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This paper is devoted to the coupling problem of two scalar conservation laws through
a fixed interface located for instance at x=0. Each scalar conservation law is associated
with its own (smooth) flux function and is posed on a half-space, namely x < 0 or x > 0.
At interface x = 0 we impose a coupling condition whose objective is to enforce in a weak
sense the continuity of a prescribed variable, which may differ from the conservative un-
known (and the flux functions as well). We prove existence of a solution to the coupled
Riemann problem using a constructive approach. The latter allows in particular to high-
light interesting features like non uniqueness of both continuous and discontinuous (at
interface x = 0) solutions. The behavior of some numerical scheme is also investigated.
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1. Introduction

The coupling of partial differential equations is of increasing interest in the applied

mathematics community, and of course of increasing importance for industrial ap-

plications. Such a coupling arises for instance in the simulation of nuclear reactors
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when different two-phase flow codes are useda. In these codes, multiple modelling

scales are applied to describe the flow. For instance, different thermal-hydraulic

models can be used for each reactor component to take into account its specific

behavior, or small scale models can be used, locally, to obtain a better resolution.

When these models are put side to side, we face the problem of coupling. In addi-

tion to the definition of each model, such a problematic requires to be supplemented

with an interfacial model in order to precise the nature of the information that must

be exchanged at the coupling interface. This interfacial model may be formulated

for instance when imposing the continuity of a given set of variables. It generally

strongly affects the whole solution and must therefore be defined in order to achieve

a physically coherent description of the whole operating device under consideration.

Let us mention that similar situations appear in the modelling of networks and traf-

fic flows which have received a certain interest in the last few years. We refer for

instance the reader to,12,8,9, 16,17,21, and the references therein.

In this paper, we are interested in the one dimensional coupling problem of two

scalar conservation laws through a fixed interface, say x = 0, and more precisely

in the resolution of the coupled Riemann problem. Each scalar conservation law

is associated with its own (smooth) flux function fα, α = L, R and is posed on a

half-space, namely x < 0 (α = L) or x > 0 (α = R). Note from now on that it will

be implicitly assumed throughout the paper that the flux functions have at most

a finite number of changes of convexity, which is often (is not always) the case for

practical applications. At the coupling interface, we assume without further details

that it is physically relevant to impose the continuity of a given function vα = vα(u)

of the solution u, meaning that u is expected to satisfy

vα(u(0−, t)) = vα(u(0+, t)), t > 0. (1.1)

Note that the v-variable generally depends on α.

This approach is fairly general and referred to as the state coupling method. The the-

oretical study of such coupling conditions was initiated in the pioneering papers,19,?

in the case of scalar equations, linear systems, and the usual Lagrangian system as

well. In particular, the continuity constraint (1.1) has been reformulated in a weak

sense inspired by,13 for the sake of well-posedness. This results in considering two

boundary value problems and imposing ”as far as possible” the continuity of the v-

variable at the interface. We also refer the reader to,5,? and the references therein. It

is important to notice that this approach does not ensure the conservativity property

of the coupling problem. It does therefore significantly differ from the flux coupling

method where the continuity of the flux is imposed at the interface (vα(u) = fα(u)).

See for instance,23,24,7 and,22.

aThe authors of the present paper are involved in a joint research program on multiphase flows
between CEA (French center fo nuclear research) and University Pierre et Marie Curie-Paris6
(Laboratoire Jacques-Louis Lions) in the frame of the Neptune project,20. See for instance,3,?,?,?,?,?

and the references therein
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This paper gives the first result of global existence of a solution to the coupled

Riemann problem in this context of state coupling, using a constructive approach.

Except the smoothness hypothesis, no specific assumption is made on the flux func-

tions fα, α = L, R. It is worth noticing right now that the solution of the coupled

Riemann problem can be either continuous or discontinuous in the v-variable at the

coupling interface. In the first situation, the coupling condition (1.1) is satisfied in

the classical sense, while in the other one, it is satisfied in a weak sense only (to be

precised hereafter). In addition, the solution to the Riemann problem is shown to

be not necessarily unique, since in particular, a 1-parameter family of continuous

solutions at the coupling interface may exist for the same Riemann initial data. In

this context, it is an open problem to know wether or not there exists any natural

criterion based for instance on entropy or stability arguments for choosing one par-

ticular solution. Then, our approach is different from the ones adopted for instance

in,1 or,15 where the authors give and study different concepts of physically admis-

sible entropy weak solutions. So as to get for instance existence and uniqueness of

the corresponding Riemann weak solutions.

The outline of the paper is as follows. In Section 1, we introduce the general

framework of the state coupling method. Section 2 is devoted to the main result

of this paper, namely the existence of a solution to the coupled Riemann problem.

First of all, a geometrical description of the sets of admissible traces at the interface

is given. Then, a characterisation is given for the solutions satisfying the coupling

condition either in the strong sense (the so-called v-continuous solutions) or in

the weak sense (the so-called v-discontinuous solutions). At last, we deduce the

existence of at least one self-similar solution to any coupled Riemann problem.

Several situations of non-uniqueness are exhibited, and a first case of coupling of

scalar conservation laws ”with phase change” is treated theoretically. Section 3 is

devoted to numerical simulations, using both a relaxation and a Godunov scheme

as a building block for the derivation of the numerical strategy.

2. The state coupling method

Let fα : R → R, α = L, R, be two C1 functions; given a function u0 : R → R, we

want to find a function u : (x, t) → u(x, t) ∈ R solution of

∂u

∂t
+

∂

∂x
fL(u) = 0, x < 0, t > 0 (2.1)

∂u

∂t
+

∂

∂x
fR(u) = 0, x > 0, t > 0 (2.2)

and satisfying the initial condition

u(x, 0) = u0(x), x ∈ R (2.3)

together with coupling constraints at x = 0 that we now define. Let θα : R → R,

α = L, R, be two strictly monotone C1 functions; we require the function u to
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satisfy “as far as possible” the continuity constraint

θ−1
L (u(0−, t)) = θ−1

R (u(0+, t)), t > 0. (2.4)

Setting

v(x, t) =





θ−1
L (u(x, t)), x < 0

θ−1
R (u(x, t)), x > 0,

(2.5)

this constraint must be understood in the weak sense, following,13, 19 and,18





v(0−, t) ∈ ÕL(v(0+, t))

v(0+, t) ∈ ÕR(v(0−, t)).

(2.6)

Let us recall the definition of the sets ÕL(vd) and ÕR(vg). Denoting by

wα(x
t ; ug, ud) the self-similar solution of the Riemann problem

∂u

∂t
+

∂

∂x
fα(u) = 0, x ∈ R, t > 0

u(x, 0) =

{
ug, x < 0

ud, x > 0

and setting

zα(
x

t
; vg, vd) = θ−1

α (wα(
x

t
; θα(vg), θα(vd)))

we have 




ÕL(vd) = {zL(0−; v, vd); v ∈ R}

ÕR(vg) = {zR(0+; vg, v); v ∈ R} .

3. Solving the coupled Riemann problem.

We consider the coupled Riemann problem which corresponds to the initial condi-

tion

u0(x) =

{
ug, x < 0

ud, x > 0.
(3.1)

We set

vg = θ−1
L (ug), vd = θ−1

R (ud).

When the flux functions fα, α = L, R are strictly convex, we are able to exhibit

all the solutions of this coupled Riemann problem (2.1)-(2.3),(2.6),(3.1). This is

indeed the goal of this section. Recall that in the general case, we always assume

for simplicity that the flux functions have at most a finite number of changes of

convexity.
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3.1. Preliminaries.

Let us first recall and derive some preliminary results. Given a function f ∈ C1(R),

we consider the scalar equation

∂u

∂t
+

∂

∂x
f(u) = 0. (3.2)

We denote by w(x
t ; ug, ud) the solution of the Riemann problem for (3.2) corre-

sponding to the initial condition (3.1). In the case of a general flux function f ,

w(x
t ; ug, ud) consists of a composite wave composed of shock and rarefaction sub-

waves. It is constructed in the following way.

(i) For ud > ug, we introduce the lower convex envelope function fc of f in the inter-

val [ug, ud]. This interval is divided into rarefaction subintervals where the function

f is strictly convex (so that fc = f) separated by shock subintervals where the

function fc is affine (and the graph of f is located above the corresponding chord).

Then w(x
t ; ug, ud) is made of a sequence of rarefaction waves in the rarefaction

subintervals and shock waves in the shock subintervals. These waves are bordered

on the left by the constant state ug and on the right by the constant state ud.

