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Abstract

This paper presents a very efficient numerical strategy for computing weak solutions of a scalar conservation law

which fails to be genuinely nonlinear. In such a situation, the dynamics of shock solutions turns out to be mainly

driven by a prescribed kinetic function that imposes the speed of propagation of the discontinuities. We show

how to enforce the validity of the kinetic criterion at the discrete level. The resulting scheme provides in addition

sharp profiles. Numerical evidences are included.

Résumé

Ce papier présente un algorithme très efficace pour le calcul des solutions faibles d’une loi de conservation scalaire

non vraiment nonlinéaire. Dans ce contexte, la dynamique des solutions choc repose principalement sur la donnée

d’une fonction cinétique qui fixe la vitesse de propagation des discontinuités. Nous montrons comment forcer

la validité du critère cinétique au niveau discret. Le schéma obtenu fournit par ailleurs des discontinuités sans

diffusion numérique. Des résultats numériques sont présentés.

1. Introduction

We are interested in computing nonclassical weak solutions of an initial-value problem for a scalar
conservation law of the form







∂tu + ∂xf(u) = 0, u(x, t) ∈ R, (x, t) ∈ R × R
+∗,

u(x, 0) = u0(x),
(1)
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where f : R → R is a (smooth) nonconvex flux-function. Generally speaking, solutions of problem (1) may
be discontinuous and are not uniquely determined by initial data u0. According to a general regularization
principle, we thus ask solutions of (1) to satisfy a single entropy inequality of the form

∂tU(u) + ∂xF (u) ≤ 0, (2)

where U : R → R and F : R → R are specified functions such that U is strictly convex and F ′ = U ′f ′.
When f is convex, entropy condition (2) actually selects a unique classical solution of (1). When f fails to
be convex, it is necessary to supplement (1)-(2) with an additional selection criterion called kinetic relation

from [3]. More precisely, the Riemann problem associated with (1)-(2) still admits a one-parameter family
of solutions, which may contain shock waves violating Lax shock inequalities. Such discontinuities are
referred as to undercompressive shocks or nonclassical shocks. In order for the uniqueness to be ensured, a
kinetic relation needs to be added along each nonclassical discontinuity connecting a left state u− to a right
state u+. It takes the form u+ = ϕ[(u−) or u− = ϕ−[(u+) where ϕ[ is the so-called kinetic function and
ϕ−[ its inverse. Then, the speed of propagation is σ(u−, ϕ[(u−)) =

[

f(ϕ[(u−)) − f(u−)
]

/
[

ϕ[(u−) − u−

]

by Rankine-Hugoniot conditions. We refer to [3] for a general theory of nonclassical entropy solutions.
The numerical approximation of nonclassical solutions is known to be very challenging and still consti-

tutes an open problem nowadays. The main difficulty is the respect of the kinetic relation at the discrete
level. In this paper, we present a new scheme for capturing discontinuities whose dynamics is driven by
a kinetic function. Our strategy deals directly with the kinetic function ϕ[ to tackle the nonclassical
solutions. The resulting algorithm provides numerical results in full agreement with exact ones, whatever
the strength of the shocks are. In particular, our scheme leaves sharp isolated nonclassical shocks.

2. The case of cubic flux and nonclassical Riemann solver

Without loss of generality, we take f(u) = u3 which is to some extent the simplest example of a
nonconvex function, and refer to [1] for more general flux functions. We consider weak solutions of (1)
satisfying entropy inequality (2) with U(u) = u2 and F (u) = 3

4
u4, and choose (again without restriction)

ϕ[(u) = −β u, (3)

as a kinetic function, with β ∈ [1/2, 1) so that each nonclassical shock obeys the entropy inequality (2).
We also define ϕ](u) = −u − ϕ[(u) = (β − 1)u.

Given two constant states ul, ur such that ul > 0, we now consider a Riemann initial data u0 defined
by u0(x) = ul if x < 0 and u0(x) = ur if x > 0. Following [3], the nonclassical Riemann solver associated
with (1)-(2)-(3) is given as follows :

(1) If ur ≥ ul, the solution is a rarefaction wave connecting ul to ur.
(2) If ur ∈ [ϕ](ul), ul), the solution is a classical shock wave connecting ul to ur.
(3) If ur ∈ (ϕ[(ul), ϕ

](ul)), the solution contains a nonclassical shock connecting ul to ϕ[(ul), followed
by a classical shock connecting ϕ[(ul) to ur.

(4) If ur ≤ ϕ[(ul), the solution contains a nonclassical shock connecting ul to ϕ[(ul), followed by a
rarefaction connecting ϕ[(ul) to ur.

3. Numerical approximation

We now present a suitable algorithm for approximating the nonclassical Riemann solutions of previous
section. The method relies on the kinetic function ϕ[ only, but in no way on the corresponding nonclassical
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Riemann solver. It is made of two steps : an equilibrium step and a transport step. In the equilibrium step,
we propose to modify any given consistent and conservative scheme for (1) in order to put at stationary
equilibrium nonclassical discontinuities. Then, the transport step propagates these discontinuities.

