋆

2 =wr
2 =vr,

=⇒







ρ⋆ =ρl exp

(

vl−vr

vref

)

,

y⋆ =ρ⋆(vr +p(ρ⋆)).
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Of course, we note that v⋆ :=v(u⋆(ul,ur))=vr. We will use the above cheap com-
putation in our algorithm. On the contrary, we will not compute directly rarefaction
waves.
It is also important for the forthcoming developments to notice that the solution to
(2.2) obeys a maximum principle on the two Riemann invariants. In other words, if
(x,t)→ur(

x
t ;ul,ur) denotes the self-similar solution of (2.2), we have







inf{vl +p(ρl),vr +p(ρr)}≤ (v+p)
(

ur

(x

t
;ul,ur

))

≤ sup{vl +p(ρl),vr +p(ρr)},

inf{vl,vr}≤v
(

ur

(x

t
;ul,ur

))

≤ sup{vl,vr}.

3. Numerical approximation
We first briefly recall the Godunov scheme applied to system (1.1), showing that

it introduces nonphysical oscillations near contact discontinuities, which can signif-
icantly affect the whole approximate solution. To overcome this problem, we will
introduce a new method in which we make evolve separately the contact discontinu-
ities and the shock or rarefaction waves.

Let ∆x and ∆t be two constant increments for space and time discretizations,
and ν =∆t/∆x. We then define the mesh interfaces xj+1/2 = j∆x and the cell centers
xj =(j +1/2)∆x for j∈Z, the intermediate times tn =n∆t for n∈N, and at each time
tn we denote un

j an approximate mean value of the solution of (1.5) on the interval
Cj =[xj−1/2,xj+1/2), j∈Z. In other words, a piecewise constant approximation x→
uν(x,tn) of the solution u is given by

uν(x,tn)=un
j for all x∈Cj , j∈Z, n∈N.

When n=0, we set

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx, for all j∈Z, (3.1)

where u0∈Ω is a given initial data.
Assuming as given a sequence (un

j )j∈Z at time tn, we concentrate now on the

computation of an approximate solution at the next time level tn+1.

3.1. The Godunov scheme
As it is well-known, Godunov scheme writes as follows

un+1
j =un

j −
∆t

∆x
(fn

j+1/2− fn
j−1/2) for all j ∈ Z, (3.2)

where the numerical fluxes are such that

fn
j+1/2 = f(ur(0

−;un
j ,un

j+1)) for all j ∈ Z. (3.3)

Let v be the solution for times t∈ [0,∆t] of (1.1) with piecewise constant initial
data u0(x)=uν(x,tn). Under the usual CFL restriction

∆t

∆x
max

u

{|λi(u)|, i=1,2}≤
1

2
(3.4)

for all the u under consideration, v is obtained by gluing together the solutions of the
Riemann problems set at each interface. More precisely

v(x,t)=ur

(

x−xj+1/2

t
;un

j ,un
j+1

)

for all (x,t) ∈ [xj ,xj+1]× [0,∆t]. (3.5)
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See Figure 3.1 for an illustration. Green’s formula tells us that (3.2) is equivalent to
average the function x→v(x,∆t) on the interval [xj−1/2,xj+1/2] :

un+1
j =

1

∆x

∫ xj+1/2

xj−1/2

v(x,∆t)dx, j∈Z. (3.6)

Another equivalent way to recover (3.2) consists in setting

un+1
j =

1

2
(un+1

j+1/2,L +un+1
j−1/2,R), (3.7)

where

un+1
j+1/2,L =

2

∆x

∫ xj+1/2

xj

ur

(

x−xj+1/2

∆t
;un

j ,un
j+1

)

dx=un
j −

2∆t

∆x
(fn

j+1/2− f(un
j ))

(3.8)
and

un+1
j+1/2,R =

2

∆x

∫ xj+1

xj+1/2

ur

(

x−xj+1/2

∆t
;un

j ,un
j+1

)

dx=un
j+1−

2∆t

∆x
(f(un

j+1)− fn
j+1/2)

(3.9)

denotes the averages of the Riemann solution x→ur

(

x−xj+1/2

∆t ;un
j ,un

j+1

)

on the half-

cells [xj ,xj+1/2] and [xj+1/2,xj+1]. This point of view will be useful in the following.