These constant states are the only constant states which appear in the solution of

the Riemann problem.

(ii) For ud < ug, we introduce the upper concave envelope function f c of f in the

interval [ud, ug]. Again this interval is divided into rarefaction subintervals where

the function f is strictly concave (so that f = f c) separated by shock intervals

where f c is affine (and the graph of f is located under the corresponding chord.

Then, the solution of the Riemann problem then has the same structure as in the

case (i).

We shall say that such a composite wave has a nonnegative (resp. nonpositive)

speed if all of its subwaves (shocks or rarefactions) have nonnegative (resp. nonpos-

itive) speeds. In order to characterize the composite waves w(.; ug, ud) whose speeds

are nonnegative or nonpositive, we determine the minimal and maximal speeds σmin

and σmax of such a composite wave. Denote by I(ug, ud) the closed interval whose

end points are ug and ud. Then, we can state

Lemma 3.1. We have

σmin = min
u∈I(ug,ud)

f(u) − f(ug)

u − ug
(3.3)

and

σmax = max
u∈I(ug,ud)

f(u) − f(ud)

u − ud
(3.4)

with the following convention

f(u) − f(ua)

u − ua
= f ′(ua) for u = ua, a = g, d. (3.5)
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Proof. Let us check (3.3) for instance. We begin by observing that σmin is the

speed of the left boundary of the fan of the composite wave w(.; ug, ud). Assume

first ud > ug. If the left subwave of w(.; ug , ud) is a shock that connects ug and a

state u1, its speed is

σmin =
f(u1) − f(ug)

u1 − ug
.

On the other hand, it is clear geometrically (cf. Fig. 1a) that we have for all u ∈

(ug, ud]

f(u) − f(ug)

u − ug
>

f(u1) − f(ug)

u1 − ug
.

Hence, using the convention (3.5), we obtain

σmin = min
u∈[ug,ud]

f(u) − f(ug)

u − ug
. (3.6)

If this left subwave is a rarefaction, σmin is the speed of the left side of the rarefaction

fan which is given by

σmin = f ′(ug)

Again, it is obvious geometrically (cf. Fig. 1b) that we have for all u ∈ (ug, ud]

f ′(ug) <
f(u) − f(ug)

u − ug
.

Therefore (3.6) still holds.

Consider next the case where ug > ud. Using Fig. 2 and a fairly similar analysis,

one can check that

σmin = min
u∈[ud,ug ]

f(u) − f(ug)

u − ug
.

This proves (3.3). The property (3.4) is established exactly in the same way.

f(u)

u

ug

ud

f(u)

u

ud

ug

Fig. 1: ug < ud and the left subwave is a shock (a) or a rarefaction (b)
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As a consequence of Lemma 1, we obtain that a (composite) wave w(.; ug, ud)

has a nonnegative speed if and only if

min
u∈I(ug,ud)

f(u) − f(ug)

u − ug
≥ 0

and a nonpositive speed if and only if

max
u∈I(ug,ud)

f(u) − f(ud)

u − ud
≤ 0.

In other words, we get




w(0−; ug, ud) = ug ⇐⇒ min
u∈I(ug,ud)

f(u) − f(ug)

u − ug
≥ 0,

w(0+; ug, ud) = ud ⇐⇒ max
u∈I(ug,ud)

f(u) − f(ud)

u − ud
≤ 0.

(3.7)

Now, given a state u0, we look for the set E+(u0) (resp. E−(u0)) of all states

u 6= u0 which can be connected to u0 on the left (resp. on the right) by a nontrivial

(composite) wave w(·; u, u0) (resp. w(·; u0, u)) whose speed is nonnegative (resp.

nonpositive). The above results yield

Lemma 3.2. We have

E+(u0) =

{
u 6= u0; min

v∈I(u0,u)

f(v) − f(u)

v − u
≥ 0

}
(3.8)

and

E−(u0) =

{
u 6= u0; max

v∈I(u0,u)

f(v) − f(u)

v − u
≤ 0

}
. (3.9)

It remains to give a geometric characterization of the conditions (3.8) and (3.9).

This is easily done when the flux function f is either monotone or strictly convex.

f(u)

u

ud

ug

f(u)

u

ud

ug

Fig. 2: ug > ud and the left subwave is a shock (a) or a rarefaction (b)
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Example 2.1. the case of a monotone flux function. If the function f is strictly

increasing so that

f(v) − f(u)

v − u
> 0 for all v 6= u,

we obtain

E+(u0) = R \ {u0} , E−(u0) = ∅

while if the function f is strictly decreasing, we find

E+(u0) = ∅, E−(u0) = R \ {u0} . �

Example 2.2. the case of a strictly convex flux function. When the function f is

strictly convex, we denote by ū the sonic state of f characterized by f ′(ū) = 0 with

the convention that ū = −∞ (resp. ū = +∞) if the function f is strictly increasing

(resp. strictly decreasing). With the state u0, we associate the state ũ0 defined by




f(ũ0) = f(u0), ũ0 6= u0 if ū exists,

ũ0 = ū = −∞ if f is strictly increasing,

ũ0 = ū = +∞ if f is strictly decreasing.

(3.10)

Lemma 3.3. Assume that the function f is strictly convex. Then

E+(u0) = {u 6= u0; u ≥ max(ū, ũ0)} (3.11)

and

E−(u0) = {u 6= u0; u ≤ min(ū, ũ0)} . (3.12)

Proof. Let us check for instance the property (3.11). Given u ∈ R, we define the

function g by

g(v) =
f(v) − f(u)

v − u
, v 6= u, g(u) = f ′(u).

Since

g′(v) =
f(u) − f(v) + f ′(v)(v − u)

(v − u)2

and by the strict convexity of f

f(u) − f(v) + f ′(v)(v − u) > 0, v 6= u,

this function g is strictly increasing. Hence we obtain

min
v∈I(u0,u)

g(v) =





g(u0) =
f(u0) − f(u)

u0 − u
if u0 < u

g(u) = f ′(u) if u0 > u
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so that

min
v∈I(u0,u)

g(v) ≥ 0 ⇐⇒





f(u) ≥ f(u0) if u0 < u

f ′(u) ≥ 0 if u0 > u.

Now the condition f(u) ≥ f(u0) for u0 < u holds trivially if u0 ≥ ū but means

u ≥ ũ0 if u0 ≤ ū. On the other hand, the condition f ′(u) ≥ 0 means u ≥ ū. The

property (3.11) is then proved.

In the above examples, E±(u0) is an interval or the whole real line, the state u0

being excluded. In the case of a general flux function, E±(u0) consists of an interval

or a union of disjoint intervals (cf. Fig. 3).

We next give another useful characterization of the sets E±(u0)

Lemma 3.4. We have

E+(u0) = {u = w(0−; y, u0), y ∈ R; u 6= u0} (3.13)

and

E−(u0) = {u = w(0+; u0, y), y ∈ R; u 6= u0} . (3.14)

Proof. Let u = w(0−; y, u0) 6= u0 for some y ∈ R. Then, u is connected to u0

by a wave w(·; u, u0) whose speed is nonnegative, i.e., u ∈ E+(u0). Conversely, if

u ∈ E+(u0), then u = w(0−; u, u0) 6= u0 which proves (3.13). The property (3.14)

is established in a similar way.

In the sequel, we will make use of the following sets:





F+(u0) = {u = w(0+; y, u0), y ∈ R; u 6= u0}

F−(u0) = {u = w(0−; u0, y), y ∈ R; u 6= u0} .

(3.15)

u

f(u)

u0

f(u)

u

u0

Fig. 3: In bold-face, the sets E−(u0) (a) and E+(u0) (b), u0 being excluded in both

cases, and the other circle points being included
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that we now characterize.

Lemma 3.5. We have

F+(u0) =

{
u 6= u0;

f(v) − f(u)

v − u
> 0 ∀v ∈ I(u, u0), v 6= u

}
. (3.16)

and

F−(u0) =

{
u 6= u0;

f(v) − f(u)

v − u
< 0 ∀v ∈ I(u, u0), v 6= u

}
. (3.17)

Proof. Let us check (3.16). We first prove

F+(u0) =
{
u ∈ E+(u0); w(0−; u, u0) = w(0+; u, u0)

}
.

Indeed, let u ∈ F+(u0); clearly u is connected to u0 on the left by a wave whose

speed is nonnegative (cf. Fig. 4) so that u ∈ E+(u0). In addition, we have

u = w(0−; u, u0) = w(0+; u, u0). (3.18)

Conversely, if u ∈ E+(u0) satisfies (3.18), u belongs obviously to F+(u0). We

next show that u ∈ E+(u0) satisfies (3.18) if and only if

f(v) − f(u)

v − u
> 0 ∀v ∈ I(u, u0), v 6= u.

