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THE DRIFT-FLUX ASYMPTOTIC LIMIT OF BAROTROPIC

TWO-PHASE TWO-PRESSURE MODELS∗
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GALIÉ¶, EDWIGE GODLEWSKI‖, PIERRE-ARNAUD RAVIART∗∗, AND NICOLAS SEGUIN††

Abstract. We study the asymptotic behavior of the solutions of barotropic two-phase two-
pressure models, with pressure relaxation, drag force and external forces. Using Chapman-Enskog
expansions close to the expected equilibrium, a drift-flux model with a Darcy type closure law is
obtained. Also, restricting this closure law to permanent flows (defined as steady flows in some
Lagrangian frame), we can obtain a drift-flux model with an algebraic closure law, in the spirit of
Zuber-Findlay models. The example of a two-phase flow in a vertical pipe is described.
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1. Introduction

The description of two-phase flows is of great importance. Numerous applications
need a clever modeling of such flows, in particular in nuclear engineering. Due to
the complexity of these flows, some assumptions must be made according to the
configurations under study. Various classes of models exist, and a crucial problem is
the understanding of the compatibility between all these models [9, 12, 4]. Indeed, the
knowledge of these relationships can help us when a coupling between two-phase flow
models from different classes must be performed. In [1], for instance, the coupling of
two homogeneous two-phase models with different time scales for the mass transfer is
investigated. The relationship between these two models enters in the classical frame
of relaxation mechanisms [3], and different ways of coupling are proposed.

Here, we investigate the links between two-pressure models, such as the one pro-
posed by Baer and Nunziato [2], and drift-flux models, like the Zuber-Findlay model
[14] (see also [8] or [6] for richer models). The main tools we use are Chapman-Enskog
expansions and long-time scalings, but this study does not enter in the theory devel-
oped in [3]. These tools enable us to understand the different modeling assumptions
and asymptotic expansions that are necessary to bridge two-pressure models and drift-
flux models. A fundamental step is the use of a drift-flux model with a Darcy closure
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law (see [7] for related computations).
In this note, the main guidelines are sketched. Full details on the asymptotic

developments and the numerical schemes are provided in a forthcoming companion
paper.

2. Two-phase two-pressure models and drift-flux models

Two-phase two-pressure models [2] are governed by the following set of equations,
with u=(α2,α1ρ1,α2ρ2,α1ρ1u1,α2ρ2u2)

T in d space variables (d=1,2,3):

∂tα2 +Vi(u) ·∇xα2 =Θ(u)(p2−p1), t>0, x∈R
d,

∂t(α1ρ1)+∇x ·(α1ρ1u1)=−Γ(u),

∂t(α2ρ2)+∇x ·(α2ρ2u2)=Γ(u),

∂t(α1ρ1u1)+∇x ·(α1ρ1u1⊗u1 +α1p1I)−Pi(u)∇xα1

=α1ρ1f1(u)+Λ(u)|u2−u1|(u2−u1),

∂t(α2ρ2u2)+∇x ·(α2ρ2u2⊗u2 +α2p2I)−Pi(u)∇xα2

=α2ρ2f2(u)+Λ(u)|u1−u2|(u1−u2),

(2.1)

where αk, ρk, uk are the void fraction, the density and the velocity of the phase
k, where k =1,2 and α1 +α2 =1. We assume that solutions to (2.1) belong to
the set u=(α2,(1−α2)ρ1,α2ρ2,(1−α2)ρ1u1,α2ρ2u2)

T ∈Ω:=(0,1)×R
∗
+×R

∗
+×R

d×
R

d. The pressures pk are defined by the equations of state pk =Pk(ρk), where the
Pk satisfy classical assumptions for k =1,2:

P ′
k(ρk)>0 ∀ρk >0,

lim
ρk→0

Pk(ρk)=0, lim
ρk→∞

Pk(ρk)=+∞. (2.2)

The vectors f1 and f2 denote the external forces for phases 1 and 2, while Λ and Θ
correspond to positive relaxation functions and the source term Γ corresponds to the
mass transfer from phase 1 to phase 2. The two functions Vi and Pi, the so-called
interfacial velocity and pressure, are convex combinations of, respectively, u1 and u2,
and p1 and p2:

Vi(u)=βV (u)u1 +(1−βV (u))u2,

Pi(u)=βP (u)p1 +(1−βP (u))p2,

with βV ,βP ∈ [0,1]. If d=1, such systems are strictly hyperbolic over Ω, except when
the wave speed Vi identifies with another wave speed uk±