3.2. Failure of Godunov scheme in properly capturing contact discon-
tinuities

Let us consider the Riemann problem (2.2) with ul =(ρl,yl) and ur =(ρr,yr) such
that ρl >0, ρr >0, ρl 6=ρr but vl =vr. In this case, the solution simply consists in a
contact discontinuity propagating at speed v0 :=vl =vr :

u(x,t)=

{

ul if x<v0t,
ur if x>v0t.

From now on, we assume v0 >0.
What happens in the first time step ?

From (3.1) we have that

u0
j =

{

ul if j≤0,
ur if j >0.

Due to the CFL restriction (3.4) and the property v0 >0, only the cell C1 may be
affected by update formula (3.6) in the first time step. In other words,

u1
j =u0

j for all j 6=1.

For j =1, (3.6) is equivalent to

ρ1
1 =ρ and y1

1 =y,

where we have used the notation

α=
1

∆x

∫ ∆x

0

α(x,∆t)dx.
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We observe that

y =
1

∆x

∫ ∆x

0

y(x,∆t)dx=
1

∆x

∫ ∆x

0

(ρv+ρp(ρ))(x,∆t)dx.

Since the velocity remains constant across a contact discontinuity, we have

y =v0
1

∆x

∫ ∆x

0

ρ(x,∆t)dx+
1

∆x

∫ ∆x

0

(ρp(ρ))(x,∆t)dx=v0ρ+ρp(ρ).

On the contrary, if we calculate v1
1 from ρ and y, we get

v1
1 =

y

ρ
−p(ρ)=v0 +

ρp(ρ)−ρp(ρ)

ρ
.

We observe that the function ρ→ρp(ρ) is convex. By Jensen’s inequality, we deduce
ρp(ρ)≥ρp(ρ) and then

v1
1 ≥v0,

with strict inequality generally speaking. Which means that after the first time iter-
ation, the velocity no longer equals v0 everywhere. We conclude that the Godunov
method is not able to keep constant the velocity profile and then to properly capture
contact discontinuities. In Section 4, we will show that the non physical values cre-
ated by the Godunov method around contact discontinuities may significantly damage
the numerical solution. Our goal is to design a suitable algorithm to remove these
spurious values.

Remark 1. (i) The failure we have just underlined is due to the fact that
Godunov method does not obey to a maximum principle property on the velocity v.
The algorithm we propose in the next section verifies the maximum principle on the
Riemann invariants v and v+p(ρ), see Theorem 3.2.
(ii) It is important to notice that if we now consider an isolated 1-wave between ul

and ur, the Godunov method actually keeps constant the Riemann invariant v+p(ρ).
If we set C0 :=vl +p(ρl)=vr +p(ρr), we have indeed

(v+p(ρ))11 =(
y

ρ
)11 =

y

ρ
=

ρ(v+p(ρ))

ρ
=C0

ρ

ρ
=C0.

This property is very interesting and means in particular that all the points in a
numerical 1-wave profile associated with Godunov’s method belong to the same 1-
wave curve for all the possible choices of p(ρ). This property is also satisfied by our
new method (see Theorem 3.1 (iii) and Theorem 3.2).

3.3. A Transport-Equilibrium scheme
We propose now an algorithm that allows to avoid the spurious oscillations gen-

erated near the contact discontinuities by the classical Godunov method. The basic
idea is to treat in a different way contact discontinuities on one side, and other waves
(shock and rarefaction waves) on the other side. We will keep on using Godunov
method for shocks and rarefactions (since it works well and is conservative), and we
will propose a particular treatment for contact discontinuities, which make use of a
(Glimm’s) random sampling strategy.