Observe that the equality w(0−; u, u0) = w(0+; u, u0) holds if and only if the left

subwave of w(·; u, u0) is not a stationary shock. Since u ∈ E+(u0), we already know

from Lemma 2 that (3.8) holds and therefore

f ′(u) ≥ 0,
f(u) − f(u0)

u − u0
≥ 0.

Then, if we assume u > u0, it is clear geometrically (cf. Fig. 5) that we must have

f(v) < f(u) ∀v ∈ [u0, u).

x

t

0

y u0

wL
(.;

y, u−

)

uu
−

w
R (.;u, u

0 )

Fig. 4: u ∈ F+(u0), i.e. u = w(0+; y, u0), y ∈ R.
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Indeed, we have a stationary shock if and only if it exists a state u1 ∈ [u0, u) such

that f(u) = f(u1). Hence, there does not exist such a stationary shock if and only

if

f(v) − f(u)

v − u
> 0 ∀v ∈ [u0, u).

Similarly, for u < u0, a stationary shock does not exist if and only if

f(v) < f(u) ∀v ∈ (u, u0]

or equivalently

f(v) − f(u)

v − u
> 0 ∀v ∈ (u, u0].

This proves (3.16). The characterization (3.17) of F−(u0) is obtained analogously.

Example 2.1. (contd.) If the flux function f is strictly increasing, we have

F+(u0) = E+(u0) = R \ {u0} , F−(u0) = E−(u0) = ∅

while for a strictly decreasing function f

F+(u0) = E+(u0) = ∅, F−(u0) = E−(u0) = R \ {u0} . �

Example 2.2. (contd.) Here we can state

Lemma 3.6. Assume that the function f is strictly convex. Then

F+(u0) = {u 6= u0; u ≥ max(ū, ũ0), u 6= ũ0} (3.19)

u

f(u)

u

u0

Fig. 5: In bold-face, the set F+(u0), u0 being excluded, and the other circle points

being included (note the difference with respect to Fig. 3b). Here u ∈ F+(u0).
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and

F−(u0) = {u 6= u0; u ≤ min(ū, ũ0), u 6= ũ0} . (3.20)

Proof. We check for instance the property (3.19). It follows from (3.13) that we

have to restrict ourselves to the states u ≥ max(ū, ũ0). Assume first u ≥ ū so that

ū ≥ ũ0. Then, we observe that, for u ≥ ū, we have indeed

f(v) − f(u)

v − u
> 0 ∀v ∈ I(u0, u), v 6= u

and thus u ∈ F−(u0). Consider next the case ū ≥ u0 for which ũ0 ≥ ū. For u ≥ ũ0,

we obtain

f(v) − f(u)

v − u
> 0 ∀v ∈ [u0, u)

if and only if u > ũ0 (cf. Fig. 6) which proves (3.19).

Now, let θ ∈ C1(R) be a strictly monotone function; only for the sake of con-

venience, we will assume that θ satisfies θ′ > 0 and maps R onto itself. We set

f̃(v) = f(θ(v)) and we denote by z(x
t ; vg, vd) the solution of the Riemann problem

expressed in the variable v = θ−1(u), i.e.,

z(
x

t
; vg, vd) = θ−1(w(

x

t
; θ(vg), θ(vd)).

With a given state v0 we associate the sets of states




Ẽ+(v0) = {v = z(0−; y, v0), y ∈ R; v 6= v0}

F̃+(v0) = {v = z(0+; y, v0), y ∈ R; v 6= v0}

(3.21)

u0 ũ0

ū

f(u)

u

Fig. 6: In bold-face, the set F+(u0), ũ0 being excluded.
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and





Ẽ−(v0) = {v = z(0+; v0, y), y ∈ R; v 6= v0}

F̃−(v0) = {v = z(0−; v0, y), y ∈ R; v 6= v0} .

(3.22)

Using Lemmas 2 and 5, we have




Ẽ+(v0) =

{
v 6= v0; min

w∈I(v0,v)

f̃(w) − f̃(v)

w − v
≥ 0

}

F̃+(v0) =

{
v 6= v0;

f̃(w) − f̃(v)

w − v
> 0 ∀w ∈ I(v0, v), w 6= v

} (3.23)

and




Ẽ−(v0) =

{
v 6= v0; max

w∈I(v0,v)

f̃(w) − f̃(v)

w − v
≤ 0

}

F̃−(v0) =

{
v 6= v0;

f̃(w) − f̃(v)

w − v
< 0 ∀w ∈ I(v0, v), w 6= v

}
.

(3.24)

Example 2.1. (contd.) If the function f is strictly increasing, we have

Ẽ+(v0) = F̃+(v0) = R \ {v0} , Ẽ−(v0) = F̃−(v0) = ∅

while if f is strictly decreasing

Ẽ+(v0) = F̃+(v0) = ∅, Ẽ−(v0) = F̃−(v0) = R \ {v0} . �

Example 2.2. (contd.) When the function f is strictly convex, we denote by v̄ =

θ−1(ū) the sonic state of f̃ . Given a state v0, we set u0 = θ(v0) and ṽ0 = θ−1(ũ0).

Then we obtain

Ẽ+(v0) = {v 6= v0; v ≥ max(v̄, ṽ0)} , F̃+(v0) =
{
v ∈ Ẽ+(v0); v 6= ṽ0

}

and

Ẽ−(v0) = {v 6= v0; v ≤ min(v̄, ṽ0)} , F̃−(v0) =
{
v ∈ Ẽ−(v0); v 6= ṽ0

}
. �

3.2. v-continuous solutions.

Let us now look for all possible self-similar solutions u = u(x
t ) of the coupled

Riemann problem. Again, for convenience, we assume that both functions θL and

θR are strictly increasing and map R onto itself. We begin with those self-similar

solutions which are v-continuous at the interface (in the strong sense), i.e., which

satisfy

v(0−) = v(0+) = v(0) (3.25)
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where v is defined from u as in (2.5), or equivalently which satisfy the constraint

v(0) ∈
(
{vg} ∪ F̃−

L (vg)
)
∩

(
{vd} ∪ F̃+

R (vd)
)

. (3.26)

Hence, besides the trivial solution corresponding to v(0) = vg = vd
b, we obtain

three types of v-continuous solutions.

(i) The first type of v-continuous solution. If

v(0) = vd ∈ F̃−

L (vg),

the solution of the coupled Riemann problem coincides with the solution zL(·; vg, vd)

of the L-Riemann problem: it consists of a (composite) L-wave whose speed is

nonpositive. Such a solution is characterized by

f̃L(v) − f̃L(vd)

v − vd
< 0 ∀v ∈ I(vg, vd), v 6= vd.

(ii) The second type of v-continuous solution. If

v(0) = vg ∈ F̃+
R (vd),

the solution of the coupled Riemann problem coincides with the solution zR(·; vg, vd)

of the R-Riemann problem: it consists of a (composite) R-wave whose speed is

nonnegative. Such a solution is characterized by

f̃R(v) − f̃R(vg)

v − vg
> 0 ∀v ∈ I(vg, vd), v 6= vg.

(iii) The third type of v-continuous solution. The general case is indeed

obtained by choosing

v(0) ∈ F̃−

L (vg) ∩ F̃+
R (vd)

Obviously, this requires the condition

F̃−

L (vg) ∩ F̃+
R (vd) 6= ∅.

Then a solution of the coupled Riemann problem coincides with zL(·; vg , v(0)) in the

domain (x < 0, t > 0) and with zR(·; v(0), vd) in the domain (x >, t > 0). It consists

of two (composite) waves: a L-wave whose speed is nonpositive and a R-wave whose

speed is nonnegative. Such a solution is characterized by the conditions




f̃L(v) − f̃L(v(0))

v − v(0)
< 0 ∀v ∈ I(vg, v(0)), v 6= v(0)

f̃R(v) − f̃R(v(0))

v − v(0)
> 0 ∀v ∈ I(v(0), vd), v 6= v(0).

bwhich is excluded since, once for all, we have supposed vg 6= vd.
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We thus find a one-parameter family of solutions depending on the parameter

v(0) ∈ F̃−

L (vg) ∩ F̃−

R (vd).

Let us notice that a solution of type (i) or type (ii) is that of a classical L or

R-Riemann problem and may be viewed as a quasi trivial solution of this coupling

problem.

We now apply these results to the case where both flux functions fL and fR are

either strictly monotone or strictly convex.

