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Abstract

The aim of this paper is to show how solutions to the one-dimensional compressible Euler
equations can be approximated by solutions to an enlarged hyperbolic system with a strong
relaxation term. The enlarged hyperbolic system is linearly degenerate and is therefore
suitable to build an efficient approximate Riemann solver. From a theoretical point of view,
the convergence of solutions to the enlarged system towards solutions to the Euler equations
is proved for local in time smooth solutions. We also show that arbitrarily large shock waves
for the Euler equations admit smooth shock profiles for the enlarged relaxation system. In
the end, we illustrate these results of convergence by proposing a numerical procedure to
solve the enlarged hyperbolic system. We test it on various cases.

1 Introduction

The introduction of relaxation approximations for hyperbolic systems of conservation laws goes
back to the seminal work [7]. In the spirit of [7], we study here a relaxation approximation
for the 2 × 2 and 3 × 3 compressible Euler equations in one space dimension by considering an
enlarged system with only one additional scalar unknown quantity, and a stiff relaxation term.
The relaxation systems under consideration in this paper are motivated by the works of Suliciu
[11], in the 2 × 2 case and of Coquel and al. [5], Chalons and Coquel [3] in the 3 × 3 setting.
The idea is to modify only the pressure law in the original compressible Euler equations, which
concentrates all the genuine nonlinearities, and to keep the other ones. This approach allows
to obtain in both cases an extended first order system with relaxation which is consistent with
both the original system and its entropy inequality in the regime of an infinite relaxation param-
eter. See Liu [8] and Chen, Levermore and Liu [4]. Opposite to [7], the enlarged system is only
quasilinear, but it is hyperbolic with the property that all its characteristic fields are linearly
degenerate. Then, the Riemann problem can be solved explicitly and as a consequence, the
proposed enlarged relaxation system is suitable to construct an efficient approximate Riemann
solver for the compressible Euler equations. This approximate Riemann solver is based on a
splitting strategy where in a first step one solves a Riemann problem for the convective part of
the linearly degenerate enlarged system, and in a second step one makes a projection on the
so-called equilibrium manifold, which formally corresponds to an infinite relaxation coefficient.
For more details, we refer for instance the reader to [3], [2], [1] and to the now large literature
on this numerical issue. This numerical procedure is based on the idea that solutions to the
Euler equations are obtained as the limit, when the relaxation coefficient tends to infinity, of
solutions to the enlarged system with a stiff relaxation. The aim of this paper is to justify
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this convergence on a rigorous basis. We first verify the convergence for local in time smooth
solutions by applying the main result of [12]. The main problem here is to determine for which
initial data the assumptions of [12] are satisfied. Then we show that shock waves of arbitrary
strength for the Euler equations admit smooth shock profiles that are traveling waves solutions
to the relaxation system. We recall that for shock waves of small amplitude, a general existence
result of such shock profiles can be found in [13]. The goal here is to get rid of the smallness
assumption of [13], which is made possible by a detailed analysis of the resulting dynamical
system. In the 3 × 3 case, we shall also make use of an explicit conserved quantity for this
dynamical system, namely the total energy.

The plan of the paper is as follows: in section 2 we consider the barotropic Euler equations
and define the relaxation system. We show that smooth solutions of the relaxation system con-
verge towards smooth solutions of the barotropic Euler equations as the relaxation coefficient
tends to infinity. Then we show the existence of arbitrarily large shock profiles. In the end of
section 2, we propose a numerical procedure for the relaxation system and verify on various cases
that this numerical procedure converges to an approximate Riemann solver for the barotropic
Euler equations as the relaxation coefficient tends to infinity. The analysis is done for general
pressure laws that only satisfy some standard convexity assumptions. In section 3, we follow
the same approach for the full Euler equations. Again, our analysis is performed for general
equations of state that only satisfy the so-called Bethe-Weyl conditions.

In all this paper, Hs(T) denotes the Sobolev space of 1-periodic functions with s derivatives
in L2(T).

2 Relaxation of the barotropic Euler equations

In one space dimension, the barotropic Euler equations read:
{

∂tρ + ∂x(ρ u) = 0 ,

∂t(ρ u) + ∂x(ρ u2 + p(τ)) = 0 ,
(1)

where ρ is the density, u is the velocity, τ = 1/ρ is the specific volume, and p is the pressure
law. We make the following assumption on the pressure:

(H1) p is a C∞ function on ]0,+∞[ that satisfies p′(τ) < 0 and p′′(τ) > 0 for all τ > 0.

In that case, (1) is a strictly hyperbolic system with two genuinely nonlinear characteristic fields,
see [6]. The speed of sound c is given by c(τ) = τ

√

−p′(τ). Moreover, the function:

η = ρ
u2

2
+ ρ ε(τ) , ε′(τ) = −p(τ) ,

is a strictly convex entropy for (1). We will focus on solutions of (1) that satisfy the following
classical entropy inequality :

∂tη + ∂x(η u + p u) ≤ 0. (2)

We are going to show that solutions of (1) can be approximated by solutions to the following
system of balance laws:







∂tρ + ∂x(ρ u) = 0 ,

∂t(ρ u) + ∂x(ρ u2 + π) = 0 ,

∂t(ρ T ) + ∂x(ρ T u) = λρ (τ − T ) ,

(3)

where the so-called relaxed pressure π is given by:

π = p(T ) + a2 (T − τ) , (4)
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and a, λ are positive constants. We keep the notation τ = 1/ρ. This definition of π can be
understood as a linearization of the pressure p around the relaxation specific volume T .
To be more precise, we are going to show that in some suitable cases, the solution (ρλ, uλ,T λ)
of (3) converges as λ tends to +∞ towards some function (ρ, u, τ), where τ = 1/ρ and (ρ, u)
satisfies the barotropic Euler equations (1). The choice of the parameter a is crucial, and is
determined by the so-called subcharacteristic condition, see e.g. [4, 10]. One of the problems
here is to choose a independently of the relaxation parameter λ. We first study the case of smooth
solutions by applying the main result of [12]. The verification of the assumptions of [12] is the
main issue of this study. Then we discuss the existence of smooth shock profiles. Eventually, we
show how to numerically approximate the solutions of (1) by using the relaxation system (3).
The efficiency of this numerical procedure is discussed on various cases that will illustrate our
theoretical results.
Let us mention to conclude the presentation of the relaxation model that (3) can be endowed
with a relaxation entropy defined by:

ρΣ = ρ
u2

2
+ ρε(T ) + ρ

π2 − p2(T )

2 a2
, (5)

which coincides with the entropy η at equlibrium T = τ . By the chain rule and for smooth
solutions, we easily get

∂t(ρΣ) + ∂x(ρΣ u + π u) = −λρ(a2 + p′(T ))(T − τ2) , (6)

the right-hand side being negative under the subcharacteristic condition (the relaxation entropy
is dissipated by the relaxation procedure). Then, the proposed relaxation process is entropy
consistent in the sense of [4].

2.1 Convergence for smooth solutions

Our aim is to apply the convergence result of [12], so we first rewrite the system (3) as a quasi-
linear system in the variables (τ, u,T ). For smooth solutions, the system (3)-(4) equivalently
reads: 





∂tτ + u∂xτ − τ ∂xu = 0 ,

∂tu + u∂xu − a2 τ ∂xτ + (a2 + p′(T )) τ ∂xT = 0 ,

∂tT + u∂xT = λ (τ − T ) .