We set

g(ul,ur)= f(ur(0
−;ul,ur)),
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xj−5/2 xj−3/2 xj−1/2 xj+1/2 xj+3/2 xj+5/2
xj−2 xj−1 xj xj+1 xj+2

un
j−2 un

j−1 un
j un

j+1 un
j+2

vn
j−2 vn

j−1 vn
j vn

j+1 vn
j+2

u⋆(un
j−3,u

n
j−2) u⋆(un

j−2,u
n
j−1) u⋆(un

j−1,u
n
j ) u⋆(un

j ,un
j+1) u⋆(un

j+1,u
n
j+2)

Fig. 3.1. Illustration of the notations used in the paper.

xj−1/2 xj+1/2

xj−1 xj xj+1

un
j−1 un

j un
j+1

vn
j vn

j+1

u⋆(un
j−1,u

n
j ) u⋆(un

j ,un
j+1)

Fig. 3.2. Restriction on the interval (xj−1,xj+1).

so that the numerical flux of the Godunov method writes fn
j+1/2 =g(un

j ,un
j+1) for

all j ∈ Z. Recall that u⋆(ul,ur) is the intermediate state in the Riemann solution
ur(.;u

l,ur) (between the 1-wave and the 2-contact discontinuity), so that ul and
u⋆(ul,ur) are connected by a 1-wave and u⋆(ul,ur) and ur are connected by a 2-
contact discontinuity. Of course, we have u⋆(ul,ur)=ur (respectively u⋆(ul,ur)=ul)
if ul and ur are connected by a 1-wave (respectively a 2-contact discontinuity), and
we set u⋆(u,u)=u for all u. See Figure 3.1.

The method is made of two steps. On each interval [xj ,xj+1], j ∈ Z, the first
step takes into account only the contact discontinuity in the Riemann solution
ur(.;u

n
j ,un

j+1), while the second step focuses on the 1-wave. Our procedure may be
viewed as a waves splitting strategy, performed locally around each interface xj+1/2

where a Riemann problem is set.

Assuming as given un
j−1, un

j and un
j+1, we show now how to define un+1

j . Note
that, under the CFL condition (3.4), it is sufficient to focus on the interval [xj−1,xj+1],
since the Riemann problems set at other interfaces are not expected to influence the
definition of un+1

j . See below Figure 3.2.

Step 1 : Propagation of contact discontinuities (tn → tn+1/2)
In this step, we focus on the dynamics of contact discontinuities. We proceed as
follows. The Riemann problems at interfaces xj−1/2 and xj+1/2 generally develop a
1-wave and a 2-contact discontinuity, the latter propagating at speed vn

j and vn
j+1

respectively (see again Figure 3.2). These velocities being nonnegative, the contact
discontinuities only affect [xj−1/2,xj) and [xj+1/2,xj+1], but not [xj−1,xj−1/2) and
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xj−1/2 xj+1/2

xj−1 xj xj+1

un
j−1 un

j un
j+1

vn
j vn

j+1

u⋆(un
j−1,u

n
j ) u⋆(un

j ,un
j+1)

Fig. 3.3. Function ṽ.

[xj ,xj+1/2). This means that the Riemann solutions ur(.;u
n
j−1,u

n
j ) and ur(.;u

n
j ,un

j+1)
could be replaced in this step with the following function

ṽ(x,t)=























un
j−1 if x∈ [xj−1,xj−1/2)

u⋆(un
j−1,u

n
j ) if x∈ [xj−1/2,xj−1/2 +vn

j (t− tn))
un

j if x∈ [xj−1/2 +vn
j (t− tn),xj+1/2)

u⋆(un
j ,un

j+1) if x∈ [xj+1/2,xj+1/2 +vn
j+1(t− tn))

un
j+1 if x∈ [xj+1/2 +vn

j+1(t− tn),xj+1]

on the whole interval (xj−1,xj+1), see Figure 3.3. Of course, this function has to be
considered as a substitute of function v in (3.5), where only contact discontinuities
have been kept.

In order to properly capture contact discontinuities, we propose to de-
fine ṽ(x,tn+1/2) as a piecewise constant function on each interval [xj−1,xj−1/2),
[xj−1/2,xj+1/2) and [xj+1/2,xj+1] (as ṽ(x,tn) is) by means of a Glimm’s random
sampling strategy. More precisely, we pick up randomly on the cell [xj−1,xj+1] a
value between un

j−1, u⋆(un
j−1,u

n
j ), un

j , u⋆(un
j ,un

j+1) and un
j+1 in agreement with their

rate of presence in the corresponding interval, or equivalently in agreement with the
definition of the function x→ ṽ(x,tn +∆t). Given a well distributed random sequence
(an) within interval (0,1), it amounts to set :

ṽ(x,tn+1/2)=











un
j−1 if x∈ [xj−1,xj−1/2)

u
n+1/2
j if x∈ [xj−1/2,xj+1/2)

u
n+1/2
j+1,L if x∈ [xj+1/2,xj+1]

with

u
n+1/2
j =

{

u⋆(un
j−1,u

n
j ) if an+1∈ (0, ∆t

∆xvn
j ),

un
j if an+1∈ [ ∆t

∆xvn
j ,1),

(3.10)

and

u
n+1/2
j+1,L =

{

u⋆(un
j ,un

j+1) if an+1∈ (0, 2∆t
∆x vn

j ),

un
j+1 if an+1∈ [ 2∆t

∆x vn
j ,1).