Example 2.3. The case of strictly monotone flux functions.

(a) Suppose first that the functions fL and fR are strictly decreasing so that

F̃−

L (vg) = R \ {vg} , F̃+
R (vd) = ∅.

Then, clearly the solution of type (i) alone is admissible.

(b) Similarly, if the functions fL and fR are strictly increasing so that

F̃−

L (vg) = ∅, F̃+
R (vd) = R \ {vd} ,

the solution of type (ii) alone is admissible.

(c) Suppose next that fL is strictly increasing and fR is strictly decreasing. We have

F̃−

L (vg) = F̃+
R (vd) = ∅. Then, none of the existence conditions of a v-continuous so-

lution holds: there does not exist any v-continuous solution of the coupled Riemann

problem (except the trivial solution corresponding to v(0) = vg = vd).

(d) If fL is strictly decreasing and fR is strictly increasing , we have

F̃−

L (vg) = R \ {vg} , F̃+
R (vd) = R \ {vd} .

Hence any above condition of existence of a v-continuous solution holds: there ex-

ists a one-parameter family of solutions of type (iii) depending on the parameter

v(0) ∈ R. Clearly this family contains the solution of type (i) and that of type

(ii). Hence the coupled Riemann problem has an infinite number of v-continuous

solutions and it is enough to specify v(0) for determining the unique corresponding

solution.

Example 2.4. The case of strictly convex flux functions with sonic states.

Here we assume that fα, α = L, R, is a strictly convex function and possesses a

sonic state ūα. We set: v̄α = θ−1
α (ūα). With the pair (vg, vd), we associate the pair

(ṽg, ṽd) defined by




f̃L(ṽg) = f̃L(vg), ṽg 6= vg if vg 6= v̄L

ṽg = v̄L if vg = v̄L

,





f̃R(ṽd) = f̃R(vd), ṽd 6= vd if vd 6= v̄R

ṽd = v̄R if vd = v̄R.

Using the results of Example 2.2, we thus have

F̃−

L (vg) = {v 6= vg; v < min(v̄L, ṽg), v 6= ṽg}
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F̃+
R (vd) = {v 6= vd; v > max(v̄R, ṽd), v 6= ṽd} .

(a) If

vd ∈ F̃−

L (vg) ⇔ vd ≤ min(v̄L, ṽg), vd 6= ṽg,

there exists a solution of type (i) (a L-wave) to the coupled Riemann problem. This

is the only solution of this kind.

(b) If

vg ∈ F̃+
R (vg) ⇔ vg ≥ max(v̄R, ṽd), vg 6= ṽd,

there exists a solution of type (ii) (a R-wave) to the coupled Riemann problem.

This is the only solution of this type.

(c) When

F̃−

L (vg) ∩ F̃+
R (vd) 6= ∅ ⇔ max(v̄R, ṽd) ≤ min(v̄L, ṽg),

we can construct a family of solutions of type (iii) (a L-wave followed by a R-wave)

depending on the parameter v(0) ∈ [max(v̄R, ṽd), min(v̄L, ṽg)]. They are the only

solutions of type (iii).

It is worthwile to notice that, given a pair (vg, vd), we may have v-continuous

solutions of several types. For instance, if

vd ≤ max(v̄R, ṽd) ≤ min(v̄L, ṽg)

solutions of types (i) and (iii) are valid.

3.3. v-discontinuous solutions.

We next look for the self-similar solutions of the coupled Riemann problem which

are v-discontinuous at the interface x = 0. Setting

v− = v(0−), v+ = v(0+),

the coupling constraints (2.6) read here





v− ∈ ÕL(v+) ⇔ v− = zL(0−; v−, v+),

v+ ∈ ÕR(v−) ⇔ v+ = zR(0+; v−, v+).

Since we assume v− 6= v+, zL(·; v−, v+) and zR(·; v−, v+) are both non trivial waves.

The coupling constraints mean that zL(·; v−, v+) is a wave with a nonnegative speed

while zR(·; v−, v+) is a wave with a nonpositive speed.

On the other hand, any solution of the coupled Riemann problem consists neces-

sarily of a L-wave whose speed is nonpositive and a R-wave whose speed is nonnega-

tive. In other words, the wave zL(·; vg , v−) has a nonpositive speed while zR(·; v+, vd)

has a non negative speed (see Fig. 7).

Let us then state
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Lemma 3.7. One of the two following situations holds:

(i) v− = vg ⇒ f̃ ′
L(vg) ≥ 0;

(ii) v− 6= vg ⇒ f̃ ′
L(v−) = 0 and the right subwave of zL(·; vg , v−) is a rarefaction.

In the case (ii), it is worthwile to notice that v− is a sonic state of the right

rarefaction subwave of zL(·; vg , v−).

Proof. We begin by proving the lemma when θL = id, i.e., when v = u is the

conservative variable. Since wL(·; u−, u+) has a nonnegative speed, we have

min
u∈I(u

−
,u+)

fL(u) − fL(u−)

u − u−

≥ 0

which implies f ′
L(u−) ≥ 0. If we assume u− = ug, we obtain f ′

L(ug) ≥ 0. Assume

next u− 6= ug. Then wL(·; ug, u−) has a nonpositive speed so that

max
u∈I(ug,u

−
)

fL(u) − fL(u−)

u − u−

≤ 0

which yields f ′
L(u−) ≤ 0. Hence we find f ′

L(u−) = 0. As a consequence, the right

subwave of wL(·; ug, u−) is either a rarefaction with u− as a sonic state or a sta-

tionary shock. But, since wL(0−; ug, u−) = u−, a stationary shock is not allowed.

This proves the lemma when v = u.

Let us now turn to the general case of a nonconservative variable v. Since f̃ ′
L(v) =

f ′
L(θL(v))θ′L(v) and θ′L(v) > 0, the above properties (i) and (ii) become respectively

v− = vg ⇒ f̃ ′
L(vg) ≥ 0

v− 6= vg ⇒ f̃ ′
L(v−) = 0

and the proof is complete.

Similarly, one can state

Lemma 3.8. One of the two following situations holds:

(i) v+ = vd ⇒ f̃ ′
R(vd) ≤ 0;

(ii) v+ 6= vd ⇒ f̃ ′
R(v+) = 0 and the left subwave of zR(·; v+, vd) is a rarefaction.

vd
vg

v+

x

t

zL
(.;

vg
, v−

)

z
R (.; v

+ , v
d )

0

v
−

Fig. 7: A v-discontinuous solution to the coupled Riemann problem
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As a consequence of Lemmas 7 and 8, we find that the self-similar v-

discontinuous solutions of the coupled Riemann problem are necessarily of the four

following types.

(i) The first type of v-discontinuous solution (see Fig. 8). It consists of

a stationary discontinuity with v− = vg and v+ = vd. Such a solution exists if and

only if we have

f̃ ′
L(vg) ≥ 0 ≥ f̃ ′

R(vd)

together with the coupling conditions which read here

min
v∈I(vg,vd)

f̃L(v) − f̃L(vg)

v − vg
≥ 0,

max
v∈I(vg,vd)

f̃R(v) − f̃R(vd)

v − vd
≤ 0.

(ii) The second type of v-discontinuous solution (see Fig. 9). It consists of

a L-wave whose right subwave is a rarefaction with v− as a sonic state followed by

a stationary discontinuity with v+ = vd. Such a solution exists under the following

conditions. On the one hand, we have

f̃ ′
R(vd) ≤ 0

and there exists a sonic state v̄L of f̃L, v̄L 6= vg, such that

max
v∈I(vg,v̄L)

f̃L(v) − f̃L(v̄L)

v − v̄L
= f̃ ′

L(v̄L) = 0

and v− = v̄L. On the other hand, we require the associated coupling conditions

min
v∈I(v̄L,vd)

f̃L(v) − f̃L(v̄L)

v − v̄L
≥ 0,

x

t

0

vg vd

Fig. 8: The first type of v-discontinuous solution : a stationary discontinuity.
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max
v∈I(v̄L,vd)

f̃R(v) − f̃R(vd)

v − vd
≤ 0.

(iii) The third type of v-discontinuous solution (see Fig. 10). It consists of

a stationary discontinuity with v− = vg followed by a R-wave whose left subwave

is a rarefaction with v+ as a sonic state. This solution exists under the following

conditions. On the one hand, we have

f̃ ′
L(vg) ≥ 0

and there exists a sonic state v̄R of f̃R, v̄R 6= vd such that

min
v∈I(v̄R,vd)

f̃R(v) − f̃R(v̄R)

v − v̄R
= f̃ ′

R(v̄R) = 0

and v+ = v̄R. On the other hand, the associated coupling conditions read

min
v∈I(vg,v̄R)

f̃L(v) − f̃L(vg)

v − vg
≥ 0,

max
v∈I(vg,v̄R)

f̃R(v) − f̃R(v̄R)

v − v̄R
≤ 0.

