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1. Introduction

We are interested in deriving schemes having some ‘well-balanced’ and ‘asymptotic
preserving’ properties for the approximation of a nonlinear hyperbolic system with
source term

∂tU + ∂xF(U) = S(U), x ∈ R, t > 0, (1.1)

U(x, t) ∈ Ω ⊂ Rn. First, we say that a scheme is well-balanced if it preserves, in
some sense which has to be precised, stationary solutions of (1.1) which by definition
satisfy

d

dx
F(U) = S(U). (1.2)

Now, assuming that in (1.1), the source S(U) = S(U;α) depends on some scalar
parameter α in such a way that the solution U = Uα depends smoothly on α,
the solutions of system (1.1) may have some typical asymptotic long-time behavior
as α → ∞, and we want the scheme to preserve in some sense this behavior.
The property will then be refered to as asymptotic preserving. We will construct
below approximate Riemann solvers leading to Godunov-type schemes having this
property when applied to the model problem of gas dynamics equations with gravity
and friction, and α will be a friction parameter.

The problem of deriving schemes that work uniformly well with respect to a pa-
rameter which can become large has been often addressed to (in particular for the
transition from kinetic to hydrodynamic equations, see Ref. 8 for example). Let us
emphasize that the question is not only linked to the presence of stiff source terms.
Indeed, a scaling wrt. the time variable will also be introduced, so that the limit
behavior is governed by a reduced system, as we will see in section 2.2 below. Such
problems have already been analyzed in other contexts (for the transport equation
in the diffusive limit in Ref. 28 for instance, see also Ref. 31). Before we focus on our
model problem, we mention several recent works related to the subject of preserving
equilibrium and asymptotic properties in the case of a diffusive limit system: first we
mention the pioneering papers Ref. 25 and Ref. 27, which underline the importance
of the asymptotics and analyze the problem in the semi-discrete setting. More re-
cently, Ref. 5 considers the same model problem as we do, but in the barotropic case
and without gravity. We also mention some contributions for deriving asymptotic
preserving and well balanced schemes for other model equations such as Ref. 26 for
multiscale kinetic equations, Ref. 18, 19 for the one-dimensional Goldstein-Taylor
system, for radiative transfer models: Ref. 20, 7 6, 3 and we mention the recent
paper Ref. 12 where more references can be found.

The outline of the paper is as follows. In the next section, we give a precise
example of what we mean by ‘asymptotic behavior’ on the problem of gas dynamics
equations with gravity and friction; we present the model in both the Eulerian and
Lagangian frames and begin by computing the possible stationary solutions before
we study the asymptotic behavior. In section 3, we recall the concept of simple
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approximate Riemann solver for (1.1) introduced in Ref. 13, 15, we precise the
notions of discrete equilibrium and well-balanced numerical scheme in this setting,
then we apply the methodology to the model example of the gas dynamics equations
with friction and gravity terms in Lagrangian coordinates. In section 4, we derive
the scheme for the Euler system and we assess the well-balanced and asymptotic
preserving properties of the resulting scheme. In section 5, following Ref. 9 and
Ref. 10, 11, we introduce a larger relaxation system with a so called potential and
derive a relaxation scheme for the Euler system which is shown to coincide with the
previous one, and this other point of view enlights some nice features of the scheme.
At last we provide some numerical illustrations in section 6.

Let us now focus on the problem of gas dynamics equations with gravity and
friction. It is an illustrative example and for that reason, we present the model with
some details.

2. Model problem: gas dynamics equations with gravity and
friction

Let us consider the gas dynamics equations with gravity and friction. In Eulerian
coordinates, the system writes

∂t%+ ∂x(%u) = 0,

∂t(%u) + ∂x(%u2 + p) = %(g − αϕ(u)),

∂t(%e) + ∂x((%e+ p)u) = %(gu− αψ(u)),

(2.1)

where ϕ(u) and ψ(u) model friction terms and α > 0 is some constant coefficient
which can become very large; g is a gravity constant. The functions ϕ(u) and ψ(u)
satisfy ϕ(0) = ψ(0) = 0, ψ′(0) = 0, ϕ increasing. In what follows, we will mainly
consider the commonly used friction terms

ϕ(u) = |u|χu,

ψ(u) = a|u|χ+2, 0 ≤ a ≤ 1,
(2.2)

with χ ≥ 0, χ = 0 for a linear friction or χ = 1 for a quadratic friction term and a

is some constant. A frequently encountered case when studying compressible flow
is a = 1, then ψ(u) = ϕ(u)u. We will also consider the case ψ(u) = aϕ(u)u with
a < 1. The energy e satisfies e = ε+ u2/2, ε is the internal energy and the pressure
law p = p(%, ε) is a given function satisfying some usual assumptions; p will also be
expressed either in terms of (τ, ε), p = p̌(τ, ε) (with τ = 1

% the specific volume), or
in terms of (τ, η), η the entropy, p = p̃(τ, η).

It will be interesting, for the derivation of our numerical scheme, to write the
system (2.1) in Lagrangian coordinates, because the computations are known to be
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much easier. Denoting by m the mass variable, the Lagrangian formulation writes
∂tτ − ∂mu = 0,

∂tu+ ∂mp = g − αϕ(u),

∂te+ ∂m(pu) = gu− αψ(u).

(2.3)

Recall that, denoting by η the mathematical specific entropy (-η is the physical
specific entropy) which satisfies

−Tdη = dε+ pdτ

where T is the temperature, we obtain for a smooth solution of (2.1) the equation

∂t(%η) + ∂x(%ηu) = −α
T
%(uϕ(u)− ψ(u)), (2.4)

while for a smooth solution of (2.3), we get

∂tη = −α
T
α(uϕ(u)− ψ(u)) (2.5)

and for (2.2), −T∂tη = (1−a)α|u|χ+2. In particular, for a = 1, the friction involves
no entropy dissipation whereas for a = 0 (i.e., for ψ(u) = 0), the whole friction is
transformed into internal energy.

2.1. Stationary solutions

Let us consider stationary solutions of system (2.3). They are characterized by

du
dm = 0,

dp
dm = g − αϕ(u),

d
dm (pu) = gu− αψ(u)

(2.6)

hence the velocity u is constant: u = u. In the lines below, we will also note the
quantities which should be constant by overlining them. On the one hand, the
equations {

u = 0,
dp
dm = g

(2.7)

provide equilibrium stationary solutions. On the other hand, if u 6= 0, we must have

ψ(u) = uϕ(u),

for all u. Thus, if a 6= 1, there is no stationary solution with a non zero velocity. If
a = 1, dp

dm is again constant and solving the system
u = u,

dp
dm = g − αϕ(u)

(2.8)
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provides all possible stationary solutions of (2.3) (note that formula (2.8) holds in
all cases, but if u 6= 0, it supposes a = 1).

For Euler system (2.1), stationary solutions are characterized by

d
dx (%u) = 0,

d
dx (%u2 + p) = %(g − αϕ(u)),

d
dx ((%e+ p)u) = %(gu− αψ(u)).

Hence %u is now constant. Again, if u = 0, solving{
u = 0,
dp
dx = %g

(2.9)

provides a classical equilibrium stationary solution of (2.1) where the gravity term
balances the pressure gradient. We now focus on stationary solutions satisfying
moreover u = u constant. If u 6= 0, we must have % = % constant and

dp
dx = %(g − αϕ(u)),

%u dεdx + u dpdx = %(gu− αψ(u))
(2.10)

and thus 
dp
dx = %(g − αϕ(u)),

u dεdx = α(uϕ(u)− ψ(u)).
(2.11)

If ψ(u) = ϕ(u)u, we get dε
dx = 0 and ε = ε,

p = p(%, ε) = p.

Thus if a = 1, we obtain a constant stationary solution of (2.1) given by
% = %, ε = ε,

u = ϕ−1(g/α).
(2.12)

For a < 1,we get by (2.10) a non trivial equation for ε = ε(x)

dε

dx
= α(ϕ(u)− ψ(u)

u
).

Then it yields that, if a < 1, stationary solutions with constant u = u 6= 0 are such
that ε grows linearly in the domain (let us pass over the problem of boundary in
silence). For instance, in the case of an ideal gas p = (γ − 1)%ε, (2.11) yields

dε

dx
=

1
γ − 1

(g − αϕ(u)) = α(ϕ(u)− ψ(u)
u

)
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and u satisfies

g = α(γϕ(u)− (γ − 1)
ψ(u)
u

) = α(γ − (γ − 1)a)ϕ(u).

The resulting stationary solution is thus given by
% = %,

u = ϕ−1( gα
1

1+(γ−1)(1−a) )
dε
dx = α(1− a)ϕ(u)

(2.13)

with

ϕ−1(v) = |v|
χ
χ+1 v.

The friction term with ψ < uϕ naturally induces an increase of internal energy.

Remark 2.1. Stationary solutions for Lagrange formulation are in correspondance
with transport waves solution for Euler, i.e. u = u constant, and %, ε functions
of x − ut. For such a transport wave solution, all convection terms of the form
Dt. = ∂t. + u∂x. vanish. There remains only when a = 1, ∂xp = %(g − αϕ(u)),
corresponding to (2.8). When u = 0, we recover the steady solutions (2.9). We
can have a constant state (2.12) with u 6= 0, then ∂xp = 0, and in Lagrangian
formulation, it is a special case of (2.8) with p = p constant.

The above energy increasing (in space) stationary solution for Euler (see (2.13)
is not stationary in a Lagrangian frame; u, % are constant but the energy increases
(with time) since it satisfies ∂tε = α(uϕ− ψ) = αu(1− a)ϕ(u). �

2.2. Formal study of the asymptotic behavior

Let us consider first the asymptotic behavior of the solutions of system (2.3) or of
system (2.1) as the friction parameter α → +∞. Let us start with (2.3). Assume
that we can write some asymptotic expansions in powers of 1

α :
τ = τ0 + 1

ατ
1 + . . . ,

u = u0 + 1
αu

1 + . . . ,

ε = ε0 + 1
αε

1 + . . .

(2.14)

Together with the pressure law p = p̃(τ, ε), one finds

p = p0 +
1
α
p1 + . . . , p0 = p(τ0, ε0)

whereas

e = ε+
1
2
u2 = e0 +

1
α
e1 + . . . , e0 = ε0 +

1
2

(u0)2.
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Substituting in (2.3) the expansions for τ , u and ε, we get
∂tτ

0 − ∂mu0 + 1
α (∂tτ1 − ∂mu1) + · · · = 0,

∂tu
0 + ∂mp

0 + 1
α (∂tu1 + ∂mp

1) + · · · = −αϕ(u0) + g − ϕ′(u0)u1 + . . . ,

∂te
0 + ∂m(p0u0) + 1

α (∂te1 + ∂m(pu)1) + · · · = −αψ(u0) + gu0 − ψ′(u0)u1 + . . .

Looking at the terms of order O(α), we get

ϕ(u0) = 0, ψ(u0) = 0,

which yields u0 = 0, whereas zeroth order terms (with order O(1)) write
∂tτ

0 − ∂mu0 = 0,

∂tu
0 + ∂mp

0 = g − ϕ′(u0)u1,

∂te
0 + ∂m(p0u0) = gu0 − ψ′(u0)u1

and since u0 = 0, together with ψ′(0) = 0, we get
τ0 = τ0(m),

∂mp
0 = g − ϕ′(0)u1,

ε0 = ε0(m).

Thus p0 ≡ p̌(τ0(m), ε0(m)) depends only on m and when χ = 0 (linear friction),
ϕ′(0) = 1, thus in this case we obtain

τ0 = τ0(m), ε0 = ε0(m), p = p0(m)

dp0

dm = g − u1.

When χ > 0, ϕ′(0) = 0 and we get
τ0 = τ0(m), ε0 = ε0(m),

dp0

dm = g,

which implies that the initial data should be ‘well prepared’ (if not, we have a
boundary layer in time). To conclude this formal argument, it is natural to assume
that

u→ u0 = 0 as α→ +∞. (2.15)

Let us now analyze the long time behavior of the solutions of (2.3) for large
friction. We first perform a change of variables: setting β = α

1
χ+1 , we define

t = βs, vβ(m, s) = βu(m, t), τβ(m, s) = τ(m, t), εβ(m, s) = ε(m, t). (2.16)
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With this scaling, we can indeed study the long time behavior of the solution of
(2.3) for high friction since we note that the scaling for the time variable and the
velocity are coherent with (2.15) if we let α → ∞. Using (2.2), system (2.3) now
writes (dropping the subscript β)

∂sτ − ∂mv = 0,

1
β2 ∂sv + ∂mp = g − ϕ(v),

∂sε+ 1
2β2 ∂sv

2 + ∂m(pv) = gv − ψ(v),

(2.17)

together with p = p̃(τ, ε). The terms of order 0 wrt. 1
β , should vanish, leading to

∂sτ − ∂mv = 0,

∂mp = g − ϕ(v),

∂sε+ ∂m(pv) = gv − ψ(v).

(2.18)

Thus (τ, ε) satisfies the following system{
∂sτ − ∂mv = 0,
∂sε+ ∂m(pv) = gv − ψ(v),

(2.19)

where v = v(τ, ε) is given by the second equation in (2.18), which for a linear friction
(χ = 0) writes

v = g − ∂mp,with p = p̌(τ, ε),

and system (2.19) in that case becomes
∂sτ + ∂2

mmp = 0,

∂sε+ 2(1− a)g∂mp+ a(∂mp)2 − ∂m(p∂mp) = (1− a)g2.

Now if moreover a = 1, we get
∂sτ + ∂2

mmp = 0,

∂sε− p∂2
mmp = 0

v = g − ∂mp, p = p̌(τ, ε).

(2.20)

Let us consider now the asymptotic behavior of the solutions of the system
writen in Eulerian coordinates with a similar scaling t = βs, v = βu as in (2.16).
Then (2.1) becomes

∂s%+ ∂x(%v) = 0,

1
β2 (∂s(%v) + ∂x(%v2)) + ∂xp = %(g − ϕ(v)),

1
2β2 (∂s(%v2) + ∂x(%v3)) + ∂s(%ε) + ∂x((%ε+ p)v) = %(gv − ψ(v)).

(2.21)
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Again, the zeroth order terms wrt. 1
β should vanish

∂s%+ ∂x(%v) = 0,

∂xp = %(g − ϕ(v)),

∂s(%ε) + ∂x((%ε+ p)v) = %(gv − ψ(v))

and (%, ε) satisfies 

∂s%+ ∂x(%v) = 0,

∂s(%ε) + ∂x((%ε+ p)v) = %(gv − ψ(v))

v = ϕ−1(g − 1
%∂xp), p = p(%, ε).

(2.22)

If a = 1, i.e. ψ = uϕ, the energy equation can be simplified and we get

∂s%+ ∂x(%v) = 0,

∂s(%ε) + ∂x(%εv) + p∂xv = 0,

v = ϕ−1(g − 1
%∂xp), p = p(%, ε),

(2.23)

and assuming moreover a linear friction, the energy equation writes

∂s(%ε) + ∂x(%εv)− p∂x(
1
%
∂xp) = 0.

in this case (linear friction and a = 1), (2.23) becomes, with p = p(%, ε),

∂s%+ ∂x(%v) = 0,

∂s(%ε) + ∂x(%εv)− p∂x( 1
%∂xp) = 0,

v = g − 1
%∂xp, p = p(%, ε).