(3.11)

See Figure 3.4. In practice, we will consider the well-known van der Corput random
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xj−1/2 xj+1/2

xj−1 xj xj+1

un
j−1 u

n+1/2
j u

n+1/2
j+1,L

Fig. 3.4. Function ṽ(x,tn+1/2).

sequence (an) defined by

an =

m
∑

k=0

ik2−(k+1),

where n=
∑m

k=0 ik2k, ik =0,1, denotes the binary expansion of the integers n=1,2,...
(see for instance Collela [9]).

Remark 2. It is worth noticing from now on that if both un
j−1 and un

j on
one hand and un

j and un
j+1 on the other hand can be connected by a 1-wave,

then u⋆(un
j−1,u

n
j )=un

j and u⋆(un
j ,un

j+1)=un
j+1 and as an immediate consequence

of (3.10)-(3.11), ṽ(x,tn+1/2)= ṽ(x,tn). Then, the first step is transparent when no
contact discontinuity is present.

Step 2 : Account for the dynamics of shock and rarefaction waves (tn+1/2→ tn+1)
Let us now concentrate on the parts of the solution located on the left and on the
right of the contact discontinuities.

Let us first consider the Riemann problem set at the interface xj+1/2 for which
only the part of the solution located on the left of the contact discontinuity may enter
the cell Cj =[xj−1/2,xj+1/2). See Figure 3.2. We propose to take it into account

by simply averaging ur(.;u
n+1/2
j ,u

n+1/2
j+1,L ) on (xj ,xj+1/2) as in (3.8). Note that the

restrictions to [xj ,xj+1/2) of ur(.;u
n+1/2
j ,u

n+1/2
j+1,L ) and ur(.;u

n+1/2
j ,un

j+1) are the same

since u
n+1/2
j+1,L and un

j+1 are either equal or separated by a contact discontinuity. Then
we set

un+1
j+1/2,L =

2

∆x

∫ xj+1/2

xj

ur

(

x−xj+1/2

∆t
;u

n+1/2
j ,un

j+1

)

dx

= u
n+1/2
j − 2∆t

∆x (g(u
n+1/2
j ,un

j+1)− f(u
n+1/2
j )).

(3.12)

Let us now focus on the Riemann problem set at the interface xj−1/2 for which
both parts of the solution located on the left and on the right of the contact disconti-
nuity may enter the cell Cj depending on the sense of propagation of the 1-wave (see
again Figure 3.2). There are two possibilities:

• u
n+1/2
j =un

j : it corresponds to the situation where the random sampling ”de-
cided” that the (possibly present) contact discontinuity of ur(.;u

n
j−1,u

n
j ) do not yet

enter the cell Cj . Then we only have to account for:

- the right part of the contact discontinuity in ur(.;u
n
j−1,u

n
j ) (i.e. un

j =u
n+1/2
j ) if a

contact discontinuity is actually present in ur(.;u
n
j−1,u

n
j ), that is if u⋆(un

j−1,u
n
j ) 6=un

j .

This is simply done by replacing un
j−1 and un

j with u
n+1/2
j =un

j in ur(.;u
n
j−1,u

n
j );

- the part of the solution ur(.;u
n
j−1,u

n
j ) entering Cj if no contact discontinuity is

present in ur(.;u
n
j−1,u

n
j ), that is if u⋆(un

j−1,u
n
j )=un

j .
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• u
n+1/2
j =u⋆(un

j−1,u
n
j ) 6=un

j : it corresponds to the situation where the random
sampling decided to make the contact discontinuity of ur(.;u

n
j−1,u

n
j ) enter the cell

Cj . Then we also have to account for the part of the solution ur(.;u
n
j−1,u

n
j ) located

on the left of the contact discontinuity and entering the cell Cj , that is equivalently

the part of the solution ur(.;u
n
j−1,u

n+1/2
j ) entering the cell Cj .