(7)

We define:

U =





τ
u
T



 , A(U) =





u −τ 0
−a2 τ u (a2 + p′(T )) τ

0 0 u



 , Q(U) =





0
0

τ − T



 ,

so the quasilinear system (7) can be written in the compact form:

∂tU + A(U) ∂xU = λQ(U) . (8)

If we let formally λ tend to +∞, we get T = τ in the third equation of (7), and the limits τ, u
satisfy the quasilinear form of the barotropic Euler equations:

{

∂tτ + u∂xτ − τ ∂xu = 0 ,

∂tu + u∂xu + τ p′(τ) ∂xτ = 0 .
(9)

The aim of this section is to justify rigorously this convergence.
The following lemma gathers the main structural properties of the relaxation system (8):
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Lemma 1. Let O be an open subset of ]0,+∞[×R×]0,+∞[, and assume that a satisfies:

∀ (τ, u,T ) ∈ O , a2 + p′(T ) > 0 . (10)

Let E = {(τ, u,T ) ∈ O | τ = T }. Then there exists a constant invertible matrix P , and there
exists a matrix A0(U) such that the following properties hold:

• for all U ∈ E, one has:

P DQ(U)P−1 =





0 0 0
0 0 0
0 0 −1



 ,

• A0 is a C∞ function of U ∈ O; moreover for all U ∈ O, the matrix A0(U) is symmetric
definite positive, and the matrix A0(U)A(U) is symmetric,

• for all U ∈ E, one has:

A0(U)DQ(U) + DQ(U)T A0(U) = −P T





0 0 0
0 0 0
0 0 1



 P .

The set E is the equilibrium manifold. It is exactly the set of points in O for which the source
term Q(U) in (8) vanishes.

Proof. The first point of lemma 1 is obtained by defining:

P =





1 0 0
0 1 0
−1 0 1



 ,

and by observing that for all U ∈ E , we have:

DQ(U) =





0 0 0
0 0 0
1 0 −1



 .

As a matter of fact, the jacobian matrix DQ(U) is constant, and the above equality holds not
only for U ∈ E but for all U ∈ O. We now turn to the definition of the symmetrizer A0, and let:

A0(U) =
1

2 (a2 + p′(T ))





a2 0 −(a2 + p′(T ))
0 1 0

−(a2 + p′(T )) 0 a2 + p′(T )



 .

The end of lemma 1 follows from a straightforward computation. In particular, thanks to
assumption (H1), the matrix A0(U) is symmetric positive definite.

The structural properties of (8) are the main ingredient to prove the following result:

Theorem 1. Let s ≥ 2, and consider initial data (τ0, u0,T0) ∈ Hs+2(T) that take values in a
compact subset of ]0,+∞[×R×]0,+∞[. Then there exists a constant a > 0, and there exists a
time T > 0 such that:

• for all λ ≥ 1, there exists a unique solution Uλ = (τλ, uλ,T λ) ∈ C([0, T ];Hs(T)) of (8)
with initial data (τ0, u0,T0),

• the barotropic Euler equations (9) admits a unique solution (τ , u) ∈ C([0, T ];Hs+2(T))
with initial data (τ0, u0),
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• (τλ, uλ) converges towards (τ , u) in C([0, T ];Hs(T)) as λ tends to +∞, and T λ converges
to τ in L1([0, T ];Hs(T)) as λ tends to +∞.

Proof. We are going to check that all the assumptions of [12] are satisfied. First of all, we
consider a compact subset K0 of ]0,+∞[×R×]0,+∞[ such that (τ0, u0,T0) takes its values in
K0. There is no loss of generality in assuming that K0 is convex. We now consider a second
compact subset K1 of ]0,+∞[×R×]0,+∞[ such that K1 is convex, and K0 is contained in the
interior of K1. We also fix the constant a > 0 such that:

∀ (τ, u,T ) ∈ K1 , a2 + p′(T ) > 0 .

Then according to the notations of lemma 1, we let O denote an open neighborhood of K1 in
]0,+∞[×R×]0,+∞[ that satisfies:

∀ (τ, u,T ) ∈ O , a2 + p′(T ) > 0 ,

and we let E denote the equilibrium manifold {(τ, u,T ) ∈ O | τ = T }. Lemma 1 shows that
the structural assumptions of [12] are satisfied in the open set O. Moreover, the limit system
(9), that is obtained by taking formally the limit λ → +∞ in (8), is symmetrizable and is
therefore locally well-posed in Hs+2(T). In our particular case, this limit system is nothing but
the barotropic Euler equations (9). Consequently, if we want to apply the main result of [12],
the last point to check is that the Ordinary Differential Equation:

dI

ds
(s, x) = Q(I(s, x)) , I(0, x) = (τ0, u0,T0)(x) , (11)

has a global solution that converges exponentially to some limit state that belongs to E . The
ODE (11) can be solved explicitly and we obtain:

I(s, x) =
(
τ0(x), u0(x), exp(−s)T0(x) + (1 − exp(−s)) τ0(x)

)
.

Thanks to the convexity of K0, we have I(s, x) ∈ K0 for all (s, x) ∈ [0,+∞[×T, and I(s, x)
converges exponentially towards (τ0, u0, τ0)(x) ∈ E ∩ K0 as s tends to +∞. This last point
shows that we can apply the main result of [12] and obtain the conclusion of the theorem.

It is worth noting that theorem 1 can be obtained for ill-prepared initial data, that is for initial
data U0 that do not necessarily satisfy Q(U0) = 0. As a matter of fact, this is made possible
because the ODE (11) is rather simple to solve, so we can show easily that its solution has
the appropriate asymptotic behavior for large times. The price to pay is an initial layer for
the function T that precludes convergence in C([0, T ];Hs(T)). The convergence can only be
obtained in a space Lp([0, T ];Hs(T)), with 1 ≤ p < +∞. For the nonbarotropic system that
we shall study in the following section, we shall have to restrict to well-prepared initial data
because the corresponding ODE will not be anymore simple enough to be solved explicitly.

2.2 Shock profiles

We consider a shock wave:

(ρ, u) =

{

(ρr, ur) , if x > σ t,

(ρℓ, uℓ) , if x < σ t,
(12)

solution to the Euler equations (1)-(2). In other words (see [6] for more details), (12) satisfies
the Rankine-Hugoniot jump conditions:

ρr (ur − σ) = ρℓ (uℓ − σ) = j , j2 (τr − τℓ) = p(τℓ) − p(τr) , (13)
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together with Lax shock inequalities:

0 <
ur − σ

cr
< 1 <

uℓ − σ

cℓ
, if j > 0,

0 <
σ − uℓ

cℓ
< 1 <

σ − ur

cr
, if j < 0.

(14)

In (14), cr (resp. cℓ) denotes the speed of sound in the state r (resp. ℓ). Observe that the case
j = 0 is ruled out since it corresponds to ur = uℓ and ρr = ρℓ, that is to the case of a constant
solution.
A shock profile is a traveling wave (ρ, u,T )(λ(x−σ t)) solution to the enlarged system (3), that
satisfies the asymptotic conditions:

lim
ξ→+∞

(ρ, u,T )(ξ) = (ρr, ur, τr) , lim
ξ→−∞

(ρ, u,T )(ξ) = (ρℓ, uℓ, τℓ) . (15)

The existence of shock profiles is summarized in the following result:

Theorem 2. Assume that (H1) holds, and that (12) satisfies (13), (14). Let a satisfy:

a2 > max(−p′(τr),−p′(τℓ)) . (16)

Then there exists a unique smooth shock profile (ρ, u,T )(λ(x − σ t)) solution to (3), (4) and
(15). Moreover, all functions ρ, u,T are monotone.

Proof. For simplicity, we deal with the case j > 0, which corresponds to τr < τℓ. The case j < 0
is entirely similar so we omit it.
Assume that (ρ, u,T )(λ(x − σ t)) is a smooth shock profile. Then for all ξ ∈ R we have:







(ρ (u − σ))′(ξ) = 0 ,

(ρ u (u − σ) + π)′(ξ) = 0 ,

(ρ T (u − σ))′(ξ) = ρ(ξ) (τ − T )(ξ) .

Integrating the first two equations, and using the asymptotic conditions (15) as well as (13), we
obtain the equivalent system:







ρ(ξ) (u(ξ) − σ)) = j ,

j u(ξ) + p(T (ξ)) + a2 (T (ξ) − τ(ξ)) = j ur + p(τr) ,

j T ′(ξ) = 1 − T (ξ)

τ(ξ)
.

Eliminating u(ξ) in the second equation leads to:







u(ξ) = j τ(ξ) + σ ,

(a2 − j2) τ(ξ) = a2 T (ξ) − j2τr + p(T (ξ)) − p(τr) ,

j T ′(ξ) = 1 − T (ξ)

τ(ξ)
.