(2.24)

This is the exact analog of (2.20). Indeed, by the change of frame from Eulerian to
Lagrangian coordinates, the first equation in (2.24) gives (after the same scaling)
∂sτ − ∂2

mmp = 0, idem for the second equation.

Remark 2.2. In the barotropic case, Euler system writes
∂t%+ ∂x(%v) = 0,

∂t%u+ ∂x(%u2 + p) = %(g − αϕ(u)), p = p(%),
(2.25)
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and we get (after scaling) a nonlinear parabolic equation for the zeroth order terms
in % 

∂s%+ ∂x(%v) = 0,

v = ϕ−1(g − 1
%∂xp),

(2.26)

with now p = p(%). In particular for a linear friction, v is given by

v = g − 1
%
∂xp

we find a Darcy-type model

∂

∂s
%+ g

∂

∂x
%− ∂2

∂x2
p(%) = 0. (2.27)

In the Lagrangian frame, the analogous of (2.27) (for linear friction) writes
∂sτ + ∂2

mm(p) = 0,

v = g − ∂mp,
(2.28)

with now p = p̃(τ). In this barotropic case, there are several existing theoretical
results30,23,24 justifying the formal analysis above. �

There would remain to study (2.22) and to extend the theoretical results relative
to the barotropic case to the full system with energy. Thus two natural theorical
questions arise: is (2.22) well-posed? and, shortly speaking, does (2.21) converge
to this generalized Darcy model (2.22) as α→ +∞? with similar questions for the
Lagrangian case. Answering these questions is beyond the scope of the present work
which is rather devoted to the numerical approximation of the problem. We will
construct a (consistent, stable) scheme for system (2.1) which in the limit α→∞,
and after the same scaling (2.16), gives a (consistent, stable) scheme for the limit
system (2.22), this is what is usually called asymptotic preserving property (AP).
In order to do that, we use the simpler Lagrangian frame (2.3) and (2.20) and come
back to the Euler setting following Ref. 15. Moreover, concerning the asymptotic
property, we emphasize that the scaling we have performed is compatible with the
change of frame Euler ↔ Lagrange in that the total derivative is relevant at both
scales, since ∂t + u∂x becomes after scaling ∂s + v∂m.

Besides the references already given, we mention some recent work precisely
related to the subject. In Ref. 5, the authors consider the barotropic case (2.25)
without gravity: the approach uses a classical finite volume scheme together with
the upwinding of source terms involving the reconstruction of interface variables
while preserving Darcy steady states i.e. solutions of (2.27) (where g is set to zero
and thus ∂xp = −%v). It supposes, in order to prove the AP property, a restrictive
hypothesis for the basis scheme which is not valid for all schemes.
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We emphasize that our approach using simple approximate Riemann solvers and
Godunov-type schemes22 is very straightforward, and we begin by presenting this
approach because of its relative simplicity.

However, it is interesting to see that the resulting scheme can be obtained from
a quite different approach, using first ideas introduced in Ref. 9 for the Euler equa-
tion with gravity in the case without friction (α = 0), together with relaxation
schemes (note that the relation between approximate Riemann solvers and relax-
ation schemes is well established in Ref. 29, see Ref. 4). The authors in Ref. 9
derive a well-balanced scheme for preserving stationary solutions with zero velocity
∂xp = −%g (satisfying (2.9)). In the same spirit, we introduce a so called potential,
and derive a relaxation scheme as developed in Ref. 11, for a larger system which
is in conservative form and the scheme now relies on an exact Riemann solver for
this enlarged system. With this point of view of relaxation schemes, we can un-
derstand how to get the desired properties (entropy, well-balanced, AP), at least
in an heuristic way, since we can use the corresponding properties well-known at
the continuous (PDE) level. Moreover, the ‘equivalence’ between Lagrangian and
Eulerian frame also makes it clear that if the AP property holds in one frame, it
holds in the other, provided the velocities are given consistent definitions.

3. Numerical methodology

The aim of this section is to propose a fairly general strategy to derive a consistent
and asymptotic preserving scheme for the nonlinear system with source term (1.1).
This system is assumed to be hyperbolic and we denote by λk(U), 1 ≤ k ≤ n, the n
real eigenvalues of the Jacobian matrix A(U) = F′(U). We only consider entropy
solutions of (1.1) that is solutions satisfying the entropy inequality

∂tη(U) + ∂xQ(U) ≤ σ(U) (3.1)

with σ(U) = η′(U) · S(U). As is customary, the entropy entropy-flux pair (η,Q) is
such that U 7→ η(U) is convex and Q′(U) = η′(U) · F′(U).
We first review the concept of simple approximate Riemann solver for (1.1) de-
veloped in Ref. 13, 14, 15 following Ref. 22, see also, for a similar approach, the
wave propagation method,2 and the idea of well-balanced numerical scheme (notion
introduced in Ref. 9, 21 and 17). Then, we apply the methodology to the first ex-
ample of the gas dynamics equations with friction and gravity terms in Lagrangian
coordinates (2.3). At last, we assess the well-balanced and asymptotic preserving
properties of the resulting scheme.

3.1. Simple approximate Riemann solvers

Solving the Riemann problem amounts to find the solution of (1.1), (3.1) with the
following piecewise constant initial data

U(x, 0) = U0(x) =
{

UL, x < 0,
UR, x > 0,

(3.2)
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for any given UL and UR in Ω. Unlike the homogeneous case (S(U) = 0), the
exact solution of (1.1)-(3.1)-(3.2) that we denote W(x, t; UL,UR) is no longer self-
similar, as it also occurs for generalized Riemann problem (see Ref. 16). Notwith-
standing, notice that an approximate Riemann solver W̃(x, t; UL,UR) associated
with W(x, t; UL,UR) may be self-similar as in the homogeneous case S(U) = 0. In
this paper, we will focus on simple approximate Riemann solvers of the following
form

W̃(
x

t
; UL,UR) =



U1 = UL,
x
t < λ1,

...
Uk, λk−1 <

x
t < λk, k = 2, .., l,

...
Ul+1 = UR,

x
t > λl,

(3.3)

with Uk and λk = λk(UL,UR), k = 1, .., l, l ≤ n, to be defined (note that we
have also noted by λk the different wave velocities in (3.3) since there will be no
ambiguity with the eigenvalues of the Jacobian). The general setting is treated in
Ref. 15. This approximate Riemann solver is self-similar, then from now on and with
a little abuse in the notations, we identify W̃(x, t; UL,UR) and W̃(xt ; UL,UR). The
influence of the source term S(U) will appear in the definition of the intermediate
states Uk, k = 2, .., l.

Remark 3.1. Note that in (3.3), the intermediate states and velocities will also
depend on the grid size ∆x (and might depend on the time step ∆t) because the
solver ‘incorporates’ the influence of the source term. Indeed one can interpret the
formula for the approximate Riemann solver by first solving an ‘exact’ Riemann
problem where the source term has been discretized as a Dirac measure (following,2

where the source term is ‘replaced by a sum of Delta-function sources’ at cell edges)
with weight the integral of S on a cell:

∫∆x/2

−∆x/2
S(U)dx. Then the solution of this

problem is indeed self-similar but with intermediate states and velocities depending
on ∆x, hence it must be the same for the approximate solver. In the exemple of
Euler system below, this dependence appears explicitly through the choice of ũ = u∗

satisfying (3.31). �

Following Gallice,14,13 a suitable approximate Riemann solver for (1.1) is subject
to the following consistency property.

Definition 3.1. A simple approximate Riemann solver (3.3) is said to be consistent
with the integral form of (1.1) if there exists a function S̃(ξ, τ ; UL,UR) such that
for ∆t,∆x satisfying

max
1≤k≤l

| λk(UL,UR) | ∆t
∆x
≤ 1

2
(3.4)
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we have

F(UR)− F(UL)−∆xS̃(∆x,∆t; UL,UR) =
l∑

k=1

λk(Uk+1 −Uk) (3.5)

with

lim
∆x,∆t→ 0

UL,UR → U

S̃(∆x,∆t; UL,UR) = S(U). (3.6)

Similarly, we introduce the notion of consistency with the entropy inequality (3.1).

Definition 3.2. A simple approximate Riemann solver (3.3) is said to be consistent
with the integral form of (3.1) if there exists a function σ̃(ξ, τ ; UL,UR) such that
for ∆t/∆x satisfying (3.4) we have

q(UR)− q(UL)−∆x σ̃(∆x,∆t; UL,UR) ≤
l∑

k=1

λk(η(Uk+1)− η(Uk)) (3.7)

with

lim
∆x,∆t→ 0

UL,UR → U

σ̃(∆x,∆t; UL,UR) = σ(U). (3.8)

Let us now introduce the points (xj , tn) with xj = j∆x, tn = n∆t, the inter-
faces xj+1/2 = (xj + xj+1)/2 and Un

j the numerical approximation of U(x, tn)
in the cell Cj =]xj−1/2, xj+1/2[. Given a simple approximate Riemann solver
W̃ = W̃(xt ; UL,UR), we consider the two averages

Ũ
−

(UL,UR) =
2

∆x

∫ 0

−∆x
2

W̃(
x

∆t
; UL,UR)dx,

Ũ
+

(UL,UR) =
2

∆x

∫ ∆x
2

0

W̃(
x

∆t
; UL,UR)dx

(3.9)

and define the following update formula

Un+1
j =

1
2

(Un,+

j− 1
2

+ Un,−
j+ 1

2
) (3.10)

with Un,±
j+ 1

2
= Ũ

±
(Un

j ,U
n
j+1) and under the usual CFL condition

max
1≤k≤l

| λk(Un
j ,U

n
j+1) | ∆t

∆x
≤ 1

2

for all j ∈ Z. This approach is very classical in the context of approximate Riemann
solvers (see Ref. 22, 16). Hereafter, such a numerical scheme is said to be Godunov-
type if the consistency property (3.5)-(3.6) is satisfied and entropy satisfying if it
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obeys moreover (3.7)-(3.8).
Introducing the notation

G̃(UL,UR) =
1
2

{
F(UL) + F(UR)−

l∑
k=1

|λk|(Uk+1 −Uk)

}
, (3.11)

we state (see Ref. 13 for the proof):

Proposition 3.1. Let W̃(xt ; UL,UR) be a simple approximate Riemann solver con-
sistent with the integral form of (1.1) in the sense of Definition 3.1 above. Then,
the numerical scheme defined by (3.10) can be written in the following conservative
form:

Un+1
j = Un

j −
∆t
∆x

(Gn
j+ 1

2
−Gn

j− 1
2
) +

∆t
2

(Snj− 1
2

+ Snj+ 1
2
) (3.12)

with Gn
j+ 1

2
= G̃(Un

j ,U
n
j+1) and Snj+ 1

2
= S̃(∆x,∆t; Un

j ,U
n
j+1) for all j ∈ Z.

Formula (3.12) allows a first comment: the usual form of a conservative scheme is
recovered in the absence of source term (S(U) = 0), while in the general setting, the
influence of S(U) is taken into account by means of two interfacial contributions,
namely Snj− 1

2
and Snj+ 1

2
.

Remark 3.2. Note however that if formula (3.12) enables us to recover the con-
servative formulation in the absence of source term, in the presence of these
terms, the real meaningful decomposition writes in the form Gn

j+ 1
2
− ∆x

2 Snj+ 1
2

and

Gn
j− 1

2
+ ∆x

2 Snj− 1
2
, gathering interface flux and part of source (‘interface source’).

Well balanced schemes are usually written with such ‘non conservative’ fluxes, say
Gn
j∓ 1

2 ,±
, where the precise decomposition between flux and source in each of the

two terms Gn
j− 1

2 ,+
and Gn

j+ 1
2 ,−

may take into account some upwinding of the source
as in Ref. 5 (and references therein). �

As far as the entropy inequality is concerned and introducing the notation

Q̃(UL,UR) = 1
2 (Q

(
UL) +Q(UR)

)
− ∆x

4∆t

((
η(UR)− η(Ũ

+
(UL,UR))

)
−
(
η(UL)− η(Ũ

−
(UL,UR))

))
,

(3.13)

we have (see again Ref. 15 for the proof of this result):

Proposition 3.2. Let W̃(xt ; UL,UR) be a simple approximate Riemann solver con-
sistent with the integral form of (3.1) in the sense of Definition 3.2 above.

Then, the numerical scheme defined by (3.10) satisfies the following discrete
entropy inequality

η(Un+1
j ) ≤ η(Un

j )− ∆t
∆x

(Qnj+ 1
2
−Qnj− 1

2
) +

∆t
2

(σnj− 1
2

+ σnj+ 1
2
) (3.14)

with Qn
j+ 1

2
= Q̃(Un

j ,U
n
j+1) and σn

j+ 1
2

= σ̃(∆x,∆t; Un
j ,U

n
j+1) for all j ∈ Z.
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Here again, inequality (3.14) permits to recover the usual form of a discrete
entropy inequality in the homogeneous case, whereas the two interfacial terms σn

j± 1
2

account for the influence of the source term.

3.2. Well-balanced numerical schemes

This paragraph briefly reminds the so-called well-balanced property associated with
a Godunov-type scheme following Ref. 13. The concept of well-balanced numerical
scheme introduced in Ref. 21 is related to the question of preserving at the discrete
level the steady solutions of (1.1). These equilibrium solutions satisfy by definition

∂tU = 0

and at the continuous level, this is equivalent to

∂xF(U) = S(U). (3.15)

A relevant numerical scheme for (1.1) may be expected to preserve stationary solu-
tions, that is discrete solutions satisfying

Un+1
j = Un

j , j ∈ Z, (3.16)

but there are many ways to obtain a discrete counterpart of (3.15); for instance, if
we localize around the interface xj+1/2, we get

1
∆x

(F(Un
j+1)− F(Un

j )) = Snj+ 1
2
, j ∈ Z, (3.17)

where Sj+ 1
2

represents the xj+1/2-interfacial contribution of the source term S; for

scheme (3.12) recall that Snj+ 1
2

= S̃(∆x,∆t; Un
j ,U

n
j+1).

Remark 3.3. This notion of discrete equilibrium can be defined for any finite dif-
ference type scheme, where Snj+ 1

2
is some consistent approximation of the interfacial

contribution of the source term up to first (or higher) order terms in ∆x. However,
there is no evidence that in the general case, without further assumption on the
discrete source term S̃, this definition is relevant. Nothing ensures that every so-
lution of (3.15) can be approximated by a discrete solution of (3.17). Thus, in the
applications, it is important to have a proper definition of discrete equilibria, or in
the above formalism, to check the corresponding properties of the discrete source
term S̃ introduced in definition 3.1 in order that the ‘physical equilibria’ are indeed
preserved.