(iv) The fourth type of v-discontinuous solution (see Fig. 11). It consists

of a L-wave whose right subwave is a rarefaction with v− as a sonic state followed

by a stationary discontinuity and a R-wave whose left subwave is a rarefaction with

v+ as a sonic state. For obtaining such a solution, the following conditions hold:

there exist sonic states v̄L 6= vg and v̄R) 6= vd of f̃L and f̃R respectively such that

max
v∈I(vg,v̄L)

f̃L(v) − f̃L(v̄L)

v − v̄L
= f̃ ′

L(v̄L) = 0,

min
v∈I(v̄R,vd)

f̃R(v) − f̃R(v̄R)

v − v̄R
= f̃ ′

R(v̄R) = 0

vg

x

t

0

vd

zL
(.;

vg
, v−

)

v
−

Fig. 9: The second type of v-discontinuous solution : a L-wave whose right subwave

is a rarefaction, followed by a stationary discontinuity.



January 19, 2010 17:34 WSPC/INSTRUCTION FILE BoutinChalon-
sRaviart

20 BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART

and v− = v̄L, v+ = v̄R. In addition, we require the coupling conditions

min
v∈I(v̄L,v̄R)

f̃L(v) − f̃L(v̄L)

v − v̄L
≥ 0

and

max
v∈I(v̄L,v̄R)

f̃R(v) − f̃R(v̄R)

v − v̄R
≤ 0.

Again we apply the above results to the cases where both flux functions are either

strictly monotone or strictly convex.

Example 2.3. The case of strictly monotone flux functions. (contd.)

(a) If the functions fL and fR are strictly decreasing, we have f̃ ′
L ≤ 0 and f̃ ′

R ≤ 0

and no v-discontinuous solution can exist. This is obvious for solutions of types (i)

and (iii). On the other hand, due to the coupling conditions, solutions of types (ii)

and (iv) are not admissible. For instance, in the case of a solution of type (ii), the

vd

x

t

0

v+

vg

z
R (.; v

+ , v
d )

Fig. 10: The third type of v-discontinuous solution : a stationary discontinuity

followed by a R-wave whose left subwave is a rarefaction.

vd
vg

x

t

0

zL
(.;

vg
, v−

)

v
−

v+

z
R (.; v

+ , v
d )

Fig. 11: The fourth type of v-discontinuous solution : a L-wave whose right subwave

is a rarefaction, followed by a stationary discontinuity, itself followed by a R-wave

whose left subwave is a rarefaction.
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first coupling condition implies the existence of a sonic state v̄L such that v̄L = vd,

i.e., v− = v+ which is clearly excluded.

(b) If fL and fR are strictly increasing, a similar analysis shows again that there

cannot exist any v- discontinuous solution.

(c) If fL is strictly increasing and fR is strictly decreasing, only the v-discontinuous

solution of type (i), i.e., a stationary discontinuity, is admissible. Indeed, such a

solution is clearly admissible. On the other hand, a solution of type (ii) cannot exist

since the condition

max
v∈I(vg,v̄L)

f̃L(v) − f̃L(v̄L)

v − v̄L
= f̃ ′

L(v̄L) = 0

implies v̄L = vg and therefore v− = vg so that the L-wave does not exist. Using

similar arguments, one can check that the solutions of types (iii) and (iv) are also

excluded.

(d) If fL is strictly decreasing and fR is strictly increasing, no v-discontinuous so-

lution may exist since the coupling conditions are never satisfied.

To summarize, a v-discontinuous solution exists only when fL is strictly increas-

ing and fR is strictly decreasing . This is a stationary discontinuity. �

Example 2.4.(contd.) Consider again the case where both flux functions fL and

fR are strictly convex and possess sonic states ūL and ūR respectively. Since, for

α = L, R, the function θα is assumed to satisfy θ′α > 0, the function f̃α has a unique

sonic state v̄α = θ−1
α (ūα) and is strictly decreasing in (−∞, v̄α) (resp. strictly in-

creasing in (v̄α, +∞)). We introduce again the states ṽg and ṽd defined above. Note

that, in this strictly convex case, the sonic state v̄L 6= vg of f̃L satisfies the condition

max
v∈I(vg,v̄L)

f̃L(v) − f̃L(vg)

v − vg
= f̃ ′

L(v̄L) = 0

if and only if vg < v̄L or equivalently f̃ ′
L(vg) < 0. Similarly, the sonic state v̄R 6= vd

of f̃R satisfies the condition

min
v∈I(v̄R,vd)

f̃R(v) − f̃R(vd)

v − vd
= f̃ ′

R(v̄R) = 0

if and only if vd > v̄R or equivalently f̃ ′
R(vd) > 0.

On the other hand, for va = vg ≥ v̄L or va = v̄L, a coupling condition of the

form

min
I(va,vb)

f̃L(v) − f̃L(va)

v − va
≥ 0

holds if and only if vb ≥ ṽa where

ṽa =

{
ṽg if va = vg

v̄L if va = v̄L.
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Similarly, for vb = vd ≤ v̄R or vb = v̄R, a coupling condition of the form

max
I(va,vb)

f̃R(v) − f̃R(vb)

v − vb
≤ 0

holds if and only if va ≤ ṽb where

ṽb =

{
ṽd if vb = vd

v̄R if vb = v̄R.

Then, it is an easy matter to check that a v-discontinuous solution exists in the

following situations.

(a) If

v̄L ≤ vg ≤ ṽd, ṽg ≤ vd ≤ v̄R,

we obtain a v-discontinuous solution of type (i), i.e., a stationary discontinuity.

(b) If

vg < v̄L < vd ≤ v̄R,

we find a v-discontinuous solution of type (ii), i.e., a L-wave followed by a stationary

discontinuity.

(c) If

v̄L ≤ vg < v̄R < vd,

we obtain a v-discontinuous solution of type (iii), i.e., a stationary discontinuity

followed by a R-wave.

(d) If

vg < v̄L < v̄R < vd,

we find a v-discontinuous solution of type (iv), i.e., a L-wave followed by a stationary

discontinuity and a R-wave.

Note that each case (i)-(iv) is disclosed from the others and each v-discontinuous

solution is uniquely defined. �

3.4. Solution of the coupled Riemann problem.

We are now able to solve the coupled Riemann problem for all pair (ug, ud) or

(vg, vd). We begin with the cases where the flux functions fα, α = L, R, are either

strictly monotone or strictly convex.

Example 2.3.(contd.) We first assume that fα, α = L, R is a strictly monotone

function. Combining the above results, we obtain the following conclusions.

(a) The functions fL and fR are strictly decreasing. The solution is v-continuous:

it is a L-wave.

(b) The functions fL and fR are strictly increasing. The solution is v-continuous:

it is a R-wave.
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(c) The function fL is strictly increasing and the function fR strictly decreasing.

The solution is v- discontinuous: it is a stationary discontinuity.

(d) The function fL is strictly decreasing and the function fR is strictly increasing.

The solutions are v- continuous and form a one-parameter family depending on thre

parameter v(0) ∈ R. For v(0) 6= vg, vd, we obtain a L-wave followed by a R-wave.

For v(0) = vd, we obtain a L-wave while, for v(0) = vg, we get a R-wave.

To summarize, in this case, the coupled Riemann problem has always a solution.

This solution is unique except in the subcase (d). Note that, as in,19, one could have

obtained directly the above results by using a method of characteristics.

Example 2.4.(contd.) Assume now that the flux functions fL and fR are strictly

convex and possess sonic states ūL and ūR respectively.Let us check that the cou-

pled Riemann problem has at least one solution. First of all, we already know from

the results of section 2.1.2 that a v- continuous solution exists in the following cases.

(a) For vd ≤ min(v̄L, ṽg), vd 6= ṽg, the solution is a L-wave.

(b) For vg ≥ max(v̄R, ṽd), vg 6= ṽd, the solution is a R-wave.

(c) If max(v̄R, ṽd) ≤ min(v̄L, ṽg), we obtain a family of v-continuous solutions

consisting of a L-wave followed by a R-wave and depending on the parameter

v(0) ∈ [max(v̄R, ṽd), min(v̄L, ṽg)].