√

P ′
k(ρk), k =1,2 [2, 5]

(the system is hyperbolic but not strictly hyperbolic if d>1 due to the multiplicity
of the eigenvalues uk ·n, for any n∈R

d, ‖n‖ 6=0).
Let us focus now on drift-flux models. They read:

∂tρ̃+∇x ·(ρ̃ũ)=0, t>0, x∈R
d,

∂t(ρ̃Ỹ )+∇x ·(ρ̃ũỸ + ρ̃Ỹ (1− Ỹ )ũr)= Γ̃(ṽ),

∂t(ρ̃ũ)+∇x ·(ρ̃ũ⊗ ũ+ p̃I+ ρ̃Ỹ (1− Ỹ )ũr ⊗ ũr)= ρ̃(1− Ỹ )f̃1 + ρ̃Ỹ f̃2,

(2.3)

where ρ̃, ρ̃ũ and Ỹ are the density of the mixture, the momentum vector of the
mixture and the mass fraction of phase 2. Noting ṽ=(ρ̃, ρ̃Ỹ , ρ̃ũ)T , we define the set
of admissible states ΩD :={ṽ∈R

2+d | ρ̃>0,(ρ̃Ỹ /ρ̃)∈ (0,1)}. The pressure p̃ is given
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by some closure law p̃=P̃(ṽ). More precisely, let two classical pressure laws P̃1 and
P̃2 be given satisfying

P̃ ′
k(ρ̃k)>0, ∀ρ̃k >0,

lim
ρ̃k→0

P̃k(ρ̃k)=0, lim
ρ̃k→∞

P̃k(ρ̃k)=+∞. (2.4)

Then the pressure law p̃=P̃(ṽ) is obtained by solving the 2×2 nonlinear system

p̃=P̃1(ρ̃(1− Ỹ )/(1− α̃)),

P̃1(ρ̃(1− Ỹ )/(1− α̃))=P̃2(ρ̃Ỹ /α̃), (2.5)

where the unknown (p̃,α̃) belongs to (0,+∞)×(0,1). The existence and uniqueness
of the solution (p̃,α̃) is ensured by assumptions (2.4), provided that ṽ∈ΩD. The
relative velocity vector ũr corresponds to the difference between the velocity of phase
2 and the velocity of phase 1 and is given by the closure law ũr =Φ̃(ṽ) (see [9] and [10]
for explicit laws). The precise form of the vector-valued function Φ̃ will be discussed
in Section 4. The functions Γ̃, f̃1 and f̃2 denote the mass transfer and the external
forces.

3. Asymptotic analysis

The goal of this section is to obtain a model similar to (2.3) using asymptotic
arguments, starting from a two-phase two-pressure model (2.1).

3.1. The time scales of the source terms. In order to study the asymptotic
limits of (2.1), we must make explicit the different scales of the system. To this
aim, we use a small parameter ε which describes the strength of perturbations of a
dimensionless one-velocity one-pressure equilibrium flow. The first perturbation we
are interested in concerns the difference of the velocities. In order to obtain a first
order in ε perturbation, we set

Λ(u)=
λ(u)

ε2
, (3.1)

since the drag force is quadratic with respect to u1−u2. It is classical to assume that
the pressure relaxation is much faster that the relaxation due to the drag force [9].
Therefore, we use the following scaling for the pressure relaxation coefficient:

Θ(u)=
θ(u)

ε2
(3.2)

(the pressure relaxation term is linear with respect to p1−p2). Besides, we assume
that the characteristic time associated with the mass transfer is much larger than the
characteristic times of the pressure relaxation and of the drag effects. We then use
the scaling

Γ(u)=εγ(u). (3.3)

Letting Γ be linear with respect to ε will enable us to preserve the mass transfer term
when we investigate the long-time behavior of the solutions in Section 3.3.
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3.2. First order equilibrium: a drift-flux model with a Darcy law.

This first step in bridging models (2.1) and (2.3) lies in the study of the first order
asymptotic limit of (2.1).

Solutions to (2.1) with (3.1–3.2) are now parameterized by ε, and we denote them
by uε. Let us introduce some new variables:

ρε =αε
1ρ

ε
1 +αε

2ρ
ε
2, ρεuε =αε

1ρ
ε
1u

ε
1 +αε

2ρ
ε
2u

ε
2, ρεY ε =αε

2ρ
ε
2,

uε
r =uε

2−uε
1, pε =αε

1p
ε
1 +αε

2p
ε
2, pε

r =pε
2−pε

1.