Using the strict convexity of p (assumption (H1)), we have:

−p′(τℓ) < j2 =
p(τℓ) − p(τr)

τr − τℓ
< −p′(τr) ,

so a satisfies a2 − j2 > 0. If we denote:

g(T ) =
1

a2 − j2

(
a2 T − j2 τr + p(T ) − p(τr)

)
, (17)
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a shock profile must satisfy the system:







u(ξ) = j τ(ξ) + σ ,

τ(ξ) = g(T (ξ)) ,

T ′(ξ) =
1

j

(

1 − T (ξ)

g(T (ξ))

)

= h(T (ξ)) .

(18)

Conversely, if (τ, u,T ) is a solution to (18) that is defined on R, such that lim+∞ T = τr and
lim−∞ T = τℓ, then (τ, u,T ) is a shock profile. (It is indeed easy to check that τ and u have the
right asymptotic behavior at ±∞ thanks to the Rankine-Hugoniot conditions (13).)
From the definition (17), we easily check that g(τr) = τr, g(τℓ) = τℓ, and g is increasing on
[τr, τℓ] thanks to the convexity of p and the inequality a2 + p′(τr) > 0. Moreover, thanks to the
strict convexity of p, we have:

∀ T ∈ ]τr, τℓ[ , h(T ) =
1

j

(

1 − T
g(T )

)

< 0 ,

h′(τr) < 0 , h′(τℓ) > 0 .

Consequently, there exists a smooth function T that is defined on R, that is a solution to the
ordinary differential equation T ′ = h(T ), and such that lim+∞ T = τr, lim−∞ T = τℓ. The
function T is unique up to a shift, and is decreasing. Then the functions τ and u given by the
first two equations in (18) are monotone and have the appropriate asymptotic behavior at ±∞.
This completes the proof of the theorem.

2.3 Numerical approach

In this section, we first propose to illustrate numerically the convergence of the solutions of the
relaxation system (3)-(4) towards the solutions of the barotropic Euler equations system (1)-(2)
when λ goes to infinity. For that, we are going to consider a natural discretization of (3) and
test several values of λ. Then, our objective will be to formally set λ = +∞ in this natural
discretization in order to recover a consistant method for approximating the solution of (1) which
does not depend on the source term in (3). Here, the convergence has to be understood in the
sense of the previous two sections, namely a smooth solution of (3)-(4) converges to a smooth
solution of (1), see theorem 1, and an admissible discontinuity of (1)-(2) can be obtained by a
shock profile of (3), see theorem 2. The validity of these two theorems relies on some (more or
less technical) assumptions at the continuous level. Among them, the so-called Whitham, or
sub-characteristic, condition (16) (see also (10)) plays an important part at the discrete level
for the stability of the method.

2.3.1 Numerical procedure

For simplicity in the forthcoming notations, we first propose to introduce the following condensed
forms for (1) and (3). We set

∂tu + ∂xf(u) = 0 , (19)

with u = (ρ, ρu)T and f(u) = (ρu, ρu2 + p(τ))T for (1), and

∂tU + ∂xF(U) = λR(U) , (20)

with U = (ρ, ρu, ρT )T and F(U) = (ρu, ρu2 + π, ρT u)T for (3).
Then, the proposed numerical procedure for (3) is based on a splitting strategy and turns out to
be very classical in the context of relaxation systems, see [7]. It is made of two steps : the first
step makes the solution evolve in time according to (20) with λ = 0, which amounts to account
for the convective part only, and the second step deals with the source term. Before going into
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detail, we first set some notations.
Let ∆x and ∆t be two constant steps for space and time discretizations. Let (xj)j∈Z be a
sequence of equidistributed points of R : xj+1 − xj = ∆x. For all j ∈ Z and all n ∈ N, we
introduce the notations:

xj+1/2 = xj +
∆x

2
, tn = n∆t,

and consider the following discretization of the computational domain Rx × R
+
t :

Rx × R
+
t =

⋃

j∈Z

⋃

n≥0

Cn
j , Cn

j = [xj−1/2, xj+1/2[×[tn, tn+1[ .

As usual in the context of finite volumes methods, the approximate solution u∆(x, t) of (1)-(2)
with initial data u(x, 0) = u0(x) is sought as a piecewise constant function on each slab Cn

j . We
set

u∆(x, t) = un
j for (x, t) ∈ Cn

j ,

and for the sake of completeness

u0
j =

1

∆x

∫ xj+1/2

xj−1/2

u0(x)dx , j ∈ Z. (21)

Let us assume as given the piecewise constant approximate solution u∆(x, tn) at time tn. In
order to advance it to the next time level tn+1, we first define another piecewise constant function
U∆(x, tn) associated with u∆(x, tn) when setting

U∆(x, tn) = Un
j =

(
un

j

(ρT )nj

)

for (x, t) ∈ Cn
j .

Actually, we are going to show how to advance U∆(x, tn) to the next time level tn+1 and
u∆(x, tn+1) will coincide with the first two components of U∆(x, tn+1). Note that U∆(x, tn)
represents a piecewise constant approximate solution of (20) at time tn.
At time t = 0, the function U∆(x, t0) is set to be at equilibrium, that is

(ρT )0j := ρ0
jτ

0
j = 1.

We are now in position to precise the two steps of the algorithm.

First step : evolution in time (tn → tn+1−)
In this step, we take λ = 0 and solve (20) with U∆(x, tn) as initial data. It is easily seen
that provided a > 0 and the density ρ remains positive, this system is strictly hyperbolic with
the following eigenvalues : λ1(U) = u − aτ , λ2(U) = u and λ3(U) = u + aτ . Moreover, all
these eigenvalues are associated with a linearly degenerate field. The consequence of the latter
property that the solution of the corresponding Riemann problem is explicitly known (see below
theorem 3) is going to be used and justifies by itself the use of the relaxation system (20), in
the regime λ → +∞, for approximating the solutions of (19).
Let us assume that ∆t obeys the usual CFL condition

∆t

∆x
max
U

(|λi(U)|, i = 1, 2, 3) <
1

2
. (22)

Then, the solution of (20) with λ = 0 and U∆(x, tn) as initial data is obtained by solving a
sequence of non interacting Riemann problems set at each cell interface xj+1/2. More precisely
we have :

U(x, t) = U(
x − xj+1/2

t
;Un

j ,Un
j+1), for (x, t) ∈ [xj , xj+1]×]0,∆t], j ∈ Z,
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where (x, t) → U(x
t ;UL,UR) denotes the self similar solution of the following Riemann problem







∂tU + ∂xF(U) = 0, x ∈ R, t > 0,

U(x, 0) =

{
UL if x < 0,
UR if x > 0.

(23)

Recall that this solution is actually known thanks to the brief discussion above and theorem 3
below. We are thus tempted to define the new values Un+1−

j , j ∈ Z by means of the celebrated
Godunov method. It writes :

Un+1−
j = Un

j − ∆t

∆x
(g(Un

j ,Un
j+1) − g(Un

j−1,U
n
j )), j ∈ Z, n ≥ 0, (24)

with
g(Un

j ,Un
j+1) = F(U(0;Un

j ,Un
j+1)). (25)

Let us now briefly discuss the definition of the parameter a. In order to prove the convergence
results in theorems 1 and 2, it is already known that a must fulfill the conditions (10) and (16).
From a numerical point of view, we propose to take into account these stability conditions when
defining a at each intermediate time tn according to the following constraint :

a2 > max
j∈Z

(−p′(τn
j )). (26)

The corresponding value of a is used in (24)-(25) for defining Un+1−
j . Actually, a deeper analysis

of the relaxation system (3), carried out on the associated rate of entropy dissipation, would
highlight that this rate increases with the parameter a. In order to lower the numerical diffusion
of the scheme, it would be preferable to define a locally at each interface xj+1/2 (this value would
be used for the definition of g(Un

j ,Un
j+1)) and as small as possible according to a local version

of (26). This point is not addressed here and we refer for instance the reader to [3], [2]. Note
that according to (26) the value of a is updated at each time iteration.