Thus, by averaging on [xj−1/2,xj) as in (3.9) and since the condition

u⋆(un
j−1,u

n
j ) 6=un

j is equivalent to u⋆(un
j−1,u

n+1/2
j ) 6=u

n+1/2
j when u

n+1/2
j =un

j , we
are thus led to set

un+1
j−1/2,R =

2

∆x

∫ xj

xj−1/2

ur

(

x−xj−1/2

∆t
;un

j−1,u
n+1/2
j

)

dx

=u
n+1/2
j −

2∆t

∆x

(

f(u
n+1/2
j )−g(un

j−1,u
n+1/2
j )

)

if u⋆(un
j−1,u

n+1/2
j )=u

n+1/2
j ,

un+1
j−1/2,R =

2

∆x

∫ xj

xj−1/2

ur

(

x−xj−1/2

∆t
;u

n+1/2
j ,u

n+1/2
j

)

dx=u
n+1/2
j

otherwise.

(3.13)

By (3.7), we get the following update formula :

un+1
j =

1

2
(un+1

j+1/2,L +un+1
j−1/2,R)=u

n+1/2
j −

∆t

∆x
(g

n+1/2,L
j+1/2 −g

n+1/2,R
j−1/2 ) for all j ∈ Z,

(3.14)

where the left and right numerical flux functions g
n+1/2,L
j+1/2 and g

n+1/2,R
j−1/2 are defined

according to

g
n+1/2,L
j+1/2 = g(u

n+1/2
j ,un

j+1),

and

g
n+1/2,R
j−1/2 =

{

g(un
j−1,u

n+1/2
j ) if u⋆(un

j−1,u
n+1/2
j )=u

n+1/2
j ,

f(u
n+1/2
j ) otherwise.

(3.15)

The description of the method is now completed. Stability properties enjoyed by this
algorithm are proposed below.

Remark 3. Putting the first and the second step together, we note that the
definition of un+1

j only depends on un
j−1, un

j and un
j+1.

Remark 4. For numerical reasons, the test u⋆(un
j ,u

n+1/2
j+1 )=u

n+1/2
j+1 in (3.15) is

replaced with |u⋆(un
j ,u

n+1/2
j+1 )−u

n+1/2
j+1 |≤ ǫ, with for instance ǫ=1.e−12.

Theorem 3.1 (Consistency). Under the CFL restriction (3.4), the scheme de-
fined by (3.10)-(3.14)-(3.15) is consistent with (1.5) in the following sense :
(i) Constant state : Assume that u :=un

j−1 =un
j =un

j+1, then un+1
j =u.

(ii) Isolated contact discontinuity : Let ul and ur be two distinct constant states that

can be connected by a contact discontinuity. We set v :=vl =vr. Assume that u0
j =ul

if j≤0 and u0
j =ur if j >0. Then the scheme (3.10)-(3.14)-(3.15) is equivalent to

Glimm’s random choice scheme and then converges to the solution of (2.2) given by
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u(x,t)=ul if x<vt and u(x,t)=ur otherwise. In particular, we have un
j ∈{ul,ur}

∀ j ∈Z and ∀n ∈N so that the velocity profile remains constant : vn
j =v ∀ j ∈Z and

∀n ∈N.
(iii) Isolated 1-wave : Let us assume that un

j−1 and un
j can be connected by a 1-wave

(u⋆(un
j−1,u

n
j )=un

j ). Then the definition un+1
j of our scheme (3.10)-(3.14)-(3.15) co-

incides with the one of the Godunov scheme, that is un+1
j is given by (3.2). Proof.

(i) Let us assume that un
l =u for l= j−1,j,j +1. Then, u⋆(un

j−1,u
n
j )=u⋆(u,u)=u

and, by formula (3.10), we necessarily have u
n+1/2
j =u. Recall now the consistency

property g(u,u)= f(u) of the Godunov flux function. Invoking definition (3.15), we
thus have

g
n+1/2,L
j+1/2 =g(u,u)= f(u) and g

n+1/2,R
j+1/2 =g(u,u)= f(u).