It remains to exhibit a v-discontinuous solution when a v- continuous one does

not exist, i.e., when the pair (vg, vd) satisfies the conditions





vd > min(v̄L, ṽg)

vg < max(v̄R, ṽd)

max(v̄R, ṽd) > min(v̄L, ṽg).

(3.27)

In fact, it is convenient to distinguish the following cases:

(vg ≥ v̄L, vd ≤ v̄R), (vg ≥ v̄L, vd > v̄R), (vg < v̄L, vd ≤ v̄R), (vg < v̄L, vd > v̄R).

(d) For (vg ≥ v̄L, vd ≤ v̄R), the conditions (3.27) become respectively

vd < ṽg, vg < ṽd, ṽd > ṽg.

This case is therefore characterized by

v̄L ≤ vg < ṽd, ṽg < vd ≤ v̄R.

Then, applying the results of section 2.1.3, we obtain that the solution of the coupled

Riemann problem is a stationary discontinuity.

(e) For (vg ≥ v̄L, vd > v̄R), the conditions (3.27) read

vd > ṽg, vg < v̄R, v̄R > ṽg

so that this case is characterized by

v̄L ≤ vg < v̄R < vd.
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This implies that the solution is a L-wave followed by a stationary discontinuity.

(f) For (vg < v̄L, vd ≤ v̄R), (3.27) gives

vd > v̄L, vg < ṽR, ṽd > v̄L.

This leads us to the characterization

vg < v̄L < vd ≤ v̄R

and we obtain a solution consisting of a stationary discontinuity followed by a R-

wave.

(g) For (vg < v̄L, vd > v̄R), the conditions (3.27) become

vd > v̄L, vg < v̄R, v̄R > v̄L

and therefore

vg < v̄L < v̄R < vd.

We find a solution consisting of a L-wave followed by a stationary discontinuity and

a R-wave.

Observe that, in each case (d)-(g), the conditions (3.27) are exactly the condi-

tions obtained in the previous section which ensure the existence and uniqueness of

a v-discontinuous solution. We thus have proved

Theorem 3.1. Assume that the functions fL and fR are strictly convex and possess

sonic states. Then the coupled Riemann problem has at least one solution. The

solution is unique except in the case (c) where there exists a one-parameter family

of v-continuous solutions. �

We pass to the general case of arbitrary flux functions. The situation is not as

simple as in the above examples due to the possible presence of several sonic states.

The purpose of the remaining part of this section is to prove

Theorem 3.2. Assume that the flux functions fL and fR are C1 functions. Then

the coupled Riemann problem has at least one self-similar solution.

We know already that we can construct a v-continuous solution in the following

cases:

vd ∈ F̃−

L (vg), vg ∈ F̃+
R (vd), F̃−

L (vg) ∩ F̃+
R (vd) 6= ∅.

It remains to construct at least one v-discontinuous solution of the coupled Riemann

problem when

vd /∈ F̃−

L (vg), vg /∈ F̃+
R (vd), F̃−

L (vg) ∩ F̃+
R (vd) = ∅. (3.28)

We begin with the following remarks. The condition vd /∈ F̃−

L (vg) means that

zL(·; vg, vd) possesses a nontrivial subwave whose speed is nonnegative. Otherwise,

we would get zL(x
t ; vg, vd) = vd for all x ≥ 0 and therefore vd ∈ F̃−

L (vg). Hence, we

have

vL(0−)
def
= zL(0−; vg, vd) 6= vd.
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Similarly, the condition vg /∈ F̃+
R (vd) means that zR(·; vg, vd) possesses a nontrivial

subwave whose speed is nonpositive so that

vR(0+)
def
= zR(0+; vg, vd) 6= vg.

Note that the hypotheses (3.28) imply vL(0−) 6= vR(0+). Otherwise the function

z(
x

t
; vg, vd) =






zL(x
t ; vg, vL(0−)), x

t < 0

zR(x
t ; vR(0+), vd), x

t > 0

would be a v-continuous solution of the coupled Riemann problem. On the other

hand, we have either vL(0−) = vg (resp. vR(0+) = vd) or vL(0−) (resp. vR(0+)) is a

sonic state of f̃L (resp. f̃R). Hence, it appears fairly natural to consider the function

z(
x

t
; vg, vd) =






zL(
x

t
; vg, vd), x < 0

zR(
x

t
; vg, vd), x > 0

(3.29)

as a possible solution of the coupled Riemann problem. Indeed, we can state

Lemma 3.9. Assume the hypotheses (3.28) together with




vL(0−) < vR(0+) if vg < vd

vL(0−) > vR(0+) if vg > vd.

(3.30)

Then (3.29) is a solution of the coupled Riemann problem.

Proof. We have only to check the coupling conditions which read here

min
v∈I(vL(0

−
),vR(0+))

f̃L(v) − f̃L(vL(0−))

v − vL(0−)
≥ 0

and

max
v∈I(vL(0

−
),vR(0+))

f̃R(v) − f̃R(vR(0+))

v − vR(0+)
≥ 0.

Assume for instance vd > vg. Since, in that case, zL(·; vg, vd) and zR(·; vg, vd) are

monotonically increasing functions, we have by (3.30)

vg ≤ vL(0−) < vR(0+) ≤ vd.

Now, we observe that zL(·; vL(0−), vd) has a nonnegative speed, i.e.,

min
v∈I(vL(0

−
),vd)

f̃L(v) − f̃L(vL(0−))

v − vL(0−)
≥ 0

which implies the first coupling condition. On the other hand, zR(·; vg, vR(0+)) has

a nonpositive speed, i.e.,

max
v∈I(vg,vR(0+)

f̃R(v) − f̃R(vR(0+))

v − vR(0+)
≤ 0
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which yields the second coupling condition. The case vg > vd is analyzed in the

same way.

Note that the proof of the above lemma only uses the first two hypotheses

(3.28). Observe that this proof fails if the conditions (3.30) do not hold. It remains

to construct a solution of the coupled Riemann problem when either

vg < vd and vL(0−) > vR(0+) (3.31)

or

vg > vd and vL(0−) < vR(0+). (3.32)

Assume first (3.31). Let us then check that there exists at least one sonic state

of f̃L in [vg, vR(0+)]. It is here convenient to work with the conservative variable

u : setting ug = θL(vg), uR(0+) = θL(vR(0+)), we introduce the lower convex

envelope of fL in the interval [ug, uR(0+)]. This envelope function cannot be strictly

decreasing. Otherwise, wL(·; ug, uR(0+)) and therefore zL(·; vg, vR(0+)), would be

a wave whose speed is negative. One then could exhibit a v-continuous solution of

the coupled Riemann problem, namely

z(
x

t
; vg, vd) =





zL(
x

t
; vg, vR(0+)),

x

t
< 0

zR(
x

t
; vR(0+), vd),

x

t
> 0.

Hence the above envelope function has either a unique minimum which is a sonic

state of fL or an interval of minima which contains such sonic states (at least the

end points of this interval). Denote by ū− the smallest of all sonic states of both fL

and its lower convex envelope in [ug, uR(0+)]. Then, v̄− = θ−1
L (ū−) is a sonic state

of f̃L in [vg, vR(0+)]. In the same way, there exists at least one sonic state of both

fR and its lower convex envelope in the interval [uL(0−), ud] and we denote by ū+

the largest of all such sonic states. Then, v̄+ = θ−1
R (ū+) is a sonic state of f̃R in

[vL(0−), vd]. Now, it appears natural to consider the functions

z(
x

t
; vg, vd) =






zL(
x

t
; vg, v̄−),

x

t
< 0

zR(
x

t
; vR(0+), vd),

x

t
> 0

(3.33)

and

z(
x

t
; vg, vd) =





zL(
x

t
; vg, vL(0−)),

x

t
< 0

zR(
x

t
; v̄+, vd),

x

t
> 0

(3.34)

as possible candidates to the solution of the coupled Rieman problem. In fact, we

can state
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Lemma 3.10. Assume the hypotheses (3.28) and (3.31). Then (3.33) and (3.34)

are solutions of the coupled Riemann problem.

Proof. Let us show that (3.33) is indeed solution. Again, we have to check the

associated coupling conditions

v̄− = zL(0−; v̄−, vR(0+)) ⇔ ū− = wL(0−; ū−, uR(0+))

and

vR(0+) = zR(0+; v̄−, vR(0+)) ⇔ uR(0+) = wR(0+; ū−, uR(0+)).