We end up this first step when giving the Riemann solution of (23).

Theorem 3.
Let UL and UR two constant states such that ρL > 0 and ρR > 0. Assume that a > 0 satisfies
the condition

λ1(UL) = uL − aτL < u⋆ < λ3(UR) = uR + aτR,

u∗ = 1
2 (uL + uR) + 1

2a(πL − πR).
(27)

Then, the self-similar solution (x, t) → U(x/t;UL,UR) of the Riemann problem (23) is made
of four constant states separated by three contact discontinuities :

U(x/t;UL,UR) =







UL if x
t < λ1(UL),

U∗
L if λ1(UL) < x

t < λ2(U
∗
L),

U∗
R if λ2(U

∗
R) < x

t < λ3(UR),
UR if λ3(UR) < x

t ,

with λ2(U
∗
L) = λ2(U

∗
R) = u∗. The intermediate states U∗

L and U∗
R are obtained from the

following relations :

τ∗
L = τL + (u∗ − uL)/a, τ∗

R = τR − (u∗ − uR)/a,
u∗

L = u∗
R = u∗,

T ∗
L = TL, T ∗

R = TR.

In addition, we have ρ∗L = 1/τ∗
L > 0 and ρ∗R = 1/τ∗

R > 0.

9



Proof. We already know that the three characteristic fields of (20) (when λ is taken to be 0)
are linearly degenerate. Then, the solution is made of four constant states, let us say UL, U∗

L,
U∗

R and UR, separated by three contact discontinuities respectively propagating with the cor-
responding characteristic speeds λ1(UL) = λ1(U

∗
L), λ2(U

∗
L) = λ2(U

∗
R) and λ3(U

∗
R) = λ3(UR).

Using the Rankine-Hugoniot jump relations across these discontinuities easily leads to the ex-
pected intermediate states U∗

L and U∗
R.

Second step : source term (tn+1− → tn+1)
In this step, we propose to take into account the source term when solving

∂tU = λR(U),

with U∆(x, tn+1−) as initial data. By the form of R, it amounts to keep ρ and ρu unchanged,
and to make evolve ρT according to the ordinary differential equation :

∂t(ρT ) = λ(1 − ρT ) (28)

which can be exactly solved. Then we simply set for all j ∈ Z :







ρn+1
j = ρn+1−

j ,

(ρu)n+1
j = (ρu)n+1−

j ,

(ρT )n+1
j = 1 − (1 − (ρT )n+1−

j ) exp(−λ∆t),

(29)

and define

Un+1
j =





ρn+1
j

(ρu)n+1
j

(ρT )n+1
j



 =

(
un+1

j

(ρT )n+1
j

)

.

This completes the proposed algorithm.

Our objective is now to see how this scheme behaves for various values of λ. It is expected from
the previous section that the more λ is large, the more the numerical solution is close to the
solution of (1). This would prove numerically the convergence of the solutions of (3) towards
the solutions of (1) when λ goes to infinity. Let us notice that instead of considering a finite
value for λ, expected to be large in order to get a good approximation of the solution of (1)-(2),
one could simply choose formally λ = +∞ so that the second step would consist in setting







ρn+1
j = ρn+1−

j ,

(ρu)n+1
j = (ρu)n+1−

j ,

(ρT )n+1
j = 1,

instead of (29). In other words, the numerical solution obtained at the end of the first step
is projected on equilibrium at each intermediate time and a discretization of (28) is no longer
necessary. This case will be considered in the numerical experiments. It provides a numerical
strategy for approximating the solution of (19) which is free of the relaxation term R(u) in (20).

2.3.2 Numerical experiments

We consider three Riemann initial data

u0(x) =

{
uL if x < 0,
uR if x > 0,

(30)

where the initial states uL and uR are chosen as follows :

10



Test 1 (shock-shock)

uL : ρL = 1 uL = 1
uR : ρR = 2 uR = 0.5

Test 2 (rarefaction-rarefaction)

uL : ρL = 0.5 uL = −0.5
uR : ρR = 1 uR = −0.2

Test 3 (rarefaction-shock)

uL : ρL = 1 uL = −0.5
uR : ρR = 0.5 uR = −0.5

The corresponding Riemann solutions of (19)-(30) respectively develop two shocks, two rar-
efaction waves and a rarefaction wave followed by a shock wave. In this way, the numerical
convergence will be observed for (piecewise) smooth solutions as well as for shock discontinu-
ities. Without restriction, the pressure p is taken to be

p(τ) = Kτ−γ with K =
(γ − 1)2

4γ
and γ = 1.6.

On figures 1, 2 and 3 are plotted the profiles of ρ, u and ρT for several values of λ, namely
λ = 1, 10, 100 and λ = +∞. The mesh is made of 300 points. We observe that the more λ is
large, the more the density and the velocity of the numerical solution of (20) correctly approach
the solution of (19)-(30). At the same time, ρT becomes closer to 1, as it is expected.
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Figure 1: Test 1 : ρ (Left), u (middle) and ρT (Right) at time 0.5
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Figure 2: Test 2 : ρ (Left), u (middle) and ρT (Right) at time 0.5
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Figure 3: Test 3 : ρ (Left), u (middle) and ρT (Right) at time 0.5
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3 Relaxation of the Euler equations

In one space dimension, the Euler equations read:







∂tρ + ∂x(ρ u) = 0 ,

∂t(ρ u) + ∂x(ρ u2 + p) = 0 ,

∂t(ρE) + ∂x(ρE u + p u) = 0 ,

(31)

where ρ is the density, u is the velocity, p is the pressure, E = u2/2 + ε stands for the specific
total energy, and ε denotes the specific internal energy. We assume that the fluid is endowed
with a complete equation of state ε = ε(τ, S), where τ = 1/ρ is the specific volume while S
is the specific entropy, and that this equation of state satisfies the classical thermodynamical
requirements (see e.g. [9] and the references therein):

(H2) ε is a C∞ function on ]0,+∞[×R such that p = −∂τε > 0 and θ = ∂Sε > 0. Moreover, the
derivatives of ε satisfy:

∂2ε

∂τ2
> 0 ,

∂2ε

∂τ ∂S
< 0 ,

∂2ε

∂τ2

∂2ε

∂S2
>

(
∂2ε

∂τ ∂S

)2

,

− ∂2ε

∂τ ∂S
<

2 θ

p

∂2ε

∂τ2
,

∂3ε

∂τ3
< 0 .

The function θ is the temperature of the fluid. It is given as a function of the specific volume
and the specific entropy. Using assumption (H2), we can define the sound speed c = τ

√
−∂τp.

Moreover, it is shown in [9] that under assumption (H2), (31) is a strictly hyperbolic system
with two extreme genuinely nonlinear fields and one intermediate linearly degenerate field. The
function −ρS is a strictly convex entropy for (31). As usual, we shall focus on weak solutions
of (31) that satisfy the classical entropy inequality :

∂tρS + ∂x(ρSu) ≥ 0. (32)

We also refer to [9] for results on the global solvability of the Riemann problem.

The aim of this section is to follow the analysis of the barotropic case, that is to show that
smooth solutions of (31) can be approximated by solutions to an enlarged system with a strong
relaxation, and that shock waves of (31) admit smooth shock profiles solutions to this enlarged
system. The enlarged system reads as follows:







∂tρ + ∂x(ρ u) = 0 ,

∂t(ρ u) + ∂x(ρ u2 + π) = 0 ,

∂t(ρS) + ∂x(ρS u) = λρ (τ − T )2
(
a2 + ∂τp(T , S)

)
,

∂t(ρ T ) + ∂x(ρ T u) = λρ (τ − T )
(
θ(T , S) + (T − τ) ∂Sp(T , S)

)
,

(33)

where τ = 1/ρ, and the new pressure π is defined by:

π = p(T , S) + a2 (T − τ) . (34)

Again, a and λ are positive constants and π can be understood as a linearization of p with
respect to the first variable and around T . We recall that in (33), θ denotes the temperature
(that is the partial derivative of the internal energy with respect to the specific entropy). We
also highlight the fact that in (33), all quantities θ, p etc. are evaluated at (T , S) and not at (τ, S).
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An important quantity for the enlarged system (33)-(34) is the so-called relaxation specific
total energy Σ, that we define as:

Σ =
u2

2
+ ε(T , S) +

π2 − p2(T , S)

2 a2
. (35)

and that coincides with E when T = τ . Repeated applications of the chain rule show that for
smooth solutions of (33)-(34), the relaxed total energy is conserved:

∂t(ρΣ) + ∂x(ρΣ u + π u) = 0 . (36)

Observe at the same time and in view of (33) that the relaxation entropy ρS is dissipated by
the relaxation procedure under the subcharacteristic condition a2 + ∂τp(T , S) > 0. Then, the
proposed system is consistent in the sense of [4].