Then, formula (3.14) proves that un+1
j =u.

(ii) Let us set u0
j =ul if j≤0 and u0

j =ur if j >0. Since ul and ur are assumed to be

connected by a contact discontinuity, we have in particular u⋆(ul,ur)=ul (while of

course u⋆(ul,ul)=ul and u⋆(ur,ur)=ur) so that the definition of u
n+1/2
j in (3.10)

coincides with the one provided by the Glimm scheme. To prove our result, we thus

have to show that un+1
j =u

n+1/2
j . The two situations of interest are first u

n+1/2
k =ul

for k≤ j and u
n+1/2
k =ur otherwise, and then u

n+1/2
k =ul for k <j and u

n+1/2
k =ur

otherwise.
In the first situation, we necessarily have un

j−1 =ul (respectively un
j+1 =ur) since oth-

erwise we would have un
j−1 =un

j =ur and then u
n+1/2
j =ur (respectively un

j =un
j+1 =

ul and then u
n+1/2
j+1 =ul). Then we have g

n+1/2,L
j+1/2 =g(ul,ur)= f(ul) because the con-

tact discontinuity propagates to the right-hand side. Moreover, g
n+1/2,R
j−1/2 =g(ul,ul)=

f(ul), so that un+1
j =u

n+1/2
j by (3.14).

In the second situation, we note that un
j+1 =ur, since otherwise we would have

un
j =un

j+1 =ul and then u
n+1/2
j =ul. Hence g

n+1/2,L
j+1/2 =g(ur,ur)= f(ur). As far as

g
n+1/2,R
j−1/2 is concerned

- either un
j−1 =ul and then u⋆(un

j−1,u
n+1/2
j )=u⋆(ul,ur)=ul 6=ur, which means

g
n+1/2,R
j−1/2 = f(ur) by (3.15),

- or un
j−1 =ur and then u⋆(un

j−1,u
n+1/2
j )=u⋆(ur,ur)=ur, which means again

g
n+1/2,R
j−1/2 = f(ur) by (3.15).

The two fluxes g
n+1/2,L
j+1/2 and g

n+1/2,R
j−1/2 then coincide and equality un+1

j =u
n+1/2
j fol-

lows.
We have thus proved that the second step of the algorithm is transparent, which
means that the method reduces to the first step and it is equivalent to Glimm’s ran-
dom choice scheme. The convergence towards the solution u(x,t)=ul for x<vt and
u(x,t)=ur for x>vt is proved in [18] (see also [22]) as soon as the random sequence
(an) is well distributed.
(iii) If un

j−1 and un
j can be connected by a 1-wave, we have u⋆(un

j−1,u
n
j )=un

j and

then u
n+1/2
j =un

j . Hence, by definition (3.15), we have g
n+1/2,L
j+1/2 =g(un

j ,un
j+1)= fn

j+1/2

and g
n+1/2,R
j−1/2 =g(un

j−1,u
n
j )= fn

j−1/2. Then the definition of un+1
j given by our scheme

(3.10)-(3.14)-(3.15) coincides with the one of the Godunov scheme, that is un+1
j is
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given by (3.2). This completes the proof of the theorem. ¤

Theorem 3.2 (Maximum principle). Under the CFL restriction (3.4), the
scheme defined by (3.10)-(3.14)-(3.15) satisfies the following maximum principle prop-
erty for all j ∈Z and all n ∈N :







inf
j∈Z

v0
j ≤vn

j ≤ sup
j∈Z

v0
j ,

inf
j∈Z

(v0
j +p(ρ0

j ))≤vn
j +p(ρn

j )≤ sup
j∈Z

(v0
j +p(ρ0

j )) .

Proof.
Maximum principle is not affected by the first step since for all j∈Z, u

n+1/2
j is defined

by picking up randomly a value between u⋆(un
j−1,u

n
j ) and un

j . Since in each Riemann
solution one has v+p(ρ)=const and v =const along the first wave and the second
wave respectively, we then obtain

inf{vn
j−1 +p(ρn

j−1),v
n
j +p(ρn

j )}≤v
n+1/2
j +p(ρ

n+1/2
j )≤ sup{vn

j−1 +p(ρn
j−1),v

n
j +p(ρn

j )}

and

v
n+1/2
j =vn

j .