Let be given a constant time step ∆t and a constant space step ∆x. Introducing xj+1/2 = j∆x for
j ∈ Z and tn = n∆t for n ∈ N, we seek at each time tn an approximation un

j of solution u on each
interval Cj = [xj−1/2; xj+1/2), j ∈ Z. In this context, we choose a two-point numerical flux function
g : (u, v) → g(u, v) consistent with the flux fonction f and set λ = ∆t/∆x. We now describe the two
steps of our strategy.

First step (tn → tn+1−) This first step aims at making stationary some of admissible discontinuit-
ies of problem (1) (see [1] for motivation). In this paper, we will focus ourselves only on the nonclassical
discontinuities, that is on the most difficult discontinuities to capture numerically. It is a matter of dis-
continuities separating two states u− and u+ such that u+ = ϕ[(u−) < ϕ](u−) when u− > 0. With this
in mind, we introduce the following nonconservative update formula :

un+1−

j = un
j − λ(gL

j+1/2 − gR
j−1/2), j ∈ Z, (4)

where the numerical fluxes gL
j+1/2

and gR
j+1/2

are defined as follows when un
j > 0 :

gL
j+1/2 =







g(un
j , ϕ−[(un

j+1)) if un
j+1 < ϕ](un

j ),

g(un
j , un

j+1) otherwise,
(5)

gR
j+1/2 =







g(ϕ[(un
j ), un

j+1) if un
j+1 < ϕ](un

j ),

g(un
j , un

j+1) otherwise,
(6)

and, in a first approach at least, coincide with gj+1/2 when un
j ≤ 0 (see again [1] for details). With these

definitions, it is easy to check that discontinuities separating two states u− and u+ such that u+ = ϕ[(u−)
are kept at stationary equilibrium during this first step.

Second step (tn+1− → tn+1) This step is concerned with the transport of discontinuities left stationary
during the first step. We first recall that the speed of propagation σ(u−, u+) of a discontinuity between
u− and u+ is given by Rankine-Hugoniot conditions, that is σ(u−, u+) = [f(u+) − f(u−)] / [u+ − u−] .
We then define at each interface xj+1/2 a speed of propagation σj+1/2 by

σj+1/2 =







σ(un+1−

j , un+1−

j+1
) if un

j+1 < ϕ](un
j ),

0 otherwise,
(7)

and solve at each discontinuity xj+1/2 a transport equation with speed σj+1/2. In order to get a new

approximation un+1

j at time tn+1 = tn + ∆t, we propose to pick up randomly on interval [xj−1/2, xj+1/2[
a value in the juxtaposition of these Riemann solutions at time ∆t chosen small enough to avoid wave
interactions. Given a well distributed random sequence (an) within interval (0, 1), it amounts to set :

un+1

j =



















un+1−

j−1 if an+1 ∈ [0, λσ+

j−1/2
[,

un+1−

j if an+1 ∈ [λσ+

j−1/2
, 1 + λσ−

j+1/2
[,

un+1−

j+1 if an+1 ∈ [1 + λσ−

j+1/2
, 1[,

(8)

with σ+

j+1/2
= max(σj+1/2, 0) and σ−

j+1/2
= min(σj+1/2, 0) for all j ∈ Z. This achieves the description.
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4. Numerical experiments

We propose numerical evidences to illustrate the relevance of the scheme we have proposed. We consider
a Roe scheme as a basic numerical flux g, and following Collela [2], we use van der Corput random sequence
for (an). The flux f is still taken to be f(u) = u3 and concerning the kinetic function ϕ[, we set β = 3

4
in

(3). We address the two typical nonclassical behaviors of the Riemann solution given in Section 2, when
taking ul = 4 and ur equal to −2 (test 1) and −5 (test 2). Numerical solutions are plotted on Figure 1.
The mesh contains 100 points per unit interval and initial discontinuity is located at x = 0.
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Figure 1. Nonclassical solutions : test 1 (Left) and test 2 (Right)

We observe that numerical solutions fully agree with exact ones. In particular, the left and right states
of the nonclassical waves are exactly captured while there are not any points in its profile. The kinetic
criterion is respected perfectly, which is remarkable. For test 1, we note that the classical shock contains
numerical diffusion induced by the Roe scheme. In [1], we show how to slightly modify the definitions of
the numerical fluxes gL

j+1/2
and gR

j+1/2
in (5)-(6) in order to make sharp the classical shocks, too.

To conclude, we have presented a powerful numerical strategy for computing nonclassical solutions
whose dynamics is dictated by a kinetic function. The idea was to modify any given conservative scheme
in order to properly capture the undercompressive shocks. Note that this is done without explicitly using

the knowledge of the underlying nonclassical Riemann solver, contrarily to Glimm’s method for instance.
In this context and up to our knowledge, our algorithm is the only one providing sharp nonclassical
interfaces propagating at the right speed whatever the strengh of interfaces are. A subsequent paper [1]
deals with loss of conservation estimates and stability properties of the scheme, together with its extension
to the case of systems. Application to pedestrian flows is also under preparation.

References

[1] Chalons C., In preparation.

[2] Collela P., Glimm’s method for gas dynamics, SIAM J. Sci. Stat. Comput., vol 3, pp 76-110 (1982).

[3] LeFloch P.G., Hyperbolic Systems of Conservation Laws: The theory of classical and nonclassical shock

waves, E.T.H. Lecture Notes Series, Birkhäuser (2002).
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