3.1 Convergence for smooth solutions

We proceed as in the previous section, and first rewrite the relaxation system (33) in a quasilinear
form. For smooth solutions, (33)-(34) reads:







∂tτ + u∂xτ − τ ∂xu = 0 ,

∂tu + u∂xu − a2 τ ∂xτ + τ ∂Sp(T , S) ∂xS + τ (a2 + ∂τp(T , S)) ∂xT = 0 ,

∂tS + u∂xS = λ (τ − T )2
(
a2 + ∂τp(T , S)

)
,

∂tT + u∂xT = λ (τ − T )
(
θ(T , S) + (T − τ) ∂Sp(T , S)

)
.

(37)

We define:

U =







τ
u
S
T







, A(U) =







u −τ 0 0
−a2 τ u τ ∂Sp(T , S) (a2 + ∂τp(T , S)) τ

0 0 u 0
0 0 0 u







,

Q(U) =







0
0

(τ − T )2 (a2 + ∂τp(T , S))
(τ − T ) (θ(T , S) + (T − τ) ∂Sp(T , S))







,

so the quasilinear system (37) can be written in the compact form:

∂tU + A(U) ∂xU = λQ(U) . (38)

We keep the same notations as in the previous section in order to highlight the similarities in
the analysis.
If we let formally λ tend to +∞ in (37) and assume that all quantities are smooth and have a
limit, we get T − τ = O(λ−1) in the fourth equation of (37). Consequently the limits τ, u, S
satisfy the quasilinear form of the Euler equations:







∂tτ + u∂xτ − τ ∂xu = 0 ,

∂tu + u∂xu + τ ∂τp(τ, S) ∂xτ + τ ∂Sp(τ, S) ∂xS = 0 ,

∂tS + u∂xS = 0 .

(39)

and by (36)
∂t(ρE) + ∂x(ρE u + p u) = 0.

A rigorous proof of such convergence is based on some structural properties of the relaxation
system (38). Such properties are gathered in the following lemma:
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Lemma 2. Let O be an open subset of ]0,+∞[×R
2×]0,+∞[, and assume that a satisfies:

∀ (τ, u, S,T ) ∈ O , a2 + ∂τp(T , S) > 0 . (40)

Let E = {(τ, u, S,T ) ∈ O | τ = T }. Then there exists a constant invertible matrix P , and there
exists a matrix A0(U) such that the following properties hold:

• for all U ∈ E, one has:

P DQ(U)P−1 =







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −θ(T , S)







,

• A0 is a C∞ function of U ∈ O; moreover for all U ∈ O, the matrix A0(U) is symmetric
definite positive, and the matrix A0(U)A(U) is symmetric,

• for all U ∈ E, one has:

A0(U)DQ(U) + DQ(U)T A0(U) = −P T







0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1







P .

Proof. The first point is obtained by defining:

P =







1 0 0 0
0 1 0 0
0 0 1 0
−1 0 0 1







,

and by observing that for all U ∈ E , we have:

DQ(U) =







0 0 0 0
0 0 0 0
0 0 0 0

θ(T , S) 0 0 −θ(T , S)







.

We now turn to the definition of the symmetrizer A0, and define:

A0(U) =
1

2 θ (a2 + ∂τp)







a2 0 −∂Sp −(a2 + ∂τp)
0 1 0 0

−∂Sp 0 −3(∂Sp)2/∂τp 0
−(a2 + ∂τp) 0 0 a2 + ∂τp







,

where the partial derivatives ∂τp, ∂Sp, and the temperature θ are all evaluated at (T , S). Then
the second point of the lemma follows from the direct calculation of A0(U)A(U). Moreover,
using assumption (H2), we can check that the matrix A0(U) is symmetric positive definite. The
final point of the lemma follows also from a direct calculation.

Using lemma 2, we are ready to prove our main convergence result:

Theorem 4. Let s ≥ 2, and consider initial data (τ0, u0, S0,T0) ∈ Hs+2(T) that take values in
a compact subset of ]0,+∞[×R

2×]0,+∞[. Assume morerover that T0 = τ0. Then there exists a
constant a > 0, and there exists a time T > 0 such that:

• for all λ ≥ 1, there exists a unique solution Uλ = (τλ, uλ, Sλ,T λ) ∈ C([0, T ];Hs(T)) of
(37) with initial data (τ0, u0, S0,T0),
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• the Euler equations (39) admits a unique solution (τ , u, S) ∈ C([0, T ];Hs+2(T)) with initial
data (τ0, u0, S0),

• (τλ, uλ, Sλ) converges towards (τ , u, S) in C([0, T ];Hs(T)) as λ tends to +∞, and T λ

converges to τ in C([0, T ];Hs(T)) as λ tends to +∞.

Proof. We follow the arguments of [12]. As in the proof of theorem 1, it is possible to define
compact sets K0 and K1 such that the initial data take values in K0, and K0 is contained in the
interior of K1. Moreover, lemma 2 shows that the structural assumptions of [12] are satisfied in
an open neighborhood O of K1. Since the limit system (39) is locally well-posed in Hs+2(T),
the only thing left to check is that the Ordinary Differential Equation:

dI

ds
(s, x) = Q(I(s, x)) , I(0, x) = (τ0, u0, S0,T0)(x) , (41)

has a global solution that converges exponentially to some limit state that belongs to the equi-
librium manifold E . For initial data that already take values in the equilibrium manifold E (that
is when T0 = τ0), the solution of the ODE (41) is the stationary solution I(s, x) = I(0, x), so it
is trivial in this case that the solution converges exponentially towards a limit state that belongs
to E . This last point shows that we can apply the main result of [12] and obtain the conclusion
of the theorem. The convergence of T λ occurs in C([0, T ];Hs(T)) because there is no initial
layer (the data are well-prepared).

The restriction to well-prepared initial data in Theorem 4 is motivated by the following obser-
vation: the aim of the relaxation system (33) is to provide an approximation of the solution to
the Euler equations (31). In particular the limit, as λ tends to +∞, of the solutions to (33)
should be a solution to the Euler equations (31). However, it appears from the analysis of [12]
that for smooth solutions, the limit of the solutions to (33) is a solution to (31) with the initial
data U(x) = lims→+∞ I(s, x) (and I(s, x) is the solution to the ODE (41)). If the initial data
are ill-prepared, that is when T0 6= τ0, it is not clear that the solution to (41) is defined for all
positive times, and that it has a limit at +∞. (Here the source term Q is highly nonlinear and
depends on the parameter a). Even if it could be proved that I has a limit as s tends to +∞, it
is possible to prove that the asymptotic state depends (in some complicated way) on a, so the
initial data for (31) would be some function that is determined by the choice of a. This is not
really acceptable because the final goal is to solve the Euler equations with some specific initial
data (and not for initial data that are only given by some complicated limiting procedure). This
explains why the restriction to well-prepared data is not a drawback of the relaxation system.