Concerning the second step, new values are introduced in cells Cj taking averages
of (parts of) Riemann solutions containing only waves of the first family, namely

ur(.;u
n+1/2
j ,un

j+1) on [xj ,xj+1/2), and ur(.;u
n
j−1,u

n+1/2
j ) or ur(.;u

n+1/2
j ,u

n+1/2
j ) on

[xj−1/2,xj). Since again v+p(ρ)=const=C along these waves, and therefore y =

ρC, we get yn+1
j =ρn+1

j C
n+1/2
j =ρn+1

j (v
n+1/2
j +p(ρ

n+1/2
j )), so that vn+1

j +p(ρn+1
j )=

C
n+1/2
j =v

n+1/2
j +p(ρ

n+1/2
j ). The maximum principle property thus holds for v+p(ρ).

We now calculate the velocity vn+1
j using formula

vn+1
j =

yn+1
j

ρn+1
j

−p(ρn+1
j )=C

n+1/2
j −p(ρn+1

j ).

Let us note ρ− (respectively ρ+) the min (respectively max) value of ρ among all the
states involved in the averaging procedure of the second step and v− (respectively
v+) the corresponding velocity. Since the function p is monotone (increasing) we get

inf{vn
j−1,v

n+1/2
j =vn

j ,vn
j+1}≤v+≤vn+1

j ≤v−≤ sup{vn
j−1,v

n+1/2
j =vn

j ,vn
j+1}

and the maximum principle property also holds for v. ¤

Remark 5. The present algorithm is consistent with (1.5) in the sense of Theorem
3.1 and obeys a maximum principle property on both Riemann invariants v+p(ρ) and
v. By the latter property, contact discontinuities are properly computed (without
oscillations), as it is clearly shown in the next section. The counterpart is that our
method is no longer conservative on the density and the momentum, even if the
conservation errors are really small (see again the next section). Instead of averaging
ρ and y as in the usual Godunov method, a way to properly capture the contact
discontinuities while still being conservative on ρ would be to average the density
ρ and the velocity v. However, the difficulty would be to obtain a simple form of
the corresponding update formula since v is not a conservative variable for general
pressure laws, as well as a maximum principle property on v+p(ρ).
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Remark 6 (Computational cost). According to (3.14), the definition of un+1
j

relies on the computation of the time intermediate value u
n+1/2
j and two numerical

fluxes g
n+1/2,L
j+1/2 and g

n+1/2,R
j−1/2 . The computation of u

n+1/2
j is generally associated

with the computation of u⋆(un
j−1,u

n
j ) by (3.10), while the computation of g

n+1/2,L
j+1/2

and g
n+1/2,R
j−1/2 corresponds in general to the computation of two Godunov fluxes by

(3.15), namely g(u
n+1/2
j ,un

j+1) and g(un
j−1,u

n+1/2
j ). It is clear that the computation

of u⋆(un
j−1,u

n
j ) is part of the computation of the Godunov flux g(u

n+1/2
j ,un

j+1). Hence

the definition of un+1
j is eventually associated with the computation of two Godunov

fluxes instead of one as in the usual Godunov method (since it is conservative). This
additional cost is usual when trying to properly compute contact discontinuities, see
[2] for instance. However, the computation of a Godunov flux is not expensive for the
system under consideration in this paper (see Section 2).

4. Numerical experiments

Let us first recall that in this section, p is given definition (1.3). We will take R=1
and vref =1.4427. In order to test the proposed scheme, we consider three Riemann
problems leading to three solutions of interest: an isolated contact discontinuity (Test
1), a shock wave followed by a contact discontinuity (Test 2) and a sonic rarefaction
wave followed by a contact discontinuity (Test 3). In each case, the method is first
evaluated by means of a qualitative comparison with the exact solution: the ρ, v
and v+p(ρ) profiles are shown on Figures 4.1, 4.2 and 4.3. For several mesh sizes,
a quantitative evaluation through the L1-norm (of the difference between the exact
and numerical solutions) is then made, as well as a measure of the conservation errors
on both ρ and y. They are given on tables 4.1, 4.2, 4.3 : Eρ

cons and Ey
cons denote

the conservation errors on ρ and y, and Eρ
L1 and Ev

L1 denote the L1-errors on ρ
and v. The L1-norm errors are computed in a very classical way. For the sake of
completeness, we now give the precise meaning of Eρ

cons and Ey
cons in our computations

(and we refer for instance the reader to [2], [5], [6] for more details on these formulas)
: denoting [x0,x1]= [−0.25,0.75] the computational domain of our simulations and Tf

the corresponding final time, we first set for all n≥0

Eu(tn)=

(

Eρ(tn)
Ey(tn)