By easy calculations, one can deduce from (2.1) the following equations:

∂tρ
ε +∇x ·(ρεuε)=0,

∂t(ρ
εY ε)+∇x ·(ρεuεY ε +ρεY ε(1−Y ε)uε

r)=Γε,

∂t(ρ
εuε)+∇x ·(ρεuε⊗uε +pε

I+ρεY ε(1−Y ε)uε
r⊗uε

r)

=ρε(1−Y ε)fε
1 +ρεY εfε

2 ,

∂tu
ε
r +uε

r ·∇xuε +uε ·∇xuε
r +∇x ·((1/2−Y ε) uε

r⊗uε
r)+(1/ρε

2−1/ρε
1)∇xpε

+
(

βP /(ρεY ε)−(1−βP )/(ρε(1−Y ε))+1/ρε
1−1/ρε

2

)

pε
r∇xαε

2

+ρε/(ρε
1ρ

ε
2)∇xpε

r =fε
2 −fε

1 −λε|uε
r|uε

r/(ε2ρεY ε(1−Y ε)),

∂tp
ε
r +uε

r ·∇xpε +(ρε
2P

′
2(ρ

ε
2)−ρε

1P
′
1(ρ

ε
1))(∇x ·uε−uε

r ·∇xY ε)

+(Y ερε
1P

′
1(ρ

ε
1)+(1−Y ε)ρε

2P
′
2(ρ

ε
2))∇x ·uε

r +(αε
1u

ε
2−αε

2u
ε
1) ·∇xpε

r

+
(

βV ρε
2P

′
2(ρ

ε
2)/αε

2−(1−βV )ρε
1P

′
1(ρ

ε
1)/αε

1−pε
r

)

uε
r ·∇xαε

2

=−(ρε
1P

′
1(ρ

ε
1)/αε

1 +ρε
2P

′
2(ρ

ε
2)/αε

2)θ
εpε

r/ε2.

(3.4)

It is worth noticing that under assumptions (2.2), the application which maps uε ∈Ω
to (ρε,ρεY ε,ρεuε,uε

r,p
ε
r)

T is a diffeomorphism. Therefore, αε
2, ρε

1, ρε
2, fε

1 , fε
2 ,...

must be understood in (3.4) as functions of (ρε,ρεY ε,ρεuε,uε
r,p

ε
r)

T (we keep for sim-
plicity the same notations whatever the dependence of the functions on uε or on
(ρε,ρεY ε,ρεuε,uε

r,p
ε
r)

T is). We thus deduce that the system (3.4) is closed.
We are interested in studying solutions of (3.4) near the equilibrium defined by

uε
r =0 and pε

r =0, (3.5)

and in obtaining a closed system which describes such solutions up to the first order in
ε. With this in mind, we follow the Chapman-Enskog method and focus on solutions
of the form

uε
r =εuε

r1 +O(ε2),

pε
r =εpε

r1 +O(ε2).

These expansions and the last two equations of (3.4) lead us to define

|uε
r1|uε

r1 =
ρεY ε(1−Y ε)

λε

(

fε
2 −fε

1 +

(

1

ρε
1

− 1

ρε
2

)

∇xpε

)

, (3.6)

pε
r1 =0. (3.7)

We are now in position to propose a first order equilibrium system associated with
the two-phase two-pressure model (2.1), i.e., a reduced model in which only second
(and higher) order terms in ε have been neglected.
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Proposition 3.1. Let us denote by v=(ρ,ρY,ρu)T ∈ΩD and assume that Γ, λ, f1

and f2 only depend on v. Consider the system

∂tρ+∇x ·(ρu)=0,

∂t(ρY )+∇x ·(ρuY +ρY (1−Y )ur)=Γ(v),

∂t(ρu)+∇x ·(ρu⊗u+pI+ρY (1−Y )ur⊗ur)

=ρ(1−Y )f1(v)+ρY f2(v),

(3.8)

where

|ur|ur =ε2 ρY (1−Y )

λ(v)

(

f2(v)−f1(v)+

(

1

ρ1(v)
− 1

ρ2(v)

)

∇xp

)

, (3.9)

and with the pressure law p=P(v), given by the solution (p,αe
2) of the 2×2 nonlinear

system

p=P1(ρ(1−Y )/(1−αe
2)),

P1(ρ(1−Y )/(1−αe
2))=P2(ρY/αe

2).
(3.10)

The system (3.8–3.10) is closed and its solutions correspond to equilibrium solutions
of the two-phase two-pressure model (2.1) up to the first order in ε.