3.2 Shock profiles

We consider a shock wave:

(ρ, u, S) =

{

(ρr, ur, Sr) , if x > σ t,

(ρℓ, uℓ, Sℓ) , if x < σ t,
(42)

solution to the Euler equations (31)-(32). In other words, (42) satisfies the Rankine-Hugoniot
conditions:

ρr (ur − σ) = ρℓ (uℓ − σ) = j ,

j2 (τr − τℓ) + p(τr, Sr) − p(τℓ, Sℓ) = 0 ,

ε(τr, Sr) − ε(τℓ, Sℓ) +
p(τr, Sr) + p(τℓ, Sℓ)

2
(τr − τℓ) = 0 ,

(43)

with j 6= 0, and the entropy criterion:

j (Sr − Sℓ) ≥ 0 . (44)
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As shown in [9], under the assumption (H2) on the equation of state, the Rankine-Hugoniot
relations (43) and the entropy inequality (44) yield the classical Lax’ shock inequalities:

0 <
ur − σ

cr
< 1 <

uℓ − σ

cℓ
, if j > 0,

0 <
σ − uℓ

cℓ
< 1 <

σ − ur

cr
, if j < 0.

(45)

We also recall that τr < τℓ and Sr > Sℓ if j > 0, while τr > τℓ and Sr < Sℓ if j < 0 (see [9]).
A shock profile is a smooth traveling wave (ρ, u, S,T )(λ(x − σ t)) solution to the enlarged

system (33)-(34) (and also (36)), that satisfies the asymptotic conditions:

lim
ξ→+∞

(ρ, u, S,T )(ξ) = (ρr, ur, Sr, τr) , lim
ξ→−∞

(ρ, u, S,T )(ξ) = (ρℓ, uℓ, Sℓ, τℓ) . (46)

The existence of shock profiles is summarized in the following theorem:

Theorem 5. Assume that (H2) holds, and that (42) satisfies (43) and (45). Then if a satisfies:

a2 + max
[τr,τℓ]×[Sℓ,Sr]

∂τp > 0 , a2 > j2 max(τr, τℓ)

min(τr, τℓ)
, (47)

there exists a smooth shock profile (ρ, u, S,T )(λ(x − σ t)) solution to (33), (34), (36) and (46).
Moreover, all functions ρ, u, S,T are monotone.

Before proving theorem 5, we first prove two lemmas that will be used in the proof of theorem
5. As in the preceeding section, we restrict the proof of theorem 5 to the case j > 0. We thus
consider a shock wave (42) for which τr < τℓ, and Sr > Sℓ.

Lemma 3. If a satisfies (47), then the function:

G : (T , S) 7−→ 1

a2 − j2

(

a2 T − j2 τr + p(T , S) − p(τr, Sr)
)

,

takes positive values on [τr, τℓ] × [Sℓ, Sr].

Proof. Observe that a2 > j2 because of Lax’ shock inequalities (45) and (47), the function G is
well-defined and it satisfies:

∂T G(T , S) =
1

a2 − j2

(

a2 + ∂τp(T , S)
)

,

so choosing a as in (47), we get ∂T G(T , S) > 0 for all (T , S) ∈ [τr, τℓ] × [Sℓ, Sr]. Then for
(T , S) ∈ [τr, τℓ] × [Sℓ, Sr] we have:

G(T , S) ≥ G(τr, S) =
1

a2 − j2

(

(a2 − j2) τr + p(τr, S) − p(τr, Sr)
)

≥ 1

a2 − j2

(

(a2 − j2) τr + p(τr, Sℓ) − p(τr, Sr)
)

≥ 1

a2 − j2

(

(a2 − j2) τr + p(τℓ, Sℓ) − p(τr, Sr)
)

=
1

a2 − j2

(

a2 τr − j2 τℓ

)

,

where we have used the properties ∂Sp > 0, ∂τp < 0, and the Rankine-Hugoniot conditions (43).
If a satisfies (47), we obtain G(T , S) > 0.

The next lemma gives a description of the set {G(T , S) = T }:
Lemma 4. If a satisfies (47), then there exists a function T0 that is C∞ on the interval [Sℓ, Sr],
that takes its values in [τr, τℓ], and such that:

{(T , S) ∈ [τr, τℓ] × [Sℓ, Sr] |G(T , S) = T } = {(T0(S), S) , S ∈ [Sℓ, Sr]} ∪ {(τr, Sr)} .

Moreover, the function T0 is decreasing, T0(Sℓ) = τℓ, and T0(Sr) ∈ ]τr, τℓ[.
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Proof. We define the function:

G(T , S) = G(T , S) − T =
1

a2 − j2

(

j2 (T − τr) + p(T , S) − p(τr, Sr)
)

,

that satisfies:

∂T G =
1

a2 − j2

(

j2 + ∂τp(T , S)
)

, ∂2
T T G =

∂2
ττp(T , S)

a2 − j2
> 0 , ∂SG =

∂Sp(T , S)

a2 − j2
> 0 .

Consequently, for all S ∈ ]Sℓ, Sr[, the function (T 7→ G(T , S)) is strictly convex on [τr, τℓ] and it
satisfies:

G(τr, S) =
1

a2 − j2

(

p(τr, S) − p(τr, Sr)
)

< 0 , G(τl, S) =
1

a2 − j2

(

p(τℓ, S) − p(τℓ, Sℓ)
)

> 0 .

Consequently, the function (T 7→ G(T , S)) has one and only one zero in the closed interval
[τr, τℓ], and this zero belongs to the open interval ]τr, τℓ[. We let T0(S) denote this zero. The
strict convexity of (T 7→ G(T , S)) yields ∂T G(T0(S), S) > 0.

The same kind of analysis shows that for S = Sℓ, the function (T 7→ G(T , Sℓ)) vanishes for
T = τℓ and has no other zero in the closed interval [τr, τℓ]. Using Lax’ shock inequalities (45),
the derivative ∂T G(τℓ, Sℓ) is positive. We define T0(Sℓ) = τℓ.

For S = Sr, the function (T 7→ G(T , Sr)) vanishes for T = τr, and using Lax’ shock
inequalities (45) we have ∂T G(τr, Sr) < 0. We also have G(τℓ, Sr) > 0, so G(·, Sr) has one and
only one zero T0(Sr) in the interval ]τr, τℓ[. We also have ∂T G(T0(Sr), Sr) > 0.

We have thus constructed the function T0 on the closed interval [Sℓ, Sr]. The regularity of
T0 follows from the implicit function theorem, because we have seen that for all S ∈ [Sℓ, Sr], the
derivative ∂T G(T0(S), S) is positive (and in particular nonzero). To show that T0 is decreasing,
we differentiate the relation G(T0(S), S) = 0 with respect to S:

∂T G(T0(S), S)
︸ ︷︷ ︸

>0

T ′
0 (S) + ∂SG(T0(S), S)

︸ ︷︷ ︸

>0

= 0 ,

so the conclusion follows.

We now turn to the proof of theorem 5.

Proof of theorem 5. We proceed as in the proof of theorem 2, and first reduce the shock profile
equation. We wish to solve the ODE:







(ρ (u − σ))′ = 0 ,

(ρ u (u − σ) + π)′ = 0 ,

(ρS (u − σ))′ = ρ (τ − T )2
(
a2 + ∂τp(T , S)

)
,

(ρ T (u − σ))′ = ρ (τ − T )
(
θ(T , S) + (T − τ) ∂Sp(T , S)

)
,

(48)

with the asymptotic conditions (46). Integrating once with respect to ξ, and using the Rankine-
Hugoniot conditions (43), the first two equations of (48) read:

{

u(ξ) = j τ(ξ) + σ ,

τ(ξ) = G(T (ξ), S(ξ)) ,
(49)

where G is given by lemma 3. Recall that π is defined by (34). We can then eliminate τ and
u in the third and fourth equations of (48). These manipulations yield the following reduced
system of ODEs:

(
T
S

)′

=
G(T , S) − T

j G(T , S)

(
θ(T , S) + (T − G(T , S)) ∂Sp(T , S)

(G(T , S) − T ) (a2 + ∂τp(T , S))

)

. (50)
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We want to construct a global solution to (50) with the asymptotic conditions lim+∞(T , S) =
(τr, Sr) and lim−∞(T , S) = (τℓ, Sℓ).