The first coupling condition holds since, by construction, wL(·; ū−, uR(0+)) is a

monotonically increasing function in [ū−, uR(0+)] and the corresponding wave has

a nonnegative speed. Consider next the second coupling condition. We know that

the lower convex envelope of fR in [ug, ud] is a monotonically decreasing function

in the interval [ug, uR(0+)] and is strictly convex in an interval [uR(0+), uR(0+) +

ε], ε > 0 small enough (cf. Fig. 12). Then, as ug < ū− < uR(0+), it is clear

geometrically that the lower convex envelope of fR in the interval [ū−, uR(0+)] is

a monotonically decreasing function so that uR(0+) = wR(0+; ū−, uR(0+)) and our

assertion is proved.

By using similar arguments, one can prove that (3.34) is also solution.

fL

fR

fL

uL(0
−

)uR(0+)ū
−

ū+
ug ud

fR

Fig. 12: A typical example where vd /∈ F̃−

L (vg), vg /∈ F̃+
R (vd), F̃−

L (vg)∩F̃
+
R (vd) =

∅.
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Remark. At first glance it would seem natural to consider the function

z(
x

t
; vg, vd) =





zL(
x

t
; vg, v̄−),

x

t
< 0

zR(
x

t
; v̄+, vd),

x

t
> 0

as a possible solution of the coupled Riemann problem. However, this is not true

since one can easily check that the coupling conditions

v̄− = zL(0−; v̄−, v̄+), v̄+ = zR(0+; v̄−, v̄+)

are not satisfied in general (cf. Fig. 12). �

We can also state the analogue of Lemma 10 whose proof follows the same lines

as above.

Lemma 3.11. Assume the hypotheses (3.28) and (3.32). Then the coupled Rie-

mann problem has at least two v-discontinuous solutions.

Theorem 3 is now an obvious consequence of Lemmas 10 and 11.

A natural question now arises: when the coupled Riemann problem posesses

several solutions, does there exist any “reasonable” criterion based on entropy or

stability arguments for choosing the “right solution”? As a first step in this direction,

we conjecture that, if a v-continuous solution exists, the eventual v-discontinuous

solutions should be considered as parasitic ones.

3.5. The coupled Riemann problem for two conservation laws

“with phase change”.

One can extend the above results to the case where the flux functions fα, α = L, R,

are only piecewise C1. For simplicity, we will restrict ourselves in this section to

continuous functions fα which satisfy the following properties:

(i) fα is a C1 strictly increasing function in the intervals (−∞, aα) and (bα, +∞),

aα < bα;

(ii) fα is constant in the interval [aα, bα].

One can think of each flux function fα as modeling a diphasic behavior: the states

u < aα and u > bα correspond to different phases while the states u ∈ [aα, bα]

correspond to a mixture of the two phases.

Again for simplicity, we will restrict ourselves to the u-coupling method. Before

constructing the solution of the coupled Riemann problem, let us recall the proper-

ties of the solution w(·; ug, ud) of the usual Riemann problem associated with such

a function f = fα
c. By introducing the lower convex envelope (resp. the upper

concave envelope) of f between the states ug and ud if ug < ud (resp. ug > ud), it is

a simple matter to check the following properties of w(·; ug, ud): (i) the associated

cwe drop the subscript α for simplicity.
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(composite) wave has a nonnegative speed;

(ii) the function x → w(x
t ; ug, ud) is continuous at x = 0 in the following cases





ug < a, ud ∈ R

ug = a, ud < a

ug > b, ud ∈ R

ug = b, ud > b;

(3.35)

(iii) the function x → w(x
t ; ug, ud) is discontinuous at x = 0 in the following cases






ug, ud ∈ [a, b]

ug ∈ [a, b), ud > b

ug ∈ (a, b], ud < a.

(3.36)

In the first case, w(·; ug, ud) consists of a stationary shock while, in the last two

cases, w(·; ug, ud) is a composite wave whose left subwave is a stationary shock.

Let us now consider the coupled Riemann problem. Instead of establishing gen-

eral results for piecewise C1 flux functions, it is here far simpler to use a direct

approach. Since the function fL is monotonically increasing, the solution of the

coupled Riemann problem cannot include a L-wave. Therefore a solution consists

of a possible stationary shock wave connecting ug and u+ and a R-wave connecting

u+ and ud.

Assume first ug = u+ so that the solution is continuous at the interface x = 0.

Then, using (3.35), we know that this is indeed the case if and only if the pair

(ug, ud) satisfies one of the following properties






ug < aR, ud ∈ R

ug = aR, ud < aR

ug > bR, ud ∈ R

ug = bR, ud > bR.

(3.37)

Assume next ug 6= u+. This occurs if and only if, on the one hand, the coupling

conditions hold and, on the other hand, wR(·; u+, ud) is either a trivial wave (i.e.,

ud = u+) or a wave whose speed is positive. Since the function fL is monotonically

increasing, the first coupling condition

min
u∈I(ug,u+)

fL(u) − fL(ug)

u − ug
≥ 0

holds trivially. The second coupling condition

max
u∈I(ug,u+)

fR(u) − fR(u+)

u − u+
≤ 0

means that the wave wR(·; ug, u+) has a nonpositive speed. Hence wR(·; ug, u+) is

necessarily a stationary shock or equivalently (cf. property (iii) above) we have

ug, u+ ∈ [aR, bR].
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If u+ = ud, we thus have an admissible stationary shock for the solution of the

coupled Riemann problem as soon as

ug, ud ∈ [aR, bR], ug 6= ud.

Consider next the case u+ 6= ud. For the speed of the wave wR(·; u+, ud) to be

positive, it follows from (3.35) that we must have either

u+ = aR, ud < aR

or

u+ = bR, ud > bR.

In both cases, one can easily check that the speed of the wave is indeed positive.

As a conclusion, we obtain that the coupled Riemann problem has a unique

solution. This solution is u-continuous at the interface x = 0 in the cases (3.37) and

is u-discontinuous otherwise, i.e., when either

ug, ud = u+ ∈ [aR, bR], ug 6= ud (3.38)

or
{

ug ∈ (aR, bR], u+ = aR, ud < aR

ug ∈ [aR, bR), u+ = bR, ud > bR.
(3.39)

This result is easily extended to the case of a v-coupling method. It may be viewed

as a generalization of the results of Example 2.3 when both flux functions fα are

strictly increasing.

4. Numerical experiments

Our objective in this section is to illustrate numerically the theoretical results we

obtained in the previous sections. For that, the following configurations will be

considered :

• the case of two strictly monotone flux functions (example 2.3 above),

• the case of two strictly convex flux functions (example 2.4 above),

• a particular configuration where two discontinuous and none continuous (at

the coupling interface) solutions are admissible,

• a particular configuration where several discontinuous solutions and con-

tinuous solutions exist,

• and the coupling of two conservation laws “with phase change”.

The situations leading to several admissible solutions (continuous or discontinuous

at interface) are of particular interest since different numerical schemes may capture

different solutions. We begin with a brief description of the proposed numerical

strategy and then present some numerical results.
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4.1. Numerical strategy

We consider a finite volume approach. Let ∆x and ∆t denote the uniform space and

time steps and Cj+1/2 be the cells defined by Cj+1/2 = (xj , xj+1) with xj = j∆x

and whose centers are xj+1/2 = (j + 1/2)∆x for all j ∈ Z. We set λ = ∆t/∆x and

tn = n∆t for n ∈ N. The approximate solution is assumed to be piecewise constant

on each cell Cj+1/2 and at each time tn and the corresponding value is denoted

un
j+1/2.

To begin with, we set as usual

u0
j+1/2 =

1

∆x

∫

Cj+1/2

u0(x)dx, j ∈ Z,

where u0 denotes a given initial condition of the coupling problem.

Then, let Gα, α = L, R be two two-point numerical flux functions that we assume

to be consistant with fα, α = L, R. We propose the following update formula for

un+1
j+1/2 :

un+1
j−1/2 = un

j−1/2 − λ(Gn
L,j − Gn

L,j−1), j ≤ 0, n ≥ 0,

un+1
j+1/2 = un

j+1/2 − λ(Gn
R,j+1 − Gn

R,j), j ≥ 0, n ≥ 0,
(4.1)

with Gn
α,j = Gα(un

j−1/2, u
n
j+1/2) for j 6= 0. In other words, this consists in a classical

finite volume scheme outside of the interface, and only both fluxes Gn
L,0 and Gn

R,0

remain to be precised in order to define the numerical coupling procedure at the

interface. Following the previous works,19, 18, 3 (see also,4, 5), we set

Gn
L,0 = GL(un

−1/2, θL(vn
1/2)),

Gn
R,0 = GR(θR(vn

−1/2), u
n
1/2),

(4.2)

where ghost states vn
±1/2 are obtained as

vn
−1/2 = θ−1

L (un
−1/2),

vn
1/2 = θ−1

R (un
1/2).