)

=

∫ x1

x0

uν(x,tn)dx−

∫ x1

x0

uν(x,0)dx +

∫ tn

0

f(uν(x1,s))ds−

∫ tn

0

f(uν(x0,s))ds

∫ x1

x0

uν(x,tn)dx

where the ratio has to be understood component by component, and then

Eu

cons =

(

Eρ
cons

Ey
cons

)

=
1

Tf

N
∑

n=0

∆t|Eu(tn)| with N =Tf/∆t.

Note that uν being piecewise constant, these quantities are easy to evaluate. Note also
that Eu

cons corresponds to the sum of the absolute value of the relative conservation
errors made at each intermediate time tn. In other words, the possible compensation
effects are not taken into account here.
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Initial states are chosen as follows:

Test 1

ul: ρl =0.9 vl =1.
ur: ρr =0.1 vr =1.

Test 2

ul: ρl =0.1 vl =1.8
ur: ρr =0.2 vr =1.6

Test 3

ul: ρl =0.5 vl =1.2
ur: ρr =0.1 vr =1.6

The qualitative results are presented on a mesh made of 100 points per unit
interval.

We observe as predicted above that the classical Godunov method develops spuri-
ous oscillations near the contact discontinuity, that strongly affect the whole numerical
solution1. On the contrary, our algorithm removes them and provides numerical so-
lutions in full agreement with exact ones, and with sharp contact discontinuities. As
far as the conservation errors and the L1-errors are concerned, they tend to zero with
the mesh size, which proves numerically the convergence of the method. Moreover,
we see that the L1-errors between the numerical and exact solutions are really lower
for our scheme compared with the Godunov method.

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 0. 0. 8.39e−2 8.68e−2

500 0. 0. 4.26e−2 3.83e−2

1000 0. 0. 3.06e−2 2.66e−2

2000 0. 0. 2.18e−2 1.85e−2

# of points Eρ
cons Ey

cons Eρ
L1 Ev

L1

100 1.52% 7.74% 8.e−3 0.
500 0.32% 1.83% 1.6e−3 0.
1000 0.16% 0.94% 8.e−4 0.
2000 0.08% 0.47% 4.e−4 0.

Table 4.1. Test 1 : Godunov scheme (top) and our scheme (bottom).

5. Conclusion
We have presented an algorithm whose objective is to remove the spurious oscilla-

tions generated by the Godunov scheme near contact discontinuities in the Aw-Rascle
model for traffic flow. The method proposes to treat separately the contact disconti-
nuities using a random sampling strategy, and to keep on using the Godunov scheme
for the other waves. The whole algorithm is not strictly conservative but numerical
experiments give very good numerical solutions with sharp (i.e. without numerical
diffusion nor oscillations) contact discontinuities and small conservation errors, and
show the numerical convergence. Moreover, we are able to prove that the method
enjoys important stability properties like strong consistency and maximum principle
on the Riemann invariants of the system.

The resulting scheme remains dependent on the exact Riemann solver. Even if

1We also observe that the spurious oscillations are mainly located behind the contact discon-
tinuity. The reason which can explain this fact is probably that, in any given Riemann problem,
the wave which propagates with the largest velocity is precisely the contact discontinuity (the other
waves are then located behind the contact discontinuity).
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Fig. 4.1. Test 1 : ρ (Left), v (Right) and v+p(ρ) (Bottom) at time t=0.2.

its use is very cheap in this case, it would be interesting in perspective to observe how
our strategy behaves when the exact Riemann solver is replaced by an approximate
Riemann solver.
Another important topic would be the extension of the presented approach to higher-
order schemes.
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Fig. 4.2. Test 2 : ρ (Left), v (Right) and v+p(ρ) (Bottom) at time t=0.2.
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