We let F(T , S) denote the vector field of the ODE (50), that is:

F(T , S) =
G(T , S) − T

j G(T , S)

(
θ(T , S) + (T − G(T , S)) ∂Sp(T , S)

(G(T , S) − T ) (a2 + ∂τp(T , S))

)

.

Using lemma 3, F is well-defined and C∞ on an open neighborhood U of the rectangle Q =
[τr, τℓ] × [Sℓ, Sr], and a has been chosen such that a2 + ∂τp is positive on Q. Then the critical
points of (50) in Q are {(τr, Sr)} and the curve {(T0(S), S) , S ∈ [Sℓ, Sr]}, see lemma 4. The
curve of critical points divides the square Q in two sub-regions:

Q1 = {(T , S) ∈ [τr, τℓ] × [Sℓ, Sr] | T ≤ T0(S)} , Q2 = {(T , S) ∈ [τr, τℓ] × [Sℓ, Sr] | T ≥ T0(S)} ,

see figure 4. In Q1 one has G(T , S) ≤ T , and in Q2 one has G(T , S) ≥ T .

S

T

Sr

τr

Sℓ

τℓT0(Sr)

T = T0(S)

Q1

Q2

Figure 4: The square Q = [τr, τℓ] × [Sℓ, Sr], and the subsets Q1, Q2.

Let us now prove that the ODE (50) has a heteroclinic orbit that connects the critical points
(τℓ, Sℓ) and (τr, Sr), and that takes its values in the compact region Q1. We first compute the
Jacobian matrix of F at (τℓ, Sℓ):

DF(τℓ, Sℓ) =
θ(τℓ, Sℓ)

j (a2 − j2) τℓ

(
j2 + ∂τp(τℓ, Sℓ) ∂Sp(τℓ, Sℓ)

0 0

)

.

As already mentionned earlier, the quantity j2 + ∂τp(τℓ, Sℓ) is positive because of Lax’ shock
inequalities (45). We can therefore apply the unstable manifold theorem: there exists a maximal
solution (T , S) of (50) that is defined on an open interval of the form ] − ∞, ξM [, that is not
constant, and whose graph is tangent to the half-line (τℓ, Sℓ) + R

− (1, 0) at −∞. It remains to
show that this solution is defined on all R (that is ξM = +∞) and tends to (τr, Sr) at +∞. We
first observe that G(T (ξ), S(ξ)) − T (ξ) does not vanish, and using the asymptotic behavior of
(T , S) at −∞, we get G(T (ξ), S(ξ)) < T (ξ) for all ξ. Moreover, for all ξ in a neighborhood
of −∞ one has a2 + ∂τp(T (ξ), S(ξ)) > 0, and therefore S′(ξ) > 0. This shows that for all
ξ in a neighborhood of −∞, (T (ξ), S(ξ)) belongs to the interior of the compact region Q1.
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Furthermore, the function T is decreasing and, as long as (T (ξ), S(ξ)) belongs to Q1, S is
increasing.

Let us assume that there exists a ξ0 ∈ ] − ∞, ξM [ such that (T (ξ0), S(ξ0)) belongs to the
boundary of Q1. In that case, there is no loss of generality in assuming that ξ0 is minimal for
this property. We thus have S(ξ0) > Sℓ and T (ξ0) < τℓ. Moreover, the orbit (T (ξ), S(ξ)) can
not reach the curve Q1 ∩ Q2 because this curve is made of critical points for (50), and for the
same reason, it can not reach the point (τr, Sr). Consequently, the point (T (ξ0), S(ξ0)) belongs
either to {τr}× ]Sℓ, Sr[ or to ]τr,T0(Sr)[×{Sr}, see figure 4. It is time to use the conservation
of the total energy (36). More precisely, we observe that the quantity:

H(T , S) =
j2 − a2

2
G2(T , S) +

a2

2
T + ε(T , S) + T p(T , S) ,

is conserved for the solutions of (50), as can be shown by repeated applications of the chain
rule. In particular, we get:

H(T (ξ), S(ξ)) = H(τℓ, Sℓ) =
j2

2
τ2
ℓ + ε(τℓ, Sℓ) + τℓ p(τℓ, Sℓ) . (51)

Using the Rankine-Hugoniot conditions (43), we observe that H(τℓ, Sℓ) = H(τr, Sr). If the point
(T (ξ0), S(ξ0)) belongs to {τr}× ]Sℓ, Sr[, we get H(τr, S(ξ0)) = H(τr, Sr) so by Rolle’s theorem,
there exists some S1 ∈ ]S(ξ0), Sr[ such that ∂SH(τr, S1) = 0. We compute:

∂SH(τr, S1) = θ(τr, S1)
︸ ︷︷ ︸

>0

+ (τr − G(τr, S1))
︸ ︷︷ ︸

>0

∂Sp(τr, S1)
︸ ︷︷ ︸

>0

,

which is a contradiction. The only possibility left is (T (ξ0), S(ξ0)) ∈ ]τr,T0(Sr)[×{Sr} which
yields H(T (ξ0), Sr) = H(τr, Sr) so by Rolle’s theorem, there exists some T1 ∈ ]τr,T (ξ0)[ such
that ∂T H(T1, Sr) = 0. However, we compute:

∂T H(T1, Sr) = (a2 + ∂τp(T1, Sr))
︸ ︷︷ ︸

>0

(T1 − G(T1, Sr))
︸ ︷︷ ︸

>0

,

which is another contradiction. We can conclude that for all ξ, (T (ξ), S(ξ)) belongs to the
interior of the compact set Q1, and the solution is therefore defined on all R. Both T and S
are monotone and bounded so they have a limit at +∞. This asymptotic state (τ+, S+) belongs
to the compact set Q1, is a critical point of (50), satisfies H(τ+, S+) = H(τℓ, Sℓ) = H(τr, Sr),
S+ > Sℓ, and τ+ < τℓ. The only possibility is (τ+, S+) = (τr, Sr).

To complete the proof, it remains to show that τ and u, that are given by (49) are monotone.
Using τ = G(T , S), we compute:

τ ′ = ∂T G(T , S)T ′ + ∂SG(T , S)S′

=
a2 + ∂τp(T , S)

a2 − j2
T ′ +

∂Sp(T , S)

a2 − j2
S′

=
(G(T , S) − T ) (a2 + ∂τp(T , S)) θ(T , S) ∂Sp(T , S)

(a2 − j2) j G(T , S)
< 0 .

It is clear from (49) that u is also decreasing.

The second condition in (47) might be unnecessary to prove the existence of smooth shock
profiles. However, it simplifies the proof because the flux F of the ODE (41) can be then defined
on the whole rectangle Q.
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3.3 Numerical approach

The objective of this section is similar to the one of section 2.3, namely to illustrate numerically
the convergence of the solutions of the relaxation system towards the solutions of the Euler
equations. Here of course, the Euler and relaxation systems to be considered are (31) and (33),
while the theoretical convergence has now to be understood in the sense of theorems 4 and 5.
For that we will again consider several values of λ in (33). On the basis of this work and as
in section 2.3, we will eventually recover a relevant numerical strategy for approximating the
solutions of (31) which is free of the source term in (33) by formally taking λ = +∞ (see [3]).

3.3.1 Numerical procedure

Here again, we begin by introducing two condensed forms for the relaxation model and the
Euler equations. Since no confusion is possible, we use the same notations but with a different
meaning. More precisely, we set

∂tu + ∂xf(u) = 0, (52)

with u = (ρ, ρu, ρE)T and f(u) = (ρu, ρu2 + p, ρEu + pu)T for the Euler system (31), and

∂tU + ∂xF(U) = λR(U), (53)

with U = (ρ, ρu, ρΣ, ρT )T and F(U) = (ρu, ρu2 +π, ρΣu+πu, ρT u)T for the relaxation system.
It is important to notice at this stage that the total energy Σ is prefered to the entropy S for
defining U. In other words, Σ is now considered as a main unknown of the relaxation system
(33)-(36), and S has to be understood as a function of U. Actually, this choice is not always
well defined since easy calculations allow to obtain that

∂SΣ = θ(T , S) + ∂Sp(T , S)(T − τ),

which means that the sign of ∂SΣ may change so that Σ cannot be inverted with respect to S
generally speaking. However, it is expected that this change of variable is admissible close to
the equilibrium T = τ (recall that the temperature θ is positive). This will be sufficient for our
numerical purpose and the proposed definition of U will allow to ensure that the total energy
is conserved at the discrete level.