In order to prove that this system is closed, we only need to study the system
(3.10). As soon as v∈ΩD, simple computations allow to check that assumptions
(2.2) on the pressure laws ensure that αe

2∈ (0,1) and that there exists a function
P that maps v to p (see (2.4) and (2.5) for a similar discussion). Note that these
assumptions also ensure that the pressure laws are invertible, so that the functions
ρk(v) :=P

−1
k (P(v)), v∈ΩD in (3.9) make sense.

Besides, only terms of order ε2 and higher have been neglected in (3.8–3.10),
thanks to the assumptions on λ, Γ, f1 and f2 made in Proposition 3.1. The term
ur⊗ur, of order ε2, has been kept in (3.8) in agreement with the classical form of
drift-flux models. It is also important to remark that, due to the order in ε2 of the
pressure relaxation, the first order pressure correction pε

r1 is null, and consequently
the system (3.8–3.10) is independent of θ.

This system enables one to describe flows near the equilibrium (3.5) of system
(2.1) (see [7] for a study of a related system). It is the first step towards a classical
drift-flux model. Indeed, v=(ρ,ρY,ρu)T in (3.8) and ṽ=(ρ̃, ρ̃Ỹ ,ρũ)T in (2.3) verify
the same set of partial differential equations, with Γ≡ Γ̃, f1≡ f̃1 and f2≡ f̃2, the only
difference being that the hydrodynamic closure law (3.9) is a Darcy-like law, in the
sense that ur depends not only on v but also on its derivative via ∇xp.

3.3. Permanent flows: from a Darcy law to a zeroth order law. In
order to obtain a zeroth order hydrodynamic closure law, we investigate permanent
flows. We define such flows as the long-time limit of the solutions of (3.8) along the
characteristics of the flow. We then focus on the characteristics of the flow and rewrite
system (3.8) in the associated frame of reference. Let us consider the differential
system







dx

dt
=u(x,t), t>0,

x(0)= ξ,
(3.11)
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where ξ∈R
d. We denote by x(ξ,t) the solution of (3.11) and introduce the associated

change of coordinates

φ(ξ,t)=φ(x(ξ,t),t), (3.12)

where φ is a given function in Eulerian coordinates and φ the same function in La-
grangian coordinates. We then obtain

∂tφ=∂tφ+u ·∇xφ.

The equations of (3.8) becomes in the new frame of reference

∂tρ+ρ∇x ·u=0,

∂tρY +ρY ∇x ·u+∇x ·(ρY (1−Y )ur)=εγ,

∂tρu+(ρ∇x ·u)u+∇xp+∇x ·(ρY (1−Y )ur⊗ur)=ρ((1−Y )f1 +Y f2).

In order to investigate the long-time limit, we use the scaling s=εt. This leads to

ε∂sρ+ρ∇x ·u=0,

ε∂sρY +ρY ∇x ·u+∇x ·(ρY (1−Y )ur)=εγ,

ε∂sρu+(ρ∇x ·u)u+∇xp+∇x ·(ρY (1−Y )ur ⊗ur)=ρ((1−Y )f1 +Y f2).

(3.13)

At the zeroth order, what remains is

ρ∇x ·u=0, (3.14)

∂sρY +∇x ·(ρY (1−Y )ur1)=γ, (3.15)

∇xp=ρ((1−Y )f1 +Y f2). (3.16)

Assuming now that the flow governed by (3.8) satisfies this relation for all t>0
and x∈R

d, the closure law (3.9) becomes

|ur|ur =ε2 ρY (1−Y )

λ(v)

(

f2(v)−f1(v)

+

(

1

ρ1(v)
− 1

ρ2(v)

)

(

ρ(1−Y )f1(v)+ρY f2(v)
)

)

, (3.17)

from which one can deduce a zeroth order closure law ur =Φ(v).