(4.3)

Note from now on that for convenience, we will restrict ourselves to the simple case

θL = θR = id, so that condition (2.4) reads u(t, 0−) = u(t, 0+) and the ghost states

at the interface are simply

vn
−1/2 = un

−1/2,

vn
1/2 = un

1/2.
(4.4)

At last and as far as the numerical flux functions Gα, α = L, R are concerned, we

will consider the celebrated Godunov scheme :

Gα(u, v) =

{
minw∈[u,v] fα(w), u ≤ v,

maxw∈[v,u] fα(w), v < u,
(4.5)

and a relaxation scheme (see for instance,25) defined by :

Gα(u, v) =
1

2

(
fα(u)+fα(v)

)
+

a(u, v)

2
(u−v) with a(u, v) = max

[min(u,v),max(u,v)]
|f ′|.

(4.6)
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4.2. Numerical results

Let us now present the numerical tests and results.

Test 1. The case of strictly monotone flux functions.

As Riemann initial data, we take

u0(x) =

{
ug if x < 0,

ud if x > 0,

with ug = −2 and ud = 2 and we consider the following cases :

(1) fL(u) = −u and fR(u) = −2u : the unique solution is continuous at the coupling

interface.

(2) fL(u) = u and fR(u) = 2u : the unique solution is continuous at the coupling

interface.

(3) fL(u) = u and fR(u) = −2u : there is no continuous solution but a unique

discontinuous solution.

(4) fL(u) = −u and fR(u) = 2u : there is no discontinuous solution and a contin-

uum of continuous solutions.

Numerical results, obtained for both relaxation and Godunov approaches, are pre-

sented on Fig.13. These results are in agreement with the above theoretical results.

Note that in the last case both numerical schemes capture the same continuous

solution.

Test 2. The case of strictly convex flux functions with sonic states.

We consider two different cases, according to the relative position of the sonic points

v̄L and v̄R.

Test 2.1. fL(u) = u2/2, fR(u) = (u − 1)2/2.

The sonic points are v̄L = 0 and v̄R = 1 and we consider the following four Riemann

problems :

(1) ug = −1 and ud = 2 : the unique solution is a discontinuous solution of the

fourth type (composite wave consisting of a L-wave, a discontinuity and a R-

wave).

(2) ug = 2 and ud = −1 : the unique solution is a discontinuous solution of the first

type.

(3) ug = 0.5 and ud = −2 : the solutions are a continuous solution of the first type

and a discontinuous solution of the first type.

(4) ug = −1 and ud = −1.5 : the solutions are a continuous solution of the first

type and a discontinuous solution of the second type (that is not a monotonous

solution).

Numerical solutions are presented on Fig.14. We observe that both numerical

schemes select the continuous solutions when more are presents (cases (c) and (d)).
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Test 2.2. fL(u) = u2/2, fR(u) = (u + 1)2/2.

The sonic points are v̄L = 0 and v̄R = −1 and we consider the following four

Riemann problems. The numerical solutions are presented on Fig.15.

(1) ug = −0.6 and ud = −0.2 : the solutions are a continuous solution of the first,

second or third type, and a discontinuous solution of the fourth type. Both

numerical schemes capture the continuous solution of the third type, here with

two rarefaction waves connecting a constant state, that slightly differs for both

schemes.

(2) ug = −0.2 and ud = −0.6 : the solutions are a continuous solution of the

first, second or third type, and a discontinuous solution of the fourth type.

Both numerical schemes capture the continuous solution of the third type, here

with two shock waves connecting a constant state, that slightly differs for both

schemes.

(3) ug = 0.5 and ud = 1 : the solutions are a continuous solution of the second
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Fig. 13: Monotone fluxes. 1000 pts. t = 0.2. ug = −2, ud = 2.
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type, and a discontinuous solution of the third type. Both numerical schemes

capture the unique continuous solution of the second type.

(4) ug = 1 and ud = −1.5 : the solutions are a continuous solution of the first, sec-

ond or third type, and a discontinuous solution of the first type. Both numerical

schemes capture the continuous solution of the second type.
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(d) ug = −1, ud = −1.5

Fig. 14: Convex fluxes. 1000 pts. t = 0.2
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Test 3. A particular configuration where only two discontinuous solutions are ad-

missible.

The flux functions fL and fR are defined from the derivatives f ′
L and f ′

R given by

f ′
L(u) = (u + 1)(u +

1

10
)(u − 1),
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(a) ug = −0.6, ud = −0.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

-1 -0.8 -0.6 -0.4 -0.2  0  0.2  0.4  0.6  0.8  1

Relaxation
Godunov

(b) ug = −0.2, ud = −0.6
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(d) ug = 1, ud = −1.5

Fig. 15: Convex fluxes. 1000 pts. t = 0.2
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f ′
R(u) = −(u +

1

2
)(u −

2

5
)(u −

3

2
).

The sonic points are thus u−

L = −1, u0
L = −1/10 and u+

L = 1 for the left flux fL and

u−

R = −1/2, u0
R = 2/5 and u+

R = 3/2 for the right flux fR. The Riemann initial data

is such that ug = −1.25 and ud = 1.75. This configuration is such that ug /∈ F̃+
R (ud),

ud /∈ F̃−

L (ug). Moreover the set F̃−

L (ug)∩F̃+
R (ud) is empty and therefore there is no

continuous solution. Fig. 16 represents both fluxes and in bold-face the sets F̃+
R (ud)

and F̃−

L (ug).

The proposed coupled Riemann problem admits only discontinuous solutions, each

one of the third type. More precisely, they are

(1) a L-wave (whose speed is nonpositive) connecting ug to u+
L , followed by a R-

wave (whose speed is nonnegative) connecting u+
R to ud,

(2) a L-wave (whose speed is nonpositive) connecting ug to u−

L , followed by a R-

wave (whose speed is nonnegative) connecting u−

R to ud.

Numerical solutions are presented on Fig. 17. We observe that the Godunov scheme

captures the solution (b), while the relaxation scheme captures the solution (a).

Test 4. A particular configuration where several discontinuous solutions are admis-

sible, and continuous solutions also exist.

Here again, both fluxes are obtained from the derivatives given by

f ′
L(u) = (u + 1)(u +

1

2
)(u − 1),

f ′
R(u) = −(u −

5

4
)(u −

3

4
)(u +

3

4
).

u

fL

fR

f(u)

ug
u
−

L u
−

R u
+
L u

+
R

ud

Fig. 16: A case where ug /∈ F̃+
R (ud), ud /∈ F̃−

L (ug), and F̃+
R (ud) ∩ F̃−

L (ug) = ∅.
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We take ug = −1.5 and ud = 1.75 so that ug /∈ F̃+
R (ud), ud /∈ F̃−

L (ug), but the set

F̃−

L (ug) ∩ F̃+
R (ud) is not empty. Fig. 18 represents both fluxes and in bold-face the

sets F̃+
R (ud) and F̃−

L (ug).

We can see that both numerical schemes capture the same continuous solution.

Test 5. The coupling of two conservation laws “with phase change”

The rest of this section is devoted to the coupling of two scalar conservation laws
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Godunov

Fig. 17: Multiple disc. solutions. 10000 pts. uL = −1.25, uR = 1.75, t = 1.5
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f(u)
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u
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L u
−

R u
+
L u

+
R

udeF−

L
(vg) ∩ eF+

R
(vd)

Fig. 18: A case where ug /∈ F̃+
R (ud), ud /∈ F̃−

L (ug), and F̃+
R (ud) ∩ F̃−

L (ug) 6= ∅.
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“with phase change”. We consider the following fluxes

fL(u) =






−
u2 − 1

2
, u < −1,

0, −1 ≤ u ≤ 1,
u2 − 1

2
, u > 1,

fR(u) = fL(u − 1/2)− 1,

that are represented on Fig. 20.

The numerical solutions are shown on Fig.21 for both relaxation and Godunov

schemes and these match with the expected theoretical results. They correspond
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Fig. 19: Multiple disc. solutions. 10000 pts. t = 0.5. uL = −1.5, uR = 1.75.

Fig. 20: Scalar flux for the coupling “with phase change”.
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to the solution for the right-problem, that consists here in a shock transition wave

connecting the left-state of the Riemann problem to the point of C1-discontinuity

(u = 3/2), a constant part and finally a rarefaction wave to the right-state.
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