Moreover, keeping in mind that we intend to respect the asymptotic behavior
wrt. α, the dependence of the above mentionned O(∆x) error terms on α will have
to be precisely analyzed. �

For scheme (3.14), let us introduce some stronger notions which are easier to
handle. Note that by definition (3.10), a sufficient condition for (3.16) is

Un
j = Un,+

j− 1
2

= Un,−
j+ 1

2
, (3.18)
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which motivates the following definition.

Definition 3.3. The sequence (Un
j )j∈Z is said to be an equilibrium solution of the

Godunov-type numerical scheme (3.10) if (3.18) is satisfied.

In comparison to (3.16), the main advantage of (3.18) is that this property
satisfied by a stationary numerical solution can be easily connected to the discrete
property (3.17) of a stationary solution of system (1.1). More precisely, the next
proposition holds true.

Proposition 3.3. An equilibrium solution of the Godunov-type numerical scheme
(3.10) satisfies (3.17) for all j ∈ Z.

Proof. Let (Un
j )j∈Z be an equilibrium solution of the Godunov-type numerical

scheme (3.10). We first write by definitions (3.9) and (3.10)

Un+1
j =

1
∆x

∫ ∆x
2

−∆x
2

W̃(
x

∆t
; Un

j ,U
n
j+1)dx− 1

2
(Un,+

j+ 1
2
−Un,+

j− 1
2
). (3.19)

But under the CFL condition (3.4) we easily show that∫ ∆x
2

−∆x
2

W̃(
x

∆t
; UL,UR)dx =

∆x
2

(UL + UR)−∆t
l∑

k=1

λk(Uk+1 −Uk),

so that thanks to the consistency condition (3.5)∫ ∆x
2

−∆x
2

W̃(
x

∆t
; UL,UR)dx =

∆x
2

(UL + UR)−∆t(F(UR)− F(UL))

+∆x∆t S̃(∆x,∆t; UL,UR).

Plugging this equality in (3.19) gives by definition of S̃
n

j+ 1
2

in (3.12):
Un+1
j =

1
2

(Un
j + Un

j+1)− ∆t
∆x

(F(Un
j+1)− F(Un

j ))

+∆t Snj+ 1
2
− 1

2
(Un,+

j+ 1
2
−Un,+

j− 1
2
).

(3.20)

From (3.20) we infer

Un+1
j = Un

j −
∆t
∆x

(F(Un
j+1)− F(Un

j )) + ∆t Snj+ 1
2

+
1
2

(Un,+

j− 1
2
−Un,+

j+ 1
2
−Un

j + Un
j+1).

The sequence (Un
j )j∈Z being an equilibrium solution we have

Un+1
j = Un

j = Un,+

j− 1
2

and Un
j+1 = Un,+

j+ 1
2
,

and relation (3.17) follows.
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Let us now define the concept of well-balanced numerical scheme.

Definition 3.4. The Godunov-type scheme (3.10) is said to be well-balanced if
and only if, for all sequence (Un

j )j∈Z satisfying (3.17), the sequence (Un
j )j∈Z is an

equilibrium solution i.e. satisfies (3.18).

It turns out that relations (3.18) may be difficult to verify in practice. We are
thus led to introduce a stronger (but easier to manipulate) notion of equilibrium
solution14).

Definition 3.5. The sequence (Un
j )j∈Z is said to be a strong equilibrium solution

of the Godunov-type numerical scheme (3.10) if for all j ∈ Z and t > 0

W̃(x/t; Un
j ,U

n
j+1) =

{
Un
j x < 0,

Un
j+1 x > 0.

(3.21)

It is clear that (3.21) implies (3.18) so a strong equilibrium solution is an equi-
librium solution in the sense of definition 3.3. To conclude this section, we define
the corresponding notion of strongly well-balanced numerical scheme.

Definition 3.6. The Godunov-type numerical scheme (3.10) is said to be strongly
well-balanced if and only if for all sequence (Un

j )j∈Z satisfying (3.17), the sequence
(Un

j )j∈Z is a strong equilibrium solution i.e. satisfies (3.21).

3.3. The first example of the gas dynamics equations in

Lagrangian coordinates

We focus in this section on the gas dynamics equations (2.3) in Lagrangian coordi-
nates with friction and gravity terms. For convenience, we repeat this PDE model
here: 

∂tτ − ∂mu = 0,

∂tu+ ∂mp = (g − αϕ(u)),

∂te+ ∂m(pu) = (gu− αψ(u)),

(3.22)

which can be recast in the form (1.1) with the choice

U =

 τ

u

e

 , F(U) =

−up
pu

 , S(U) =

 0
g − αϕ(u)
gu− αψ(u)

 (3.23)

with friction terms (2.2).
In the next paragraph we give a consistent and simple approximate Riemann

solver introduced in Ref. 13 for Euler system with gravity ((3.22) with α = 0).
The corresponding well-balanced and asymptotic preserving properties are studied
in subsections 3.3.2 and 3.3.3.
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3.3.1. Derivation of a simple approximate Riemann solver

The proposed simple approximate Riemann solver (3.3) is made of three waves
(l = 3) and two intermediate states U∗L and U∗R. The two extreme waves propagate
with speeds λ1 = −C and λ3 = C whereas the intermediate one is stationary
(λ2 = 0):

W̃(
m

t
; UL,UR) =



UL,
m
t < −C,

U∗L, −C < m
t < 0,

U∗R, 0 < m
t < C,

UR,
m
t > C.

(3.24)

The parameter C is an approximation of the exact Lagrangian sound speed CL

associated with the acoustic waves of system (3.22) (recall that (CL)2 = −∂τ p̃(τ, η),
where the pressure law p = p̃(τ, η) is expressed in terms of (τ, η)). We will see further
below that C has to be taken large enough with respect to the sound speed.
In order to define the intermediate states U∗L and U∗R, we first write that (3.24)
should be consistent with the integral form of (3.22). By Definition 3.1, there must
exist a function S̃(ξ, τ ; UL,UR) such that

F(UR)−F(UL)−∆x S̃(∆m,∆t; UL,UR) = −C(U∗L−UL)+C(UR−U∗R) (3.25)

with

lim
∆m,∆t→ 0
UL,UR → U

S̃(∆m,∆t; UL,UR) = S(U). (3.26)

At this stage, we naturally choose S̃ and seek for U∗L and U∗R such that (3.25) is
true. It is reasonable to set

S̃(∆m,∆t; UL,UR) =

 0
g − αϕ(ũ)
gũ− αψ(ũ)

 (3.27)

with ũ = ũ(∆m,∆t; UL,UR) to be precised later on. Then, consistency relations
(3.25) now read

−∆u = C(τL − τ∗L + τR − τ∗R),

∆p−∆m(g − αϕ(ũ)) = C(uL − u∗L + uR − u∗R),

∆(pu)−∆m(gũ− αψ(ũ)) = C(eL − e∗L + eR − e∗R),

(3.28)

where we have used the classical notation ∆X = XR − XL for each quantity X

related to the fluid.
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Let us now turn to the definition of the intermediate states U∗L and U∗R. First, we
note that the mass conservation equation in (3.22) does not contain any source term.
So it is natural to impose the usual Rankine-Hugoniot jump relation associated with
this first equation across each of the three waves of (3.24). We easily get

u∗L − Cτ∗L = uL − CτL,

u∗R = u∗L,

uR + CτR = u∗R + Cτ∗R.

(3.29)

Then, the first relation in (3.28) becomes automatically satisfied whereas the second
one writes

∆p−∆m(g − αϕ(ũ)) = 2C(ua − u∗),

where we have set u∗ = u∗L = u∗R and Xa = 1
2 (XL + XR) for each pair (XL, XR).

This relation, together with the first and third ones in (3.29), allows to obtain the
following formulas for u∗, τ∗L and τ∗R:

u∗ = ua −
1

2C
∆P, ∆P = ∆p−∆m(g − αϕ(ũ)), (3.30)


τ∗L = τL +

1
2C

∆u− 1
2C2

∆P,

τ∗R = τR +
1

2C
∆u+

1
2C2

∆P.

(3.31)

Let us make a first point. At this stage, ũ is still unknown, u∗ = u∗L = u∗R, τ∗L and
τ∗R are given and only depend on ∆P (which depends itself on ũ), and the first two
consistency relations in (3.28) are satisfied. In order to complete the definition of
the intermediate states it thus remains to specify e∗L and e∗R. These two quantities
are related by a single compatibility relation, namely the third equation in (3.28), so
that one has another degree of freedom in addition to ũ. Actually, ũ will be defined
in subsection 3.3.3 so as to get the asymptotic preserving property. To fix the other
degree of freedom, a particular form for the numerical flux G̃(UL,UR) is proposed.
From (3.11) we have

G̃(UL,UR) =
1
2
{F(UL) + F(UR)− C(U∗L −UL + UR −U∗R)} . (3.32)

Using (3.30) and (3.31), the first component is given by

1
2
{−uL − uR − C(τ∗L − τL + τR − τ∗R)} =

1
2

(−2ua +
1
C

∆P ) = −u∗,

the second by

1
2
{pL + pR − C(u∗ − uL + uR − u∗)} = p∗
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with

p∗ = pa −
C

2
∆u, (3.33)

and the third one writes
1
2
{pLuL + pRuR − C(e∗L − eL + eR − e∗R)} .

We make our choice right now, assuming that the friction term is such that a = 1.
Since the third component of the flux F(U) and the source term S(U) are both
obtained by multiplying the second components by u, we propose to mimic this be-
havior at the numerical level by imposing that the third component of the numerical
flux equals p∗u∗, namely

1
2
{pLuL + pRuR − C(e∗L − eL + eR − e∗R)} = p∗u∗.

Combining this relation with the third consistency relation in (3.28) easily gives
e∗L − eL and e∗R − eR. More precisely

e∗L − eL =
1
C

{
pLuL − p∗u∗ +

∆m
2

(gũ− αψ(ũ))
}
,

e∗R − eR =
1
C

{
p∗u∗ − pRuR +

∆m
2

(gũ− αψ(ũ))
}
,

(3.34)

which completes the determination the intermediate states U∗L and U∗R, to within
the choice of ũ. To conclude, note that the proposed approximate Riemann solver,
with S̃ of the form (3.27), is consistent with the integral form of (3.22) provided
that ũ is such that

lim
∆m,∆t→ 0
UL,UR → U

ũ(∆m,∆t; UL,UR) = u, (3.35)

in order to recover (3.26).

3.3.2. Well-balanced property of the scheme

In this section we assess the well-balanced property of the Godunov-type scheme
associated with the simple Riemann solver we have just derived. We note two given
neighboring cell states by Un

j = UL,Un
j+1 = UR.

Lemma 1. Consider a discrete equilibrium solution satisfying (3.17) i.e.

1
∆m

(F(UR)− F(UL)) = S̃(∆m,∆t; UL,UR). (3.36)

then, for the approximate Riemann solver (3.24), the intermediate states satisfy

U∗L = UL, U∗R = UR.
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Thus the discrete equilibrium is a strong equilibrium in the sense of Definition 5.
Moreover, the velocity is constant ũ = u∗ = uL = uR.

Proof. The discrete equilibrium condition (3.17) with Uj = UL and Uj+1 = UR

writes here in the form (3.36)

1
∆m

(F(UR)− F(UL)) = S̃(∆m,∆t; UL,UR),

that is, using the same notations as above,
∆u = 0,

∆p−∆m(g − αϕ(ũ)) = 0,

∆(pu)−∆m(gũ− αψ(ũ)) = 0.

(3.37)

The first two equalities give
uL = uR = u,

ũ = ϕ−1( 1
α (− ∆p

∆m + g)),

that is, invoking (3.30), (3.31) and (3.33)
u∗ = ua = u,

τ∗L = τL, τ∗R = τR,

p∗ = pa.

The third condition (3.37) then gives u∆p−∆m(gũ− αψ(ũ)) = 0 so that

pLuL − p∗u∗ +
∆m

2
(gũ− αψ(ũ)) = p∗u∗ − pRuR +

∆m
2

(gũ− αψ(ũ))

= −1
2

(u∆p−∆m(gũ− αψ(ũ))) = 0

and from (3.34), we get: e∗L = eL, e∗R = eR. Then, the discrete equilibrium condi-
tion (3.36) implies

U∗L = UL, U∗R = UR.

which gives the result.

We have thus also proved:

Proposition 3.4. The Godunov-type scheme associated with the consistent and
simple approximate Riemann solver defined by (3.24)-(3.30)-(3.31)-(3.34) is a
strongly well-balanced scheme for system (3.22) in the sense of Definition 3.6.
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Let us precise the stationary solutions computed by the scheme. They are nat-
urally such that u = u is constant. Now, from the study of stationary solutions for
the continuous system, either u = 0, or u 6= 0 but in any case ψ(u) = uϕ(u) which
we assume for the lines below. Do we have the discrete analog of (2.7) when u = 0
or (2.8) when u 6= 0?

The second and the third equations of (3.37) successively give

u
∆p
∆m

= u(g − αϕ(ũ)) = ũ(g − αϕ(ũ)),

which yields ũ = u or αϕ(ũ) = g. The last solution may occur in the particular case
where ũ = ϕ−1( gα ), and it implies ∆p

∆m = 0, thus pL = pR is constant, and we can
have u = ϕ−1( gα ) too. If ũ 6= u, the consistency condition (3.35) requires ũ → u,
so that u should be equal to ϕ−1( gα ) and this is naturally coherent with (2.8) when
the pressure is constant, so that ũ 6= u is indeed inconsistent. In all other cases, we
have ũ = u, and the consistency condition (3.35) is automatically satisfied.

Remark 3.4. The results of Proposition 3.4 involve the definition (3.36) of a dis-
crete equilibrium, and this definition in turn is linked to the (quite natural) choice of
the source term in the form S(ũ) as given by (3.27). Let us just remark that in other
situations, one might think that the source term is defined at O(∆x), for instance
setting S̃(∆m,∆t; UL,UR) = S(ũ) + ∆x, would still lead to a consistent scheme,
but then, for such a definition, the discrete equilibrium should also change and be
defined with S(ũ), which gives (3.36) at the order O(∆x). This is to illustrate that
the notion of discrete equilibrium is scheme dependent (at the order O(∆x)). Note
also that the choice of O(∆x) terms depending on the parameter α might reveal
itself particularly inadequate for deriving asymptotic preserving properties. �

The case of stationary solutions is of course peculiar and the well balanced
property is obtained as soon as ũ satisfies ũ = u once uL = uR, which holds if we
take ũ = u∗ but also for ũ = ua or for any usual average of the two values. The
asymptotic preserving property of the scheme requires a specific choice for ũ, or at
least is not compatible with all choices as we will see below.

3.3.3. Asymptotic preserving property of the scheme

The asymptotic preserving property of the scheme requires a specific choice for ũ.
From now on, we choose

ũ = u∗ (3.38)

and postpone the discussion on this choice in Remark 3.5 below. The choice (3.38)
together with (3.30) makes the computation of u∗ implicit in the sense that the
following (generally) nonlinear scalar equation has to be solved :

u∗ +
α∆m
2C

ϕ(u∗) = ua −
1

2C
(∆p−∆m g). (3.39)
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Since u 7→ u + α∆m
2C ϕ(u) is a strictly increasing function from R onto R, (3.39)

admits a unique solution u∗(∆m; UL,UR) a that we write

u∗(∆m; UL,UR) = Φ(ua −
1

2C
(∆p−∆m g);

α∆m
2C

). (3.40)

Importantly, we note that (3.35) holds true by continuity arguments. Setting

uj+ 1
2

= u∗(∆m; Uj ,Uj+1), pj+ 1
2

= p∗(Uj ,Uj+1)

and skipping the time superscripts the variable to soften the notations (the updated
value beeing overlined), the numerical scheme writes

τ̄j = τj +
∆t
∆m

(uj+ 1
2
− uj− 1

2
),

ūj = uj −
∆t
∆m

(pj+ 1
2
− pj− 1

2
) + ∆t

(
g − α

2
(
ϕ(uj− 1

2
) + ϕ(uj+ 1

2
)
))
,

ēj = ej −
∆t
∆m

(pj+ 1
2
uj+ 1

2
− pj− 1

2
uj− 1

2
)

+
∆t
2

(
g(uj− 1

2
+ uj+ 1

2
)− α

(
ψ(uj− 1

2
) + ψ(uj+ 1

2
)
))

(3.41)

with, using (3.40),
uj+ 1

2
= Φ

(1
2
(
uj + uj+1 −

1
C

(pj+1 − pj −∆m g)
)
;
α∆m
2C

)
,

pj+ 1
2

=
1
2
{pj + pj+1 − C(uj+1 − uj)} .

(3.42)

Now we make the change of variable

∆t = β∆s, v = βu, β = α
1

χ+1 (3.43)

so that if vL = βuL and vR = βuR, (3.39) becomes

u∗ +
∆m
2C

ϕ(βu∗) =
1
β
va −

1
2C

(∆p−∆m g).

When β goes to +∞, one has βu∗ ∼ ϕ−1(−∆p
∆x + g) that is

u∗ =
1
β
ϕ−1(− ∆p

∆m
+ g) + o(

1
β

), β → +∞.

It is relevant to set

u∗ =
1
β
v∗, then v∗ = ϕ−1(− ∆p

∆m
+ g) +O(

1
β

) (3.44)

aIn fact, u∗ does not depend on ∆t.
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and the scheme becomes

τ̄j = τj +
∆s
∆m

(vj+ 1
2
− vj− 1

2
),

1
β
v̄j =

1
β
vj −

β∆s
∆x

(pj+ 1
2
− pj− 1

2
) + β∆s

(
g − 1

2
(
ϕ(vj− 1

2
) + ϕ(vj+ 1

2
)
))
,

ε̄j +
1

2β2
v̄2
j = εj +

1
2β2

v2
j −

∆s
∆m

(pj+ 1
2
vj+ 1

2
− pj− 1

2
vj− 1

2
)

+
∆s
2

(
g(vj− 1

2
+ vj+ 1

2
)−

(
ψ(vj− 1

2
) + ψ(vj+ 1

2
)
))

with 
1
β
vj+ 1

2
+

∆m
2C

ϕ(vj+ 1
2
) =

1
2β

(vj + vj+1)− 1
2C

(pj+1 − pj −∆m g),

pj+ 1
2

=
1
2

{
pj + pj+1 −

C

β
(vj+1 − vj)

}
.

In the limit β goes to +∞, the numerical scheme tends to

τ̄j = τj +
∆s
∆m

(vj+ 1
2
− vj− 1

2
),

1
∆m

(pj+ 1
2
− pj− 1

2
) = g − 1

2
(
ϕ(vj− 1

2
) + ϕ(vj+ 1

2
)
)
,

ε̄j = εj −
∆s
∆m

(pj+ 1
2
vj+ 1

2
− pj− 1

2
vj− 1

2
)

+
∆s
2

(
g(vj− 1

2
+ vj+ 1

2
)−

(
ψ(vj− 1

2
) + ψ(vj+ 1

2
)
))

(3.45)

with 
vj+ 1

2
= ϕ−1(−pj+1 − pj

∆m
+ g),

pj+ 1
2

=
1
2

(pj + pj+1).

(3.46)

In particular, the pair (τ, ε) evolves according to

τ̄j = τj +
∆s
∆m

(vj+ 1
2
− vj− 1

2
),

ε̄j = εj −
∆s
∆m

(pj+ 1
2
vj+ 1

2
− pj− 1

2
vj− 1

2
)

+
∆s
2

(
g(vj− 1

2
+ vj+ 1

2
)−

(
ψ(vj− 1

2
) + ψ(vj+ 1

2
)
))

(3.47)
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which together with the relations (3.46) and pj = p(τj , εj) is indeed a consistent
explicit numerical scheme of the asymptotic system

∂sτ − ∂mv = 0,

∂sε+ ∂m(pv) = gv − ψ(v)
(3.48)

with 
v = ϕ−1(g − ∂mp),

p = p(τ, ε).
(3.49)

To sum up, we have shown:

Proposition 3.5. The Godunov-type scheme associated with the consistent and
simple approximate Riemann solver defined by (3.24)-(3.30)-(3.31)-(3.34) and ũ

given by (3.38)-(3.39) is asymptotic preserving for system (3.22).

It is asymptotic preserving in the sense that, after performing the same scaling
(3.43) as the one done to obtain the asymptotic system (2.16), it becomes a con-
sistent scheme for the asymptotic system. We can say shortly that it preserves the
asymptotic behavior of the solutions of (3.22) in the limit α→ +∞.

Remark 3.5. If we take for instance ũ = ua instead of ũ = u∗, it is worth noticing
that the asymptotic preserving property is lost. Indeed, we deduce from (3.30) the
relation

u∗ = ua −
1

2C

(
∆p−∆m

(
g − αϕ(ũ)

))
, (3.50)

and applying the change of variable (3.43) we get if ũ = ua,

u∗ =
1
β
va −

1
2C

(
∆p−∆m

(
g − ϕ(va)

))
.

We then observe that setting u∗ = 1
β v
∗ is no longer relevant because of the terms

of different orders involving va and the previous asymptotic analysis fails.
In fact, it is natural to require that the change of variables v = βu be relevant

for all velocities under consideration ua, u
∗ and ũ. Let us start from (3.50) which

gives the relation between u∗(ũ) in tems of ũ, Since the change of variables satisfies
αϕ(u) = ϕ(βu), we get

v∗

β
=
va
β
− 1

2C
(∆p−∆m(g − ϕ(ṽ))

which implies

ϕ(ṽ) = g − ∆p
∆m

+O(
1
β

).

This relation, which is the discrete analog of the identity we got for v in (2.22), is
indeed obtained in (3.44) for the choice ũ = u∗.
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We can precise the statement and prove that the choice is unique up to terms
of order o( 1

β∆m ). Just for the following lines, note by ũ0 = u∗0 the unique solution
of (3.30) such that u∗(ũ) = ũ, defined in (3.40). Here we have dropped the notation
Φ in (3.40) and noted u∗(ũ) = ua − 1

2C (∆p−∆m(g − αϕ(ũ)), thus ũ0 satisfies

ũ0 = u∗0(∆m; UL,UR) = Φ(ua −
1

2C
(∆p−∆m g);

α∆m
2C

).

Then,

u∗(ũ)− ũ0 = α∆m(ϕ(ũ)− ϕ(ũ0))

and after scaling, with v = βu, since ϕ(βu) = αϕ(u) it yields

v∗(ṽ)− ṽ0 = β∆m(ϕ(ṽ)− ϕ(ṽ0)).

Now the expected asymptotic behavior for ṽ0 is

ṽ0 → vA ≡ ϕ−1(g − ∆m
∆p

) as β →∞.

Assume for simplicity a linear friction term (but it can be extended to the general
case), then vA = g − ∆m

∆p . We can easily check from (3.39) that, indeed,

ṽ0 = vA + C(va − vA)(
1

β∆m
) + o(

1
β∆m

).

Now, since

v∗(ṽ)− ṽ0 = β∆m(ṽ − ṽ0),

if we do not take ṽ = ṽ0 but say add a first order correction term ṽ = ṽ0 + 1
β∆m ṽ

1
0 +

o( 1
β∆m ) for some ṽ1

0 , then v∗(ṽ)− ṽ0 = ṽ1
0 +O( 1

β∆m ) and

v∗(ṽ) = vA + ṽ1
0 +O(

1
β∆m

).

We can only take a second order correction term ṽ1
0 = O( 1

β∆m ) if we want to
preserve the asymptotic behavior, v∗(ṽ) = vA +O( 1

β∆m ).
From a heuristic point of view, this choice ũ = u∗ for the velocity of the source

term ũ is natural; u∗ is the common speed of the intermediate states of the Riemann
solver (in −C < m/t < C) and we are considering the large time behavior t = βs,
so that considering the value inside the fan for the asymptotic velocity is judicious.
�

4. Application to the gas dynamics equations in Eulerian
coordinates

We have designed in the previous section a well-balanced and asymptotic preserving
scheme for the gas dynamics equations with friction and gravity terms in Lagrangian
coordinates. It is based on the definition of a suitable simple approximate Riemann
solver. Our objective in this section is to extend it to the Eulerian formulation. At
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the continuous level, the equivalence between the two formulations relies ont the
results of Ref. 32. With this in mind, we first recall in subsection 4.1 how to match
a simple approximate Riemann solver in Eulerian coordinates with a natural one in
Lagrangian coordinates (following Gallice15). Then, we use this general procedure in
subsection 4.3 to devise an asymptotic preserving scheme for gas dynamics equations
with friction and gravity terms in Eulerian coordinates.

4.1. From Lagrangian to Eulerian coordinates

We begin by some preliminaries and notations. Let first be given a system of partial
differential equations in Eulerian coordinates of the following form

∂t%+ ∂x(%u) = 0,

∂t(%Ψ) + ∂x(%Ψu+ f(%,Ψ)) = %s(%,Ψ),
(4.1)

where we have put aside the equation of conservation of mass, which has no source
term, the convection part for the vector %Ψ of the other conservative variables, say
Ψ ∈ Rn−1, has been singled out (n = 3 for system (2.1) but we may consider more
general systems), and f : Rn 7→ Rn−1 is the remaining part of the flux. We will
write for short

∂tUE + ∂xFE(UE) = SE(UE) (4.2)

with

UE =
(
%

%Ψ

)
,FE(UE) =

(
%u

%Ψu+ f(%,Ψ)

)
,SE(UE) =

(
0

%s(%,Ψ)

)
. (4.3)

System (4.3) is supplemented with an entropy inequality

∂tη
E(UE) + ∂xQE(UE) ≤ σE(UE) = (ηE)′(UE) · SE(UE), (4.4)

where ηE : Rn 7→ R is the (convex) entropy with entropy flux QE . In Lagrangian
coordinates, this system writes, setting τ = 1

% , m =
∫
%dx,

∂tτ − ∂mu = 0,

∂tΨ + ∂mf(
1
τ
,Ψ) = s(

1
τ
,Ψ),

(4.5)

or equivalently

∂tUL + ∂mFL(UL) = SL(UL) (4.6)

with

UL =
(
τ

Ψ

)
, FL(UL) =

(
−u

f(
1
τ
,Ψ)

)
, SL(UL) =

(
0

s(
1
τ
,Ψ)

)
, (4.7)

and

∂tη
L(UL) + ∂xQL(UL) ≤ σL(UL) (4.8)
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where

ηE = %ηL, QE = ηL u+QL and σE = %σL.

In fact QL = 0 for fluid systems and in particular for (2.3).
Note that the mapping UL 7→ UE defines an admissible change of variables in

Rn under the natural assumption % > 0. In addition, easy calculations show that
the eigenvalues λk(UE), 1 ≤ k ≤ n, of the Jacobian matrix of FE(UE) are related
to the eigenvalues µk, 1 ≤ k ≤ n, of the Jacobian matrix of FL(UL) by the following
relation:

λk(UE) = u+ τµk(UL). (4.9)

4.2. Simple approximate Riemann solvers

We now consider a simple approximate Riemann solver in Lagrangian coordinates
associated with (4.5), that is

W̃
L

(
m

t
; ULL,U

L
R) =



UL1 = ULL,
m
t < µ1,

ULk , µk−1 <
m
t < µk, k = 2, .., l,

ULl+1 = ULR,
m
t > µl,

(4.10)

where l, the number of approximate waves, satisfies l ≤ n (and again we use the
same notation µ for the velocities and the eigenvalues of the Jacobian). We assume
that the Rankine-Hugoniot relation associated with the first equation in (4.5) is
satisfied across each approximate wave, which implies

uk + µkτk = uk+1 + µkτk+1, for all k = 1, .., l. (4.11)

Recall that this mass conservation property has already been imposed in subsection
3.3.1 (see relations (3.29)).
We then define the following natural simple approximate Riemann solver in Eulerian
coordinates

W̃
E

(
x

t
; UE

L ,U
E
R) =



UE
1 = UE

L = UE(ULL), x
t < λ1,

UE
k = UE(ULk ), λk−1 <

x
t < λk, k = 2, .., l,

UE
l+1 = UE

R = UE(ULR), x
t > λl

(4.12)

with

λk = uk + µkτk = uk+1 + µkτk+1, k = 1, .., l. (4.13)

Assume now that (4.10) is consistent with the integral form of (4.6) in the sense of

Definition 3.1, that is there exists a function S̃
L

(ξ, τ ; ULL,U
L
R) such that for ∆t/∆m
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satisfying the CFL condition (3.4) one has

FL(ULR)− FL(ULL)−∆m S̃
L

(∆m,∆t; ULL,U
L
R) =

l∑
k=1

µk(ULk+1 −ULk ) (4.14)

with

lim
∆m,∆t→ 0

ULL,U
L
R → UL

S̃
L

(∆m,∆t; ULL,U
L
R) = SL(UL). (4.15)

Easy calculations not reported here (see for instance Ref. 14) show that the validity
of (4.14) is equivalent to

FE(UE
R)− FE(UE

L )−∆x S̃
E

(∆x,∆t; UE
L ,U

E
R) =

l∑
k=1

λk(UE
k+1 −UE

k ) (4.16)

where we have set ∆x = ∆m
%∗(UE

L ,U
E
R)
, for some positive density %∗ to be prescribed,

and

S̃
E

(∆x,∆t; UE
L ,U

E
R) = %∗(UE

L ,U
E
R) S̃

L
(∆m,∆t; ULL,U

L
R). (4.17)

Provided that %∗(UE
L ,U

E
R) is such that

lim
UE
L ,U

E
R→UE

%∗(UE
L ,U

E
R) = %(UE), (4.18)

it is then clear that the simple approximate Riemann solver (4.12) in Eulerian
coordinates is consistent with the integral form of (4.2) in the sense of Definition
3.1. A natural choice is provided by

%∗(UE
L ,U

E
R) =

1
2

(%EL + %ER).

Remark 4.1. The CFL condition (3.4) obviously changes when we switch from
Lagrangian to Eulerian coordinates. However the validity of (4.14) for the proposed
approximate Riemann solver in subsection 3.3.1 is valid for any ∆t and ∆m. Then,
the equivalence between (4.14) and (4.16) is actually sufficient to prove the consis-
tency of the simple approximate Riemann solver (4.12) with the integral form of
(4.2). �

As far as the consistency with the integral form of the entropy inequality is
concerned, we easily prove (see again Ref. 1315) that the following two properties
are equivalent, namely

QL(ULR)−QL(ULL)−∆m σ̃L(∆m,∆t; ULL,U
L
R) ≤

l∑
k=1

µk(ηL(ULk+1)− ηL(ULk ))

(4.19)
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and

QE(UE
R)−QE(UE

L )−∆x σ̃E(∆x,∆t; UE
L ,U

E
R) ≤

l∑
k=1

λk(ηE((UE
k+1)− ηE(UE

k ))

(4.20)
where we have set again ∆x = ∆m

ρ∗(UE
L ,U

E
R)
, and

σ̃E(∆x,∆t; UL,UR) = ρ∗(UE
L ,U

E
R) σ̃L(∆m,∆t; VL,VR). (4.21)

In other words and in agreement with Definition 3.2, the simple approximate Rie-
mann solver (4.12) in Eulerian coordinates is consistent with the integral form of the
entropy inequality (4.4) as soon as the simple approximate Riemann solver (4.10)
is consistent with the integral form of (4.8). Note that this result again relies on
the validity of the Rankine-Hugoniot relations (4.11), together with the consistency
condition (4.18).

Before we end the section let us say a word about the well-blanced character
of the scheme. For Euler system, we have seen that interesting equilibria are u =
0, ∂xp = %g. If we define discrete equilibria by u = 0, and ∆p

∆x = %∗g, it can be writen
∆p
∆m = g, then, if we take uL = uR = 0, ũ = u∗, (3.39) gives u∗ = 0, τ∗L = τL, τ

∗
R = τR

and discrete equilibria are preserved, the scheme is strongly well-balanced.

4.3. An asymptotic preserving scheme for the gas dynamics

equations in Eulerian coordinates

The framework of the previous subsection is now used to design a simple approxi-
mate Riemann solver for the gas dynamics equations with friction and gravity terms
in Eulerian coordinates (2.1). The corresponding Godunov-type numerical scheme
is shown to be asymptotic preserving.
The system writes


∂t%+ ∂x%u = 0,

∂t%u+ ∂x(%u2 + p) = %(g − αϕ(u)),

∂t%e+ ∂x(%e+ p)u = %(gu− αψ(u)),

(4.22)

which corresponds in (4.1) to the choice Ψ = (u, e)T , and f(%,Ψ)) = (p, pu)T ,
s(%,Ψ)) = (g − αϕ(u), gu− αψ(u))T or

U =

 %

%u

%e

 , F(U) =

 %u

%u2 + p

(%e+ p)u

 , S(U) =

 0
%
(
g − αϕ(u)

)
%
(
gu− αψ(u)

)
 . (4.23)
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According to the subsection 3.3.1, we then propose the following simple approximate
Riemann solver in Eulerian coordinates :

W̃(
x

t
; UL,UR) =



UL,
x
t < λ1,

U∗L, λ1 <
x
t < λ2,

U∗R, λ2 <
x
t < λ3,

UR,
x
t > λ3

(4.24)

with 
λ1 = uL − CτL = u∗ − Cτ∗L,

λ2 = u∗,

λ3 = uR + CτR = u∗ + Cτ∗R.

(4.25)

We recall that u∗, τ∗L and τ∗R solve (3.30)-(3.31) with here ∆m = %∗(UL,UR)∆x,
while e∗L and e∗R are given by (3.34) with p∗ defined by (3.33). Setting

S̃(∆x,∆t; UL,UR) = %∗(UL,UR)

 0
g − αϕ(ũ)
gũ− αψ(ũ)

 , (4.26)

with (4.18) assumed to be valid, the simple Riemann solver (4.24) is consistent with
the integral form of (4.22).

Let us now pass to the asymptotic behavior of the scheme when α goes to
infinity. As in subsection 3.3.1 we choose ũ = u∗, leading to the nonlinear scalar
equation (3.39) for the actual calculation of u∗. We can state the following result,
the proof of which follows that of the Lagrangian case in section 3.3.3, only with
more technical points which are detailed in the apppendix:

Proposition 4.1. The Godunov-type scheme associated with the consistent and
simple approximate Riemann solver defined by (4.24)-(4.25)-(3.30)-(3.31)-(3.33)-
(3.34) and ũ given by (3.38)-(3.39) is asymptotic preserving in the sense that it
preserves the asymptotic behavior of the solutions of (4.22) in the limit α→ +∞.

5. Another approach

We consider again 1D Euler system with friction (2.1) which we rewrite for conve-
nience: 

∂t%+ ∂x(%u) = 0,
∂t(%u) + ∂x(%u2 + p) = %g − α%ϕ(u),
∂t(%e) + ∂x((%e+ p)u) = %gu− α%ψ(u).

(5.1)
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In this section, we will extend to system (5.1) both Cargo-Leroux’ approach de-
velopped in Ref. 9 for Euler system with gravity (system (5.1) with α = 0) for
which only well-balanced properties were derived, and a relaxation scheme defined
previously in Ref. 1 for Euler system (without source, α = g = 0). Both ingre-
dients are important to understand the properties of the resulting scheme which
happens to coincide with the scheme previously derived: Cargo-Leroux’ approach
first transforms source terms in differential terms, and the relaxation approach gives
an interpretation in terms of solutions of a PDE system. It is simpler to argue at
the continuous level (with continuous variables) than with discretized data as we
will see.

5.1. Cargo-LeRoux’s approach

The idea in Ref. 9 is to transform the source in a differential term so that the system
becomes homogeneous, which can be performed by introducing a ‘potential’ q such
that {

∂xq = %

∂tq = −%u (5.2)

and by writing (5.1) in an augmented non-conservative form
∂t%+ ∂x(%u) = 0,
∂t(%u) + ∂x(%u2 + p)− (g − αϕ(u))∂xq = 0,
∂t(%e) + ∂x((%e+ p)u)− (gu− αψ(u))∂xq = 0,
∂t(%q) + ∂x(%uq) = 0.

(5.3)

The set of states for (5.3) is ΩEulerq = {(%, %u,E = %e, q); % > 0, u ∈ R, e − u2/2 >
0, q ∈ R}.

Remark 5.1. Note that Ref. 9 considers the case α = 0 and thus q is rather defined
as ∂xq = %g (hydrostatic pressure), then ∂xq = −%gu. In that case, it is natural to
define a ‘new’ pressure π = p− q and a ‘new’ energy %E = %e+ q; the formulation
is then conservative while our system has non-conservative terms. �

Let us first study the properties of system (5.3).

Lemma 2. System (5.3) has four real eigenvalues u− c, u, u, u+ c, where c is the
usual sound speed (c2 = ∂p

∂% (%, η)) and it has a basis of eigenvectors if and only if

ψ(u) = uϕ(u) (5.4)

or for the state u = 0. The first and last characteristic fields associated to u± c are
GNL, while the characteristic field associated to u is LD.

Proof. We write (5.3) in quasilinear form, and with the choice of variable U =
(%, %u, %e, q)T , the Jacobian matrix is

A(U) =
(
AEuler Bq
0 u

)
(5.5)
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where we have denoted by AEuler the usual Jacobian 3× 3 matrix of Euler system
(in conservative variables u = (%, %u, %e)T ) and Bq is the column vector Bq =
(0,−(g − αϕ(u)),−(gu − αψ(u)))T . Hence the eigenvalues are real and coincide
with those of Euler system u − c, u, u + c (where c denotes the Eulerian sound
speed), only u is now a double eigenvalue. Now, because of the special form of
(5.5), we may take as eigenvectors Ri(U) = (ri(u), 0) where we have noted by ri
the eigenvectors for Euler system and, if we want a basis of R4, we need to find a
fourth eigenvector which is associated to u of the form R = (r, 1), and a simple
computation shows that this is possible only if ψ(u) = uϕ(u) or u = 0.

Lemma 3. The quantity w(U) = p−q(g−αϕ(u)) is a Riemann invariant associated
to u, i.e. ∇Uw.R = 0 for any eigenvector R associated to u. The potential q is a
Riemann invariant for the 1- and 4-characteristic fields.

Proof. For what concerns the potential q, the result is straightforward because the
1- and 4-eigenvectors are of the form Ri = (ri, 0).

For the characteristic field u, we have also such an eigenvector say RE =
(rE , 0), and since ∇Up = (∇up, 0), we have ∇Up.RE = 0 because p is a
Riemann invariant for Euler system. Then we compute ∇U(q(g − αϕ(u))) =
(αϕ′(u)uq/%,−αϕ′(u)q/%, 0, g − αϕ(u)) and if rE = (rE1 , r

E
2 , r

E
3 )T , it yields

∇Uw.RE = ∇U(q(g − αϕ(u))).RE = −αϕ′(u)q(urE1 − rE2 )/%.

But any eigenvector of A(U) associated to u satisfies r2 = ur1 as results by iden-
tifying the first component of each side of the equality AR = uR, from which we
deduce that ∇Uw.RE = 0.

Now, for the other eigenvector R = (r, 1), writing that R is an eigenvector
of A, and taking the second component of both sides of the equality AR = uR,
expliciting the components of A gives a relation

∇u(p+ %u2).r− (g − αϕ(u)) = ur2

if r = (r1, r2, r3)T . First, we have ∇u(%u2) = (−u2, 2u)T and thus ∇u(%u2).r =
−u2r1 + 2ur2 which gives

∇Up.R = ∇up.r = −ur2 + u2r1 + g − αϕ(u).

Since again r2 = ur1, we deduce that ∇Up.R = g − αϕ(u). Then we compute
∇U((g − αϕ(u))q) = (αϕ′(u)uq/%,−αϕ′(u)q/%, 0, g − αϕ(u)) and

∇U(q(g − αϕ(u))).R = αϕ′(u)(ur1 − r2)q/%+ g − αϕ(u) = g − αϕ(u),

which yields ∇Uw.R = 0.

One consequence is that when q is discontinuous, which may happen only across
a contact discontinuity of speed u, the non-conservative product (g − αϕ(u))∂xq is
well defined; in that case the pressure p is no longer constant, as it is for the usual
Euler system without source, and [p] = (g − αϕ(u))[q].
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Note now that if η is the mathematical specific entropy for Euler system, smooth
solutions of (5.3) satisfy equality (2.4)

−T (∂t%η + ∂x(%ηu)) = α%(uϕ(u)− ψ(u)),

and if (5.4) holds, (2.4) becomes a conservation law

∂t(%η) + ∂x(%ηu) = 0. (5.6)

Thus, if (5.4) holds, the system (5.3) is hyperbolic, smooth solutions of system (5.1)
satisfy 

∂t%+ ∂x(%u) = 0,
∂t(%u) + ∂x(%u2 + p) = %(g − αϕ(u)),
∂t(%η) + ∂x(%ηu) = 0,

(5.7)

(with p = p̃(τ, η), τ = 1/%) and smooth solutions of (5.3) satisfy
∂t%+ ∂x(%u) = 0,
∂t(%u) + ∂x(%u2 + p)− (g − αϕ(u))∂xq = 0
∂t(%η) + ∂x(%ηu) = 0
∂t(%q) + ∂x(%uq) = 0,

(5.8)

(with again p = p̃(τ, η), τ = 1/%).
We can prove:

Lemma 4. Let (%, u, η, q)(x, t) be a smooth solution of (5.3) associated to a given
initial data (%0, u0, η0, q0)(x) such that q0 satisfies dq0

dx (x) = %0(x). Then q(x, t)
satisfies ∂xq(x, t) = %(x, t) and (%, u, η)(x, t) is a smooth solution of system (5.7)
associated to (%0, u0, η0)(x).

Proof. Let (%, u, η)(x, t) be the smooth solution of (5.7) associated to the data
(%0, u0, η0)(x) (this solution exists at least for t small enough). Define, associated
to this solution, the function q(x, t) by ∂xq = %, ∂tq = −%u. Then (%, u, η, q)(x, t) is
the smooth solution of (5.8) associated to (%0, u0, η0, q0)(x), hence q = q.

Hence we can use the formulation with potential which is equivalent for smooth
solutions. Now for discontinuous solutions, the Rankine-Hugoniot relations for (5.3)
give that when a discontinuity propagates with speed σ:

• either σ 6= u, we have a shock and then [q] = 0, q is continuous and we have
the same jump relations as for Euler (5.1),

• or σ = u, we have a contact discontinuity, [p] = (g−αϕ(u)[q] (equivalently,
w = p− (g−αϕ(u))q is a Riemann invariant). If [q] = 0, we recover [p] = 0
as for Euler.

Thus, the formulation (5.3) introduces possible discontinuities of q propagating with
velocity u but no new discontinuities for (5.1) and shocks propagate at the right
speed. Given two constant states (%o, %ouo, %oeo, qo), o = L,R, close enough, we can
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solve the Riemann problem for (5.3) following the same steps used to solve the
Riemann problem for Euler.

5.2. Equilibrium states, stationary solutions and asymptotic

behavior

Smooth solutions for (5.3) with u = 0 (‘equilibrium’ solutions) satisfy
∂t% = 0,
∂xp = g∂xq

∂tε = 0
∂tq = 0,

(5.9)

thus also ∂tp = 0, % = %(x), p = p(x) and we have stationary solutions for what
concerns density and pressure, and p − gq is constant. If we take dq

dx = %(x), then
dp
dx = g%(x) as in (2.9). Note that in Ref. 9, for α = 0, the authors are interested by
preserving at the numerical level, a particular equilibrium, an atmospheric column
at rest, thus satisfying the same equations, u = 0, only p = p(x) is given from
tabulated data, and % solves dp

dx = g%(x).
Smooth stationary solutions for (5.3) satisfy

d
dx (%u) = 0,
d
dx (%u2 + p)− (g − αϕ(u)) d

dxq = 0,
d
dx ((%e+ p)u)− (gu− αψ(u)) d

dxq = 0,
d
dx (%uq) = 0.

(5.10)

Note that because of (5.2), we cannot expect stationary solution with u(x) = u

constant and u 6= 0 if the density does not vanish since ∂tq = −%u.
If u = 0, we obtain the ‘equilibrium’ solutions with u = 0 described above.
Discontinuous stationary solutions for (5.3) satisfy Rankine-Hugoniot jump con-

ditions with σ = 0. If q may be discontinuous, then σ = u = 0, we have a stationary
contact discontinuity, and [p] = g[q], p − gq is continuous (it is again an equilib-
rium). If q is continuous, [q] = 0, the stationary discontinuity is a sonic (u = ±c)
discontinuity for Euler which we do not consider here.

Now, performing the same scaling as previously (see (3.43))

t = βs, v = βu, β = α
1

χ+1 ,

the equations (5.2) for q become{
∂xq = %

∂sq = −%βu = −%v (5.11)

and the equation for q is invariant ∂s(%q) + ∂x(%vq) = 0. Thus the asymptotic
behavior of the original system (5.7) is preserved. Formally, after scaling, as β →∞,
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at the order 0 in 1
β , the solutions of (5.3) tend to those of
∂s%+ ∂x(%v) = 0,
∂xp− (g − αϕ(v))∂xq = 0,
∂s(%ε) + ∂x((%ε+ p)v)− (gv − αψ(v))∂xq = 0,
∂s(%q) + ∂x(%vq) = 0,

(5.12)

and again, if the data are ‘well prepared’ (i.e. satisfy q′0(x) = %0(x)), (%, ε, v) is
solution of (2.22).

5.3. Numerical relaxation

The idea developed in Ref. 9 is to use an exact or approximate Riemann solver
associated to the formulation with potential (5.3) to define a well balanced scheme.
In order to solve (5.1) written in the form (5.3), our approximate solver will involve
an exact Riemann solver for a relaxation system with LD fields built from (5.8),
which, at least from a heuristic point of view, is naturally asymptotic preserving.

Indeed, following previous work,10,11 we introduce a larger 5 × 5 system with
a relaxation term in the right-hand side depending on a ‘relaxation parameter’ ν,
which is meant to become arbitrarily large (so that the ‘relaxation time’ 1

ν goes to
0) 

∂t%+ ∂x(%u) = 0,
∂t(%u) + ∂x(%u2 + Π)− (g − αϕ(u))∂xq = 0,
∂t%η + ∂x(%ηu) + α

T (uϕ(u)− ψ(u))∂xq = 0,
∂t(%T ) + ∂x(%T u) = ν%(τ − T ),
∂t(%q) + ∂x(%uq) = 0,

(5.13)

where T is the temperature (the third equation comes from (2.4)). This new system
(5.13) needs a closure relation for Π which, following Ref. 11, we take in the form

Π = Π̃(τ, η, T ) ≡ p̃(T , η) + C
2
(T − τ). (5.14)

Here C is a positive constant which plays the role of a frozen Lagrangian sound
speed and is required to bound the exact sound speed (previouly noted CL, (CL)2 =
−∂τ p̃(τ, η)) for Euler system: this is the Whitham (or subcharacteristic) condition

C
2
> −∂τ p̃(τ, η), (5.15)

for all the values τ, η under consideration. Formally, as the relaxation parameter
ν → ∞, T − τ → 0, and Π̃(τ, η, T ) → p̃(τ, η) = p and we indeed recover Euler
system with friction at equilibrium with a formulation involving a potential, where
the energy equation has been replaced by the entropy one (2.4). Here the term
equilibrium is relative to the relaxation procedure: as ν →∞, the solution ‘relaxes’
to an equilibrium. Note that, without an additional step, this equilibrium would not
be consistent with the weak form of (5.12) since the weak solutions we consider are
those of system (5.13) which preserves the entropy %η and makes the total energy
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play the role of a convex entropy. The step required to restore the conservation of
total energy is simple and will be detailed in section 5.3.3 below.

5.3.1. Study of the relaxation system

If we write (5.13) in the condensed form ∂tU + F (∂xU,U) = νS(U), the convec-
tive part of the system (ν = 0) has explicit Riemann solutions, and the scheme
results from a splitting between a convection step (solving (5.13) for ν = 0, thus
∂tU + F (∂xU,U) = 0 with Godunov’s scheme) and the treatment of the source
in a relaxation step (thus ∂tU = νS(U) for ν → ∞), which since the relaxation
is instantaneous, can be considered as a projection on the equilibrium manifold,
S(U) = 0 (here, the set of states U such that T = τ). We will see that, since the
Riemann problem has explicit solutions, the numerical fluxes can be computed and
the scheme, when restricting to the variables %, u, e, gives a consistent scheme for
(5.1).

For the convective part of the augmented system, i.e. system (5.13) when ν = 0:
∂t%+ ∂x(%u) = 0
∂t(%u) + ∂x(%u2 + Π)− (g − αϕ(u))∂xq = 0
∂t%η + ∂x(%ηu) + α

T (uϕ(u)− ψ(u))∂xq = 0
∂t(%T ) + ∂x(%T u) = 0
∂t%q + ∂x(%uq) = 0,

(5.16)

let us set U = (%, %u, %η, %T , q)T , J = %T and S = %η, the state U belongs to the
set Ωη,q = {(%, %u, S = %η,J = %T , q); % > 0, u ∈ R, η > 0, T > 0, q ∈ R}. We
will say that a state U is at equilibrium if T = τ so that Π = p̃(τ, η). Defining,
the mapping Π(%, %η, %T ) ≡ Π̃(τ, η, T ), the system (5.16) is in quasilinear form
∂tU + Aq,R(U)∂xU with matrix given by

Aq,R(U) =


0 1 0 0 0
−u2 + Π% 2u ΠS ΠJ Aq,2
−ηu η u 0 Aq,3
−T u T 0 u 0
0 0 0 0 u

 (5.17)

where Aq,2 = −(g − αϕ(u)), Aq,3 = α
T (uϕ(u)− ψ(u)). We can prove:

Lemma 5. System (5.16) is hyperbolic iff condition (5.4) holds. The eigenvalues of
the matrix (5.17) are λ1(U) = u−Cτ < λ2 = λ3 = λ4(U) = u < λ5(U) = u+Cτ .
The corresponding eigenvectors Ri = Ri(U) may be taken as

R1 =


1

u− Cτ
η

T
0

 ,R2 =


1
u

−Π%/ΠS

0
0

 ,R3 =


1
u

0
−Π%/ΠJ

0

 ,
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R4 =


0
0

−Aq,2/ΠS

0
1

 ,R5 =


1

u+ Cτ

η

T
0

 .

Moreover, the five characteristic fields are linearly degenerate.

In the sequel, we will assume that condition (5.4) holds. We also have

Lemma 6. Assume that C satisfies (5.15). Let UL be a given state, then the wave
curves Ci(UL), i = 1, 4, and wave set C2,3,4 can be characterized as follows:

• The curve C1(UL) is given by C1(UL) = {U ∈ Ωη,q;u = uL − 1
C

(Π −
ΠL), η = ηL, T = TL, q = qL}.

• The set C2,3,4(UL) is given by C2,3,4(UL) = {U ∈ Ωη,q;u = uL,W = WL},
where W (U) = Π− q(g − αϕ(u)).

• The curve C5(UL) is given by C3(UL) = {U ∈ Ωη,q;u = uL + 1
C

(Π −
ΠL), η = ηL, T = TL, q = qL}.

In (5.15), the supremum is taken over all possible values of (τ, η) occuring in the
solution of a Riemann problem.

Proof. The proof for C1, C5 is easy. Also, we note that Whitham’s condition (5.15)
yields that the mapping y 7→ p̃(y, η) + C

2
y is invertible. Now, since u is a triple

eigenvalue, we can find only two Riemann invariants with independent gradients,
which are again u since the field is LD and following the lines in the proof of Lemma
3, we find that the other is W = Π− (g − αϕ(u))q.

The solution of the Riemann problem follows easily from the explicit knowledge
of the Riemann invariants. To simplify the notations, we shall denote as previously,
for any quantity, say b, ∆b = bR − bL.

Proposition 5.1.
Given two constant states UL, UR, the solution Wq(x/t; UL,UR) of the Riemann
problem for (5.16), consists of three contact discontinuities, each propagating with
a characteristic speed (resp. uL−CτL, u∗, uR +CτR), separating UL, two interme-
diate states U∗L,U

∗
R and UR. The states U∗L,U

∗
R are respectively characterized by

(u∗,Π∗L; TL, τ∗L, qL) and (u∗,Π∗R; TR, τ∗R, qR) with u∗ solving

u∗ +
α

2C
ϕ(u∗)∆q =

uL + uR
2

− 1
2C

(∆Π− g∆q), (5.18)
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and the other quantities satisfying

Π∗L =
ΠL + ΠR

2
− C

2
∆u− 1

2
(g − αϕ(u∗))∆q

Π∗R =
ΠL + ΠR

2
− C

2
∆u+

1
2

(g − αϕ(u∗))∆q

τ∗L = τL +
1
C

(u∗ − uL),

τ∗R = τR +
1
C

(uR − u∗).

(5.19)

Proof. First, using the 2, 3, 4-Riemann-invariants, we have u∗L = u∗R ≡ u∗ and

Π∗R − qR(g − αϕ(u∗)) = Π∗L − qL(g − αϕ(u∗))

hence

∆Π∗ ≡ Π∗R −Π∗L = (g − αϕ(u∗))∆q. (5.20)

Then, projecting C1(UL) and C5(UR) given by Lemma 6, on the (u,Π)−plane gives

u∗L = uL −
1
C

(Π∗L −ΠL), u∗R = uR +
1
C

(Π∗R −ΠR)

both expressions beeing equal to u∗ so that

u∗ =
uL + uR

2
− 1

2C
∆Π +

1
2C

∆Π∗

and thus with (5.20)

u∗ =
uL + uR

2
− 1

2C
∆Π +

1
2C

(g∆q − αϕ(u∗)∆q)

which means that u∗ is the solution of

u∗ +
α

2C
ϕ(u∗)∆q =

uL + uR
2

− 1
2C

∆Π +
1

2C
g∆q.

Also

Π∗R + Π∗L = ΠR + ΠL − C∆u,

again with (5.20), it gives

Π∗R =
ΠL + ΠR

2
− C

2
∆u+

1
2

(g − αϕ(u∗))∆q

Π∗L =
ΠL + ΠR

2
− C

2
∆u− 1

2
(g − αϕ(u∗))∆q.

We may define

Π∗ =
Π∗L + Π∗R

2
=

ΠL + ΠR

2
− C

2
∆u,

and we check that when g and α vanish, Π∗R = Π∗L = Π∗.
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Let us introduce the ‘entropy’ (in fact the energy) for system (5.13)

Σ(τ, u, η, T ) = ε̃(T , η) + u2

2 + Π2(τ,η,T )−p̃2(T ,η)

2C
2

= ε̃(T , η) + u2

2 + Π(τ,η,T )+p̃(T ,η)
2 (T − τ)

(5.21)

where ε̃(τ, η) = ε(%, η) is known to satisfy ∂τ ε̃ = −p̃.
Since system (5.16) is linearly degenerate, we do not need convexity to select its

admissible solutions. However, in order to justify the relaxation procedure, we prove
an inequality when we take into account the relaxation term of (5.13). Assuming
(5.4), we can prove

Proposition 5.2. Let Σ be defined by (5.21). Then, for equilibrium states we have

Σ(τ, u, η, τ) = e.

Smooth solutions of (5.16) satisfy

∂t%Σ +∂x((%Σ + Π)u)− (gu−αuϕ(u))∂xq = −ν%(∂τ p̃(T , η) +C
2
)(τ −T )2, (5.22)

which is negative if condition (5.15) holds. For a given U = (%, %u, %η, %T , q), let us
note Ueq = (%, %u, %η, 1, q). We have the following Gibbs principle:

%e = (%Σ)(Ueq) = min
T ∈K

(%Σ)(U). (5.23)

In (5.23), K is a compact set such that it contains all values of T under consid-
eration.

Proof. Assuming that ψ(u) = uϕ(u), we have for a smooth solution of (5.13)

%∂tΠ(τ, η, T ) + %u∂xΠ(τ, η, T ) + C
2
∂xu = −ν%(∂τ (p̃(T , η) + C

2
)(τ − T ).

Then from the second equation we get

∂t
%u2

2
+ ∂xu(

%u2

2
+ Π)−Π∂xu− u(g − αϕ(u))∂xq = 0

and combining the two yields

∂t(
%u2

2
+
%Π2

2C
2 ) + ∂x((

%u2

2
+
%Π2

2C
2 + Π)u)− u(g − αϕ(u))∂xq

= ν%
Π

C
2 (∂τ p̃(T , η) + C

2
)(τ − T ).

The remaining lines to get (5.22) follow easily.
For the proof of (5.23), we differentiate the function Σ with respect to T and

get ∂T Σ = (∂τ p̃+C
2
)(T − τ) which vanishes only for T = τ with a strictly positive

second order derivative at T = τ if again (5.15) is satisfied.
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Remark 5.2. By (5.22), smooth solutions of (5.16) satisfy

∂t(%Σ) + ∂x((%Σ + Π)u)− (gu− αuϕ(u))∂xq = 0, (5.24)

but it also holds for discontinuous solutions since all the fields are linearly degen-
erate, in particular the field associated to u across which q is discontinuous. We
have seen in lemma 6 that W = Π− q(g − αϕ(u)) is also constant, hence the jump
condition for (5.24) across such a contact discontinuity is also satisfied. �

Now, with this definition of Σ, we can check

Lemma 7. If the Riemann data are at equilibrium (TL = τL, TR = τR), the energy
of the two intermediate states defined in Proposition 5.1 satisfies

Σ∗L = ΣL − 1
C

(Π∗u∗ −ΠLuL) + 1
2C
u∗(g − αϕ(u∗))∆q

Σ∗R = ΣR + 1
C

(Π∗u∗ −ΠRuR) + 1
2C
u∗(g − αϕ(u∗))∆q,

(5.25)

where Π∗ = 1
2 (Π∗L + Π∗R) = 1

2 (ΠL + ΠR)− C
2 ∆u.

Proof. Indeed, from (5.21) and lemma 6, we have across a 1-wave

[Σ] =
1

2C
2 (C

2
[u2] + [Π2]) =

1

2C
2 (C

2
[u](u∗ + uL) + [Π](Π∗L + ΠL))

together with [Π]+C[u] = 0, it yields [Σ] = − 1
2C

([Π](u∗+uL)+ [u](Π∗L+ΠL)) thus

[Σ] = − 1
C

[Πu]

so that Πu+CΣ is also a 1-Riemann invariant. Similarly, we find that Πu−CΣ is a
3-Riemann invariant and the expressions (5.25) of Σ∗L,R follow from the expressions
(5.19) of Π∗L,R. Note that (5.25) corresponds precisely to formulas (3.34) where
Σ ≡ e.

5.3.2. The global relaxation scheme

Let us now define the resulting scheme which involves a fractional step method to
advance the solution in time from tn to tn+1 = tn+∆t with three steps: reconstruc-
tion, evolution, projection. Before giving the details, we describe the main lines of
the relaxation part of the scheme, and for n = 0, since they are similar at all other
time. Let u0(x) = (%0, %0u0, %0e0)T (x) be an initial datum for system (5.3):

(1) Define the extended initial datum U0(x) = (%0, %0u0, %0η0, %0T0, q0)T (x) for the
relaxation system (5.13), where η0 = η(u0) and defining T0 ≡ 1/%0: U0 is at
equilibrium.

(2) Solve the Cauchy problem (5.13), (5.14) with the initial data U0 for t ∈ (0,∆t]
we obtain U−1 (x) = U(x,∆t).
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(3) Project U−1 = (%1, %1u1, %1η1, %1T1, q1)T on the equilibrium set of system (5.13)
(instantaneous relaxation) to get U1 = (%1, %1u1, %1η1, 1, q1).

(4) Define u1(x) = (%1, %1u1, %1e1)T (x).

In fact step 4 is straightforward at the computational level but requires a care-
ful analysis to justify the scheme for u = (%, %u, %e)T from the quantities U =
(%, %u, %η, %T , q)T . The required material will be given in the next section.

The ‘potential’ q needs only be defined for the full discretization and through
∆q. As usual u0(x) is first discretized

u0
j =

1
∆x

∫ (j+1/2)∆x

(j−1/2)∆x

u0(x)dx, (5.26)

and we define ∆qj+1/2 = %j+%j+1
2 ∆x (or some other consistent average of %j , %j+1,

see (4.18)), which is of course coherent with (5.2). In steps 2 and 3 we will use a
Godunov-type solver, which means that we solve exactly a juxtaposition of Riemann
problems associated to the piecewise constant data U∆(x, tn) (function equal to Un

j

on Cj) and project the solution back on the grid, this results in a global relaxation
solver (it is a simple solver in the sense given in section 3.1).

Let us summarize the resulting global relaxation method for approximating Eu-
ler system with friction (5.3).

Starting from an initial condition u0(x) discretized by u0
j = (%, %u, %e)0

j , j ∈ Z,
setting µ = ∆t/∆x,
- define Un

j = ((%, %u, %η)nj , 1)T and ∆qj+1/2 the extended equilibrium state.
- solve the Riemann problems Wq(.; Un

j ,U
n
j+1), j ∈ Z, using the results of Propo-

sition 5.1, we know explicitly the intermediate states,
- using Godunov’s method define the update value Un+1−

j
Un+1−
j = 1

∆x

( ∫∆x/2

0
Wq( x

∆t ; U
n
j−1,U

n
j )dx

+
∫ 0

−∆x/2
Wq( x

∆t ; U
n
j ,U

n
j+1)dx

)
,

(5.27)

it can be written in the form

Un+1−
j = Un

j − µ
(
Gn
j+1/2− −Gn

j−1/2+

)
, j ∈ Z, n ≥ 0, (5.28)

where Gn
j+1/2± = (Gn%,j+1/2,G

n
%u,j+1/2±,G

n
%η,j+1/2,G

n
%T ,j+1/2,G

n
%q,j+1/2)T has in fact

only its second component which is non conservative.
- Keep the two first components for the two first components of un+1

j . This results
in a conservative discrete equation for %n+1

j , since there is no source term

%n+1
j = %nj − µ

(
Gn%,j+1/2 − G

n
%,j−1/2

)
, j ∈ Z, n ≥ 0, (5.29)

and a formula for (%u)n+1
j

(%u)n+1
j = (%u)nj − µ

(
Gn%u,j+1/2− − G

n
%u,j−1/2+

)
, j ∈ Z, n ≥ 0, (5.30)
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where the source term has been taken into account.
Here, we postpone the details of step 4 which follows Ref. 11 for defining the

energy in the global solver so as to obtain a standard conservative scheme with an
energy component of the flux, which will be written in the form (see (5.35) below)

En+1
j = Enj − µ

(
GnE,j+1/2 − G

n
E,j−1/2

)
, j ∈ Z, n ≥ 0.

It will be the object of next section 5.3.3. Once the above equation for the energy
is given, the definition of the updated state un+1

j is complete.
Moreover, using (5.23), an entropy inequality can be established. Note that for

(%η), the value obtained after the same steps described for % and %u is not the value
of the updated state, hence we note it with superscript n+ 1− which gives

(%η)n+1−
j = (%η)nj − µ

(
Gn%η,j+1/2 − G

n
%η,j−1/2

)
, (5.31)

where Gn%η,j+1/2 is the third component of Godunov’s flux in (5.28). The value
(%η)n+1

j ≡ (%η)(un+1
j ) of the updated state will be such that we have:

Proposition 5.3. The global relaxation solver satisfies a discrete entropy inequality

(%η)n+1
j ≤ (%η)nj − µ

(
Gn%η,j+1/2 − G

n
%η,j−1/2

)
, (5.32)

where the discrete entropy flux Gn%η,j+1/2 defined by the third component of Go-
dunov’s flux (5.28) is consistent with the exact entropy flux.

The resulting scheme coincides with the one constructed in section 4.3 provided
we set ∆q = ∆m, where recall that ∆m has been defined by %L+%R

2 ∆x (or some
other consistent average of %L, %R, see (4.18)), which is of course coherent with (5.2),
and if we choose C = C. In this approach, the value of ũ in (4.26) is directly given
by u∗.

5.3.3. Definition of the numerical energy flux and discrete entropy
inequalities

Let %Σ be defined by (5.21), we note E = %Σ and E = %e the total energies and

G(U) = (%Σ + Π)u = (E + Π)u. (5.33)

Note U(x, tn+1−) the value at tn+1 of the solution obtained after the evolution step
2 and E(U(x, tn+1−)) its energy. Now E is not a component of U. However, because
we use the exact Riemann solver at step 2 and our system is linearly degenerate, we
get by integrating the energy equation (5.24) the analogue of (5.27) (which concerns
the components of U) for this energy

1
∆x

∫
Cj

E(U(x, tn+1−))dx = Enj − µ
(
GnE,j+1/2− − G

n
E,j−1/2+

)
. (5.34)

The state Un
j is at equilibrium, hence we have Enj = %e(unj ) = Enj . Define the

updated value En+1
j by the right-hand side of (5.34)

En+1
j = Enj − µ

(
GnE,j+1/2− − G

n
E,j−1/2+

)
. (5.35)
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Our scheme is now well defined by (5.29), (5.30) and (5.35), and it does coincide
with that of section 4.3.

We want moreover to prove some discrete entropy inequalities. E is not convex
and we cannot directly use Jensen’s inequality, we must use a refined argument.
For the projection step, assume for a while that the projection on the equilibrium
manifold is done pointwise, i.e., define U(x, t−n+1) by

%(x, t−n+1) = %(x, tn+1−),
%u(x, t−n+1) = %u(x, tn+1−),
%η(x, t−n+1) = %η(x, tn+1−),
T (x, t−n+1) = τ(x, tn+1−).

(5.36)

We use the minimization principle (5.23) of Proposition 5.2 which says that the
maximal dissipation of entropy is attained for equilibrium states (K is a compact
set such that it contains all possible values of τ obtained at the first step)

E(Ueq) = min
T ∈K

E(U).

Then, since for U = U(x, tn+1−), we have Ueq = U(x, t−n+1), on the one side we
deduce from (5.34), (5.35)

1
∆x

∫
Cj

E(U(x, t−n+1))dx ≤ 1
∆x

∫
Cj

E(U(x, tn+1−))dx = En+1
j , (5.37)

on the other side we have

E(U(x, t−n+1)) = E(x, t−n+1). (5.38)

Since the three first components (%, %u, %η) of U(x, tn+1−) are not changed dur-
ing the projection step, whether pointwise (5.36) or as initially defined, %n+1

j =
1

∆x

∫
Ij %(x, t−n+1)dx is given by the scheme (5.29) and (%u)n+1

j by (5.30). For %η,
since it should change, we have noted it with superscript n+ 1−

%ηn+1−
j =

1
∆x

∫
Cj

%η(x, t−n+1)dx

and it is given by (5.31)

%ηn+1−
j = %ηnj − µ

(
Gn%η,j+1/2 − G

n
%η,j−1/2

)
.

Since the function (%, %u, %η)→ E is convex, we can apply Jensen’s inequality to
the expression E(x, t−n+1) = E(%, %u, %η)(x, t−n+1) and get, together with (5.37)(5.38)

En+1−
j ≡ E(%n+1

j , (%u)n+1
j , (%η)n+1−

j ) ≤ 1
∆x

∫
Cj

E(x, t−n+1)dx ≤ En+1
j .

Finally we use the fact that ε̃ satisfies ∂η ε̃(τ, η) = −T < 0, hence the mathemat-
ical entropy η is a decreasing function of the internal energy. Noting S(%, u,E) =
%η(τ, ε), where E = %e = %(ε+u2/2), we get that ∂ES < 0 and S is decreasing wrt.
the third variable. Then define

(%η)n+1
j = S(%n+1

j , un+1
j , En+1

j )
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which is the definition of the entropy of un+1
j . Hence

(%η)n+1
j = S(%n+1

j , un+1
j , En+1

j ) ≤ S(%n+1
j , un+1

j , En+1−
j ) = (%η)n+1−

j

and together with (5.31), it yields

(%η)n+1
j ≤ (%η)nj − µ

(
Gn%η,j+1/2 − G

n
%η,j−1/2

)
.

We have thus proved the result of proposition 5.3.

5.3.4. Properties

The resulting scheme is well balanced in the sense that it preserves any equilibrium
(2.9) for (5.3) which is discretized in a natural way.

Proposition 5.4. Let u0(x) be an equilibrium data for Euler system (5.3), i.e.
satisfying u0 = 0, ∂xp0 = %0g. Assume that u0

i is defined by (5.26) and define q0

with ∆q = 1
g∆p. Then ∀n > 0, uni = u0

i .

Proof. Let u0(x) be a (non constant) equilibrium data for Euler, then the ‘po-
tential’ satisfies dxp0 = gdxq0. This data is discretized for the scheme by piecewise
constant functions, thus u0

i = 0,∀i ∈ Z, and we have ∆p
∆x = %g + O(∆x) (we

might also start directly from a discrete equilibrium data satisfying ui = 0 and
∆pi+1/2

∆x = %i+%i+1
2 g or any consistent discretization). We define T 0

i = τ0
i , thus

Π0
i = p0

i , and moreover ∆q is defined such that ∆p = g∆q.
Then for all local Riemann problems involved in Godunov’s scheme, noting for

simplicity by UL,UR the states U0
i ,U

0
i+1 on each side of an interface xi+1/2, from

(5.18)(5.19) we get u∗ = 0, τ∗L,R = τL,R

Π∗L =
∆Π
2

+ ΠL −
1
2
g∆q = ΠL = pL,

similarly Π∗R = ΠR = pR the solution of the Riemann problem is indeed stationary.
This is valid for any cell i,

Wq(x/t; U0
i ,U

0
i+1) =

{
U0
i x < 0,

U0
i+1 x > 0,

(5.39)

thus the state U1
i = U0

i is at equilibrium (i.e. T = τ) and is a piecewise constant
stationary solution for system (5.16) and thus u1

i = u0
i is a discrete equilibrium for

the resulting scheme, i.e. a stationary solution with u = 0 and ∆p
∆x = %g +O(∆x).

The scheme is well balanced in the sense that it preserves a (non constant)
equilibrium for (5.3) which is discretized in a natural way. This is equivalent to the
strongly well balanced property of the scheme derived in section 4.3 (in the sense
of definition 3.6).

Remark 5.3. This property is derived directly from the nature of the exact Go-
dunov solver by noticing that (non constant) equilibria for system (5.16) with u = 0
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thus ψ(0) = ϕ(0) = 0, satisfy ∂xΠ − g∂xq = 0; the solution at the evolution step
satisfies Rankine-Hugoniot condition [Π] = g[q] which means that the solution stays
stationary, and this property remains valid after projection. �

Similarly, the scheme is naturally asymptotic preserving, at least from a heuristic
point of view. Indeed, the scaling is only active in the evolution step, not in the
projection (instantaneous relaxation) step, and this step uses an exact solver for a
differential system which mimics the original system (Euler friction with potential);
then, as we have seen in section 5.2, the asymptotic behavior of the original system
(5.7) is preserved. The advection equations are invariant: ∂tθ + u∂xθ = 0, where
θ is any quantity advected by the flow, becomes ∂sθ + v∂xθ = 0, the momentum
equation becomes (at the order 0 in 1

β ) ∂xΠ = (g − ϕ(v))∂xq. Thus, from a formal
continuity argument, if the solutions of (5.3) tend to solutions of (5.12) as β →∞,
similarly, the solutions of (5.16) tend to those of the following system


∂s%+ ∂x(%v) = 0
∂xΠ− (g − ϕ(v))∂xq = 0
∂s(%η) + ∂x(%ηv) = 0
∂s(%T ) + ∂x(%T v) = 0
∂s(%q) + ∂x(%vq) = 0,

(5.40)

or for the energy equation

∂s%ε̃+ ∂x((%ε̃+ Π)v)− (gv − ψ(v))∂xq = 0. (5.41)

For the relaxation process, we also scale the relaxation parameter µ = βν in (5.13)
so that the relaxation term writes µ%(τ − T ). Thus after first reconstruction by
piecewise constant for Godunov’scheme and the projection-relaxation on the ‘equi-
librium’ manifold T = τ for the global solver, we get (after scaling) as β → ∞ a
scheme consistent with (2.22).

6. Numerical results

We present several numerical experiments, assuming linear friction and a = 1 for
(2.1). We compare the asymptotic preserving scheme (AP) developed in the previous
sections with two other schemes.

The first numerical scheme relies on a splitting method (noted SP) based on
two steps. The first step consists in approximating the first order part of the system
and the second one corresponds to the approximation of the source terms. The
numerical method for the first step is the approximate Godunov scheme presented
before in the homogeneous case (α = g = 0). The source terms are solved by the
implicit Euler method. Then, if Un+1/2

i denotes the approximate solution after the
first step, the approximate solution at the end of the time step, that is Un+1

i , is
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given by: 
%n+1
i = %

n+1/2
i ,

(%u)n+1
i = %n+1

i

u
n+1/2
i + g∆t

1 + α∆t
,

(%E)n+1
i = (%E)n+1/2

i + ∆t
(
(%u)n+1

i g − α ((%u)n+1
i )2

%n+1
i

)
.

(6.1)

This splitting scheme is neither well-balanced nor asymptotic preserving. If we start
from an equilibrium data (2.9), it is naturally discretized by u0

i = 0 and some
discretization of ∂xp = %g of the form ∆p

∆x = %g. But the first step of the splitting
scheme introduces waves, and an intermediate state with non null velocity (given
by the value of u∗ = −∆p/2C, following formulas (3.30) where α = g = 0 for this

first step), and the second step, which writes un+1
i = u

n+1/2
i +g∆t

1+α∆t , does not restore
exact null velocity. Then we note that this last formula is not invariant under the
scaling v = αu,∆t = α∆s.

The second scheme (which we denote below by NP) is very close to the asymp-
totic preserving scheme (AP). Indeed, the only difference with the asymptotic pre-
serving scheme AP is the definition of ũ, value of the velocity in the source term,
in order to show the importance of the choice ũ = u∗ for the asymptotic preserving
property, as enlightened in Remark 3.5. We thus set ũ = u∗+∆p/(2C), which yields

u∗ =
(
ua −

g∆m
2C

)(
1 +

α∆m
2C

)−1

− 1
2C

∆p.

The numerical scheme based on this choice is strongly well-balanced but it is not
asymptotic preserving (as can be easily shown, at least in Lagrangian coordinates
(cf. Remark 3.5).

In the following, we present two numerical experiments. The first one corre-
sponds to the ability of the scheme to converge to a stationary state with u = 0,
in order to investigate the well-balanced property of the numerical schemes. The
second test case illustrates the behavior of the numerical schemes for a solution
mainly governed by the friction effects.

The length of the domain of simulation is 1 meter. The Courant number is
0.95 for all simulations. The equation of state is a classical ideal gas polytropic law
p = (γ − 1)%ε, with γ = 1.4 and the gravity constant is set to 9.81 m/s2 for both
cases.

6.1. Convergence in time to a stationary state with a null velocity

In this test, the initial condition is composed by two constant states. The friction
coefficient α is equal to 104 s−1. In the left half of the domain, we set (%, u, p) =
(2, 0, 10000) and in the right part of the domain, we set (%, u, p) = (1, 0, 5000).
At the boundaries, we impose a wall boundary condition, using the classical mirror
state technique. This test case enables us to investigate the long time behavior of the
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Fig. 1. Convergence to a stationary state with a null velocity: %, u, p wrt. x for the converged
solutions and ||u||L2 wrt. t (bottom, right)

three methods. All the figures are plotted at t = 3 s, which corresponds to converged
(in time) solutions. The mesh is made of 100 cells. Actually, one may conclude that
the three methods provide satisfactory results and we can see in Figure 1 that the
results of the schemes AP and NP are very close. The main difference is noticeable
when comparing with the splitting method SP for the variables u and p (note that
the scaling of the plot for p has emphasized the difference). In particular, one may
remark that the velocity computed by this method is small but not null. This is
made obvious on the last figure were we have plotted the evolution of the (log)L2

norm of the velocity: for the splitting method, after some decade of decrease, the
convergence history exhibits a plateau.

6.2. Sensitivity with respect to the mesh size for large friction

Here, we focus on the comparison of the three methods on an unsteady test case
with a large friction (α = 106 s−1). The initial condition corresponds to a centered
arch function. At the left and at the right, (%, u, p) = (1, 0, 10000) and in the center,
(%, u, p) = (2, 0, 26390.2). The boundary conditions are periodic and the final time is
t = 0.01 s, in order to obtain a Darcy-like solution. Figures 2, 3 and 4 respectively
represent the results of the scheme AP, SP and NP, for several meshes (100, 1000
and 10000 cells).
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Fig. 2. Mesh convergence of the AP scheme: u and p
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Fig. 3. Mesh convergence of the splitting method (SP): u and p
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Fig. 4. Mesh convergence of the non asymptotic preserving scheme (NP): u and p

We can easily see that the results of the splitting method and of the NP scheme
are very dependent on the size of the mesh (note that, for coarse meshes, the
splitting method under-estimates the velocity while the NP scheme over-estimates
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it). The asymptotic preserving scheme (AP) provides results in agreement with the
previous analysis: its accuracy depends very little on the mesh size, which gives a
hint that the numerical diffusion of the AP scheme is independent of α, contrary to
the other schemes (SP and NP).

Note that, though the sign of the velocity and thus of the energy source term
changes, the computations are very stable, illustrating the nice stability property
of the scheme.

7. Conclusion

We have developed a methodology to derive well-balanced and asymptotic preserv-
ing schemes which is detailed on the model problem of Euler sytem with gravity
and friction and can be extended to a wider class of problems. In this context, all
the notions have been given a precise definition, even if the asymptotic results are
not yet proved at the continuous level for the full Euler system with energy. Such
properties may be crucial in specific situations, as has already been mentionned
in references concerning well-balanced schemes (see for example Ref. 9). The AP
property is more recently studied and has not yet received its whole interest in
the applications, but this should come shortly since it may avoid, or make easy,
coupling procedures for simulations of flows presenting different regimes. Moreover,
the numerical illustrations above prove that the corresponding schemes behave very
well on some test problems.

Apppendix: proof of Proposition 4.1

Skipping the time superscripts, the numerical scheme writes

Ūj = Uj −
∆t
∆x

(Gj+ 1
2
−Gj− 1

2
) +

∆t
2

(Sj− 1
2

+ Sj+ 1
2
) (7.1)

with

Gj+ 1
2

= G(Uj ,Uj+1), Sj+ 1
2

= S̃(∆x,∆t; Uj ,Uj+1) (7.2)

and 
G(UL,UR) = 1

2

(
F(UL) + F(UR)

)
− 1

2

{
|λ1|(U∗L −UL) + |λ2|(U∗R −U∗L) + |λ3|(UR −U∗R)

}
.

(7.3)

Recall that, as in subsection 3.3.1, we have chosen ũ = u∗, leading to the nonlinear
scalar equation (3.39) for the actual calculation of u∗.

Under the change of variables (3.43), ∆t = β∆s, we get

Ūj = Uj − β
∆s
∆x

(Gj+ 1
2
−Gj− 1

2
) + β

∆s
2

(Sj− 1
2

+ Sj+ 1
2
) (7.4)

so that the asymptotic behavior of βG(UL,UR) and βS̃(∆x,∆t; UL,UR) when β

(or α)→ +∞ has to be determined. We first rescale the velocity, setting u∗ = 1
β v
∗
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and in view of (3.44), we know that

v∗ = ϕ−1(− ∆p
%∗(UL,UR)∆x

+ g) +O(
1
β

) (7.5)

while 

λ1 =
1
β
vL − CτL = − C

%L
+O(

1
β

),

λ2 =
1
β
v∗,

λ3 =
1
β
vR + CτR =

C

%R
+O(

1
β

).

(7.6)

Let us start with the first component of G(UL,UR), that is

1
2
{
%LuL + %RuR − |λ1|(%∗L − %L)− |λ2|(%∗R − %∗L)− |λ3|(%R − %∗R)

}
.

We deduce from (4.25)

%∗L = %L

(
1 +

%L(u∗ − uL)
C

)−1

= %L

(
1 +

%L(v∗ − vL)
βC

)−1

= %L +O(
1
β

)

and

%∗R = %R

(
1− %R(u∗ − uR)

C

)−1

= %R

(
1− %R(v∗ − vR)

βC

)−1

= %R +O(
1
β

)

and then

%L − %∗L = %L
%L(v∗ − vL)

βC

(
1 +

%L(v∗ − vL)
βC

)−1

=
%L
β

%L(v∗ − vL)
C

+O(
1
β2

)

and

%∗R − %R = %R
%R(v∗ − vR)

βC

(
1− %R(v∗ − vR)

βC

)−1

=
%R
β

%R(v∗ − vR)
C

+O(
1
β2

).

The first component of G(UL,UR) thus writes

1
2β
{
%LvL + %RvR + %L(v∗ − vL)− |v∗|(%R − %L) + %R(v∗ − vR)

}
+O(

1
β2

)

=
1

2β
{
%L(v∗ + |v∗|) + %R(v∗ − |v∗|)

}
+O(

1
β2

)

=
1
β

(%Lv∗+ + %Rv
∗
−) +O(

1
β2

)

where

v∗+ = max(v∗, 0) =
1
2

(v∗ + |v∗|), v∗− = min(v∗, 0) =
1
2

(v∗ − |v∗|).
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Let us carry on with the second component of G(UL,UR), that is
1
2

{
%Lu

2
L + pL + %Ru

2
R + pR − |λ1|(%∗Lu∗ − %LuL)− |λ2|(%∗R − %∗L)u∗

−|λ3|(%RuR − %∗Ru∗)
}
.

We have

%∗Lu
∗ − %LuL =

1
β
%L

(
v∗
(

1 +
%L(v∗ − vL)

βC

)−1

− vL

)

=
%L
β

(v∗ − vL)
(

1− %LvL
βC

)(
1 +

%L(v∗ − vL)
βC

)−1

=
1
β
%L(v∗ − vL) +O(

1
β2

),

then

(%∗R − %∗L)u∗ =
1
β

(%R − %L)v∗ +O(
1
β2

)

and

%RuR − %∗Ru∗ =
1
β
%R

(
vR − v∗

(
1− %R(v∗ − vR)

βC

)−1
)

=
%R
β

(vR − v∗)
(

1 +
%RvR
βC

)(
1− %R(v∗ − vR)

βC

)−1

=
1
β
%R(vR − v∗) +O(

1
β2

).

This second component of G(UL,UR) thus writes

1
2

(
1
β2
%Lv

2
L + pL +

1
β2
%Rv

2
R + pR

)

−1
2

{
C

β
(v∗ − vL) +

1
β2

(%R − %L)|v∗|v∗ +
C

β
(vR − v∗) +O(

1
β2

)
}

=

= pa −
C

2β
∆v +O(

1
β2

).

At last, we focus on the third component of G(UL,UR), that is
1
2

{
(%LeL + pL)uL + (%ReR + pR)uR − |λ1|(%∗Le∗L − %LeL)− |λ2|(%∗Re∗R − %∗Le∗L)

−|λ3|(%ReR − %∗Re∗R)
}
.

Using (3.34) with ∆m = %∗(UL,UR)∆x we can write

%∗Le
∗
L − %LeL = %∗L(e∗L − eL) + (%∗L − %L)eL
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=
(
%L +O(

1
β

)
) 1
βC

(
pLvL − p∗v∗ +

∆x
2
%∗(UL,UR)

(
(gv∗ − ψ(v∗)

))

−
(
%L
β

%L(v∗ − vL)
C

+O(
1
β2

)
)

(εL +
1

2β2
v2
L)

=
1
β

%L
C

{
pLvL − p∗v∗ +

∆x
2
%∗(UL,UR)

(
(gv∗ − ψ(v∗)

)
− %L(v∗ − vL)εL

}
+O(

1
β2

),

then

%∗Le
∗
L =

(
%L+O(

1
β

)
){

εL +
1

2β2
v2
L +

1
βC

(
pLvL − p∗v∗ +

∆x
2
%∗(UL,UR)

(
(gv∗ − ψ(v∗)

))}

= %LεL +O(
1
β

),

%∗Re
∗
R =

(
%R+O(

1
β

)
){

εR +
1

2β2
v2
R +

1
βC

(
p∗v∗ − pRvR +

∆x
2
%∗(UL,UR)

(
(gv∗ − ψ(v∗)

))}

= %RεR +O(
1
β

)

and finally

%ReR − %∗Re∗R = %∗R(eR − e∗R) + (%R − %∗R)eR

= −
(
%R +O(

1
β

)
) 1
βC

(
p∗v∗ − pRvR +

∆x
2
%∗(UL,UR)

(
(gv∗ − ψ(v∗)

))

−
(
%R
β

%R(v∗ − vR)
C

+O(
1
β2

)
)

(εR +
1

2β2
v2
R)

=
1
β

%R
C

{
pRvR − p∗v∗ −

∆x
2
%∗(UL,UR)

(
(gv∗ − ψ(v∗)

)
− %R(v∗ − vR)εR

}
+O(

1
β2

).

The third component of G(UL,UR) thus equals

1
2β

{
(%L(εL +

1
2β2

v2
L) + pL)vL + (%R(εR +

1
2β2

v2
R) + pR)vR

−
(
pLvL − p∗v∗ +

∆x
2
%∗(UL,UR)

(
(gv∗ − ψ(v∗)

)
− %L(v∗ − vL)εL + |v∗|(%RεR − %LεL)

+pRvR − p∗v∗ −
∆x
2
%∗(UL,UR)

(
(gv∗ − ψ(v∗)

)
− %R(v∗ − vR)εR

)}
+O(

1
β2

)

=
1

2β
{

2p∗v∗ + %LεL(v∗ + |v∗|) + %RεR(v∗ − |v∗|)
}

+O(
1
β2

)
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=
1
β

(p∗v∗ + %LεLv
∗
+ + %RεRv

∗
−) +O(

1
β2

).

Gathering together the studies of the three components of G(UL,UR) allows to
write

βG(UL,UR) =


%Lv

∗
+ + %Rv

∗
−

βpa −
C

2
(vR − vL)

p∗v∗ + %LεLv
∗
+ + %RεRv

∗
−

+O(
1
β

). (7.7)

On the other hand we have

βS̃(∆x,∆t; UL,UR) = %∗(UL,UR)


0

β
(
g − ϕ(v∗)

)
gv∗ − ψ(v∗)

 . (7.8)

We thus deduce that in the limit α→∞, the numerical scheme (7.4) goes to

%̄j = %j −
∆s
∆x

{
(%jv+

j+ 1
2

+ %j+1v
−
j+ 1

2
)− (%j−1v

+
j− 1

2
+ %jv

−
j− 1

2
)
}
,

1
∆x

(pj+ 1
2
− pj− 1

2
) =

1
2

{
%j− 1

2
(g − ϕ(vj− 1

2
)) + %j+ 1

2
(g − ϕ(vj+ 1

2
))
}
,

%̄j ε̄j = %jεj −
∆s
∆x

{
pj+ 1

2
vj+ 1

2
− pj− 1

2
vj− 1

2

+(%jεjv+
j+ 1

2
+ %j+1εj+1v

−
j+ 1

2
)− (%j−1εj−1v

+
j− 1

2
+ %jεjv

−
j− 1

2
)
}

+
∆s
2
%j+ 1

2

(
g(vj− 1

2
+ vj+ 1

2
)−

(
ψ(vj− 1

2
) + ψ(vj+ 1

2
)
))

(7.9)

where 

%j+ 1
2

= %∗(Uj ,Uj+1),

vj+ 1
2

= ϕ−1

(
g − 1

%j+ 1
2

pj+1 − pj
∆x

)
,

pj+ 1
2

=
1
2

(pj + pj+1).

(7.10)
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The pair (%̄j , ε̄j) is then updated by

%̄j = %j − ∆s
∆x

{
(%jv+

j+ 1
2

+ %j+1v
−
j+ 1

2
)− (%j−1v

+
j− 1

2
+ %jv

−
j− 1

2
)
}
,

%̄j ε̄j = %jεj − ∆s
∆x

{
(%jεjv+

j+ 1
2

+ %j+1εj+1v
−
j+ 1

2
)− (%j−1εj−1v

+
j− 1

2
+ %jεjv

−
j− 1

2
)

+ pj+ 1
2
vj+ 1

2
− pj− 1

2
vj− 1

2

+∆s
2 %j+ 1

2

(
g(vj− 1

2
+ vj+ 1

2
)−

(
ψ(vj− 1

2
) + ψ(vj+ 1

2
)
))

(7.11)
with %j+ 1

2
, vj+ 1

2
and pj+ 1

2
given by (7.10). Conversely, (7.10)-(7.11) imply (7.9).

Formulas (7.11) actually define a consistent explicit numerical scheme of the asymp-
totic system 

∂s%+ ∂x%v = 0,

∂s%ε+ ∂x(%ε+ p)v = %
(
gv − ψ(v)

) (7.12)

with 
v = ϕ−1(g − 1

%
∂xp),

p = p(%, ε),

(7.13)

which gives the desired result.
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