Remark 3.2. Provided that λ, f1, f2 and P are only functions of ρ and ρY , equations
(3.15), (3.16) with the closure laws

p=P(v) and |ur1|ur1 =
ρY (1−Y )

λ

(

f2−f1 +

(

1

ρ1
− 1

ρ2

)

∇xp

)

(3.18)

constitute a closed system very similar to those which govern the evolution of the
saturation of a fluid in a porous medium, coupled with a Darcy law.

Remark 3.3. One can here notice the importance of the scaling Γ=εγ. Indeed,
when ε→0, the second equation of (3.13) directly vanishes, whereas, if Γ had been
independent of ε, the limit ε→0 would yield Γ≡0.
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4. The asymptotic drift-flux model

We have obtained a closed drift-flux model, composed of the PDE’s (3.8) with
the zeroth order hydrodynamic closure law (3.17) and the pressure law given by the
solution of (3.10). This last equation is exactly the pressure law P̃ which appears
for classical drift-flux models (2.3), provided that Pk ≡P̃k, k =1,2. Moreover, v=
(ρ,ρY,ρu) in (3.8) and ṽ=(ρ̃, ρ̃Ỹ ,ρũ) in (2.3) verify the same set of PDE’s, with
f1≡ f̃1, f2≡ f̃2 and Γ≡ Γ̃. Then, it remains to address the hydrodynamic law (3.17).

4.1. The case of a vertical pipe with buoyancy effects. In order to
understand the connection between the hydrodynamic laws Φ and Φ̃, we present the
case of a dispersed flow in a vertical confined channel only subject to the gravity
force, that is to say, we only consider classical buoyancy effects. The model is now
one-dimensional, x is the upward direction, and thus f1 =f2 =−g, where g is the
gravity constant. Assume that phase 1 is the air and phase 2 is the liquid; then
ρ1≪ρ2.

Following [10], the drag force in the two-pressure model (2.1) can be defined by

Λ(u)|ur|ur =
3

8RD
α1ρ2CD(u)|ur|ur,

where RD is the bubble radius (assumed to be constant) and CD is the drag coefficient.
For the present configuration of flow, Ishii and Zuber proposed the following formula
in [11]:

CD(u)=
4RD

3
(α2)

−ϑ
√

(ρ2−ρ1)g/σ,

where σ denotes the surface tension, and the value of the constant ϑ is given according
to the ratio of the dynamical viscosities of the phases. This leads to

Λ(u)|ur|ur =
1

2
α1(α2)

−ϑρ2

√

(ρ2−ρ1)g/σ|ur|ur,

from which we can deduce Λ (note that Λ can also be expressed as a function of v).
On the other hand, Equation (3.17) reduces to

Λ(u)|ur|ur =−α1α2(ρ2−ρ1)g.

Due to the configuration of the flow, both velocities u1 and u2 are negative and u2 6u1,
which yields Λ(u)>0. Identifying the two latter equations enables us to deduce the
following form for the relative velocity:

ur =−
√

2

(

σ(ρ2−ρ1)g

(ρ2)2

)1/4

(α2)
(1+ϑ)/2.

This definition corresponds to a classical hydrodynamic closure law ũr =Φ̃(ṽ) for
drift-flux models (see for instance [8] or [6] for such models and extensions). Actually,
this correspondence is not so surprising, since it is a classical way of modeling in two-
phase flows. The cornerstone of this derivation in modeling of two-phase flows is the
balance of the gradient of pressure with the external forces, which is recovered here
by the study of permanent flows.
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4.2. Some remarks on the derivation. Let us first provide a comment
on the entropy criterion. The functions Vi and Pi are only assumed to be convex
combinations of the velocities and pressures respectively. For a more detailed analysis
regarding the consistency of two-phase two-pressure models with the entropy principle,
additional requirements on these two quantities must be added [5]. This should enable
us to study the dissipative structure of the relaxation terms and the nonlinear stability
of the asymptotic limits proposed here, following [3].

On the other hand, a theoretical study of the asymptotic limits described in this
paper should be performed. In particular, the works of Yong [13] on the relation of
the dissipative structure of the relaxation phenomenon with the convergence towards
equilibrium smooth flows could be very useful to justify the asymptotic link between
the two-pressure model (2.1) and the drift-flux model (2.3).

In general, system (3.8) is directly obtained from (2.1) by algebraic manipulations
and restricting to one-pressure flows, while the drift law is derived using the balance of
the buoyancy effects by the drag forces. The novelty of our work is the proposition of a
hierarchy between two-pressure models and drift-flux models by the use of asymptotic
mechanisms.
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