Let us now describe the numerical strategy, which is actually similar to the one in section
2.3. Only few things are going to change, but we keep in mind that u and U got a new def-
inition in the present section. Define u0

j from the initial data u0 by formula (21) and U0
j at

equilibrium from u0
j by

U0
j =

(
u0

j

(ρT )0j = 1

)

.

Assuming as given un
j and Un

j naturally defined by

Un
j =

(
un

j

(ρT )nj

)

,

the definition of Un+1
j is now proposed in two steps.

First step : evolution in time (tn → tn+1−)
In this step, we solve (53) with λ = 0. This system is strictly hyperbolic with the follow-
ing eigenvalues : λ1(U) = u − aτ , λ2(U) = u and λ3(U) = u + aτ , provided that a > 0
and ρ > 0. The corresponding fields are linearly degenerate, so that once more the solution
U(x, t) = U(x

t ;UL,UR) of the Rieman problem






∂tU + ∂xF(U) = 0, x ∈ R, t > 0,

U(x, 0) =

{
UL if x < 0,
UR if x > 0.

(54)
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is explicitly known, and given in theorem 6 below. This justifies the use of the Godunov method
for defining the sequence {Un+1−

j }j∈Z. Under the CFL condition (22), we get the same update
formula (24) and (25) but with a different definition of U and F. Concerning the definition of
the parameter a, we propose to take into account at the discrete level the stability condition
(40) as follows :

a2 > max
j∈Z

(−∂τp(τn
j , Sn

j )). (55)

This value is taken to be constant in space (i.e. at each interface) but is recomputed at each
intermediate time tn. Here again, we refer the reader to [3], [2] for a more detailed analysis of
this condition.

We now give the solution of the Riemann problem (54) :

Theorem 6.
Let UL and UR two constant states such that ρL > 0 and ρR > 0. Assume that a > 0 satisfies
the condition

λ1(UL) = uL − aτL < u∗ < λ3(UR) = uR + aτR,

u∗ = 1
2 (uL + uR) + 1

2a(πL − πR).
(56)

Then, the self-similar solution (x, t) → U(x/t;UL,UR) of the Riemann problem (54) is made
of four constant states separated by three contact discontinuities :

U(x/t;UL,UR) =







UL if x
t < λ1(UL),

U∗
L if λ1(UL) < x

t < λ2(U
∗
L),

U∗
R if λ2(U

∗
R) < x

t < λ3(UR),
UR if λ3(UR) < x

t ,

with λ2(U
∗
L) = λ2(U

∗
R) = u∗. The intermediate states U∗

L and U∗
R are obtained from the

following relations :

τ∗
L = τL + (u∗ − uL)/a, τ∗

R = τR − (u∗ − uR)/a,
u∗

L = u∗
R = u∗,

Σ∗
L = ΣL + (πLuL − π∗u∗)/a, Σ∗

R = ΣR − (πRuR − π∗u∗)/a,
T ∗

L = TL, T ∗
R = TR.

In addition, we have ρ∗L = 1/τ∗
L > 0 and ρ∗R = 1/τ∗

R > 0.

The proof of this result is similar to the one of theorem 3.

Second step : source term (tn+1− → tn+1)
We now solve

∂tU = λR(U).

By the form of R, ρ, ρu and ρΣ are constant in this step and ρT evolves according to

∂t(ρT ) = λρ (τ − T )
(
θ(T , S) + (T − τ) ∂Sp(T , S)

)
. (57)

In order to solve this ordinary differential equation, we first have to express the right-hand side
as a function of U, which may raise some difficulties in the general setting (see the discussion
at the beginning of the section). However, we will see below that this can be easily done in the
case of a perfect gas equation of state. In order to convince the reader that this is not really a
restriction, let us recall our objectives in this section. First, to illustrate the property that when
λ → +∞, the solution of (33)-(36) goes to the solution of (31) : for that a perfect gas equation
of state is to be considered. Then, to recover an algorithm for approximating the solutions of
(31) which is free of the source term in (33) and then of the ordinary differential equation (57).
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But since this method no longer needs to invert Σ with respect to S, it can be used for any
equation of state.
Let us then consider a perfect gas equation of state ε(τ, S) = τ1−γ exp(S/Cv) with an adiabatic
coefficient γ and a specific heat Cv. Easy calculations successively yield

p(T , S) = (γ − 1)T −γ exp(S/Cv), θ(T , S) =
T 1−γ

Cv
exp(S/Cv),

(T − τ) ∂Sp(T , S) =
(γ − 1)(T − τ)

T θ(T , S),

and

θ(T , S) + (T − τ) ∂Sp(T , S) =
(
1 + (γ − 1)

(ρT − 1)

ρT
)
θ(T , S).

Then, it remains to express θ(T , S) with respect to U. By the definition (35) and the relation
ε(τ, S) = Cvθ(T , S), we easily get

θ(T , S) =
Σ − u2

2
− a2

2
(T − τ)2

Cv

(
1 + (γ − 1)

(ρT − 1)

ρT
)
.

Finally, the ordinary differential equation (57) reads in this case

∂t(ρT ) =
λ

Cv
(1 − ρT )

(
Σ − u2

2
− a2

2ρ2
(ρT − 1)2

)
,

with initial condition ρT (tn+1−) = (ρT )n+1−
j . Recall that ρ, u and Σ are constant in this

second step. Then, this ordinary differential equation has ”separated variables” and can be
solved explicitly between times t = tn+1− and t = tn+1− + ∆t. From a numerical point of view,
we are thus able to define (ρT )n+1

j for all j ∈ Z when simply setting (ρT )n+1
j = ρT (tn+1−+∆t).

Of course, we have also






ρn+1
j = ρn+1−

j ,

(ρu)n+1
j = (ρu)n+1−

j ,

(ρΣ)n+1
j = (ρΣ)n+1−

j ,

(58)

and

Un+1
j =








ρn+1
j

(ρu)n+1
j

(ρΣ)n+1
j

(ρT )n+1
j








=

(
un+1

j

(ρT )n+1
j

)

.

This completes the proposed algorithm for finite values of λ. As in section 2.3, it is however
natural to take λ = +∞ in this numerical strategy so that the second step simply reduces to







ρn+1
j = ρn+1−

j ,

(ρu)n+1
j = (ρu)n+1−

j ,

(ρΣ)n+1
j = (ρΣ)n+1−

j ,

(ρT )n+1
j = 1,

and no longer depends on R(U). We refer the reader to [3] and the references therein for more
details on this strategy and the stability properties it enjoys.
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3.3.2 Numerical experiments

Again, we consider three typical Riemann initial data

u0(x) =

{
uL if x < 0,
uR if x > 0,

(59)

where the initial states uL and uR are chosen as follows :

Test 4 (shock-contact-shock)

uL : ρL = 0.9 uL = 3 pL = 2

uR : ρR = 0.5 uR = 2 pR = 1

Test 5 (rarefaction-contact-rarefaction)

uL : ρL = 1 uL = 1 pL = 2

uR : ρR = 2 uR = 2 pR = 2

Test 6 (rarefaction-contact-shock)

uL : ρL = 1 uL = 0 pL = 1
uR : ρR = 0.125 uR = 0. pR = 0.1

The corresponding solutions develop shocks, contact discontinuities and rarefaction waves. With-
out restriction, we take γ = 1.4 and Cv = 1. Figures 5, 6 and 7 plot the profiles of ρ, u, p and
ρT for several values of λ. The mesh is made of 300 points. Here again, we observe that when
λ becomes large, ρT becomes close to 1 and the density, velocity and pressure go to the exact
solution of the Euler system. This illustrates numerically the convergence theorems 4 and 5
established in section 3.
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Figure 5: Test 4 : ρ (left top), u (right top), p (left bottom) and ρT (right bottom) at time 